Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2017

Y. N. Patt, Instructor

Chirag Sakhuja, Sarbartha Banerjee, Jonathan Dahm, Arjun Teh, TAs
Exam 1

March 1, 2017

Name:

Problem 1 (25 points):
Problem 2 (10 points):
Problem 3 (15 points):
Problem 4 (25 points):
Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (25 points): Answer any five of the six. Draw a line through the one you do not want graded.

Part a (5 points): A load-store ISA does not allow what?

Part b (5 points): Unaligned accesses. Part of the ISA or part of the microarchitecture? Explain.

Part c (5 points): Interleaving. Part of the ISA or part of the microarchitecture? Explain.

Part d (5 points): J.E.Smith’s branch predictor introduced the use of saturating 2-bit counters. What does the word
“saturating” mean in this context, and why is it necessary?

Part e (5 points): McFarling modified my GAs predictor, creating g-share. What was his purpose for doing so?

Part f (5 points): Do processes having higher priority get increased privilege? If yes, explain why. If no, explain why
not.

Name:

Problem 2 (10 points): An Aggie hates the LC-3b, so he cuts the 16 wires labeled A and B on the data path, and
grounds the wire labeled C in the microsequencer so the LC-3b can not function properly. (The data path, showing
wires A and B is shown on the next page.)

Part a (2 points): If the 16 wires A are cut, which instruction(s) are impossible to function? Explain.
Instruction(s) Explanation

Part b (4 points): If the 16 wires B are cut, which instruction(s) are impossible to function? Explain.
Instruction(s) Explanation

Part ¢ (4 points): If wire C is grounded, which instruction(s) are impossible to function? Explain.
Instruction(s) Explanation

CONDI CONDO
BEN R IR[11]
JI5] Ji4] JB3] J2] Ji] JI0] C

0,0,IR[15:12]
l 6
%7 IRD

i 6

Address of Next State

Name:

GateMARMUX

—=/MARMUX
A A
16 16

LD.REG—>

3
SR2 —~4>|

SR2
OuT

SR1
OuUT

3
l<—4-DR

3
I<t4—SR1

16

[f%[}ooo

CONTROL

fu A
R

LD.CC—>|N|Z|P

ILOGIC|

<—DATA SIZE 0
LOGIC WE J RW
<—MARIO] | || |ioccl—2 | ___________
LoGic MIOEN | [NpUT
SHE .
4 WEIWED Y , | KBDR
16 _ ADDR. CTL. I
"| MEMORY LOGIC I
|
MDR |<—LD.MDR MEM‘EN<.J 2 | |
MIO.EN v

<—DATA.SIZE
<+—MARJ[0]

INMUX

}k WY

Name:

Problem 3 (15 points): In this problem we add an SAg 2-level branch predictor to the LC-3b. Recall that the S means
the branches are partitioned into sets, where all branches in a set share the same BHR. In our case, we have 8 sets, and
therefore 8 BHRs. Bits 13, 10, and 7 of a branch’s address determine which set a branch belongs to. For example, a
branch at address xX9E84 uses BHR 3 because bit 13 is 0, and bits 10 and 7 are 1.

The current state of the BHRs are shown below. The direction (taken = 1, not taken = 0) of the most recent branch is
the right-most bit of its respective BHR.

0 0‘1 ‘1
1 1‘1 ‘0
2 0‘1 ‘0
3 1‘1 ‘1
4 0‘1 ‘0
5 0‘0‘1
6 0‘1 ‘0
7 1‘0 ‘O

BHRs

(before)

0
1

w

O 0 N N n B

11
12
13
14
15

w

o 0 9 N n B

0 0
1 0
0 0
1 1
0 1
0 1
1 1
1 1
0 1
1 0
1 1
1 1
0 1
1 0
1 0
0 0
PHT
(before)

11

BHRs 12
(after)

13
14

15

PHT
(after)

Part a (5 points): The PC contains x360E, and the instruction fetched is a branch. Does the branch predictor predict
taken or not taken? On what information is your answer based? Please be specific.

Part b (5 points): The branch at x360E is taken. Compute the new BHRs and PHT in the figure above after this
branch completes execution. It is only necessary to show the “after” entries that have changed.

PROBLEM CONTINUTED ON NEXT PAGE

Name:

Part ¢ (5 points): Execution of the program results in four more branches (for a total of five) being executed. They are
at locations xCC48, xD028, x4842, and x6974. Each of the five branches retires before the next branch is fetched. The
table below shows the prediction and direction for each of these five branches. Your job: complete the table below. Do
not make any changes to the figures on the previous page.

Branch at address Prediction Actual
x360E (Answer in part a) Taken
xCC48 Taken
xD028 Taken
x4842 Not Taken
x6974 Not Taken

Name:

Problem 4 (25 points): An out-of-order processor executes its instructions according to the Tomasulo algorithm. The
ISA specifies 8 registers, RO to R7. The microarchitecture contains one pipelined adder and one pipelined multiplier.
Pipelining allows an add (or multiply) instruction to initiate execution each clock cycle.

e Fetch and Decode take one cycle each.
e ADD execution takes 3 cycles
e MUL execution takes 5 cycles.

e For ADD and MUL, if two instructions are ready to dispatch to the same functional unit in the same cycle, the
older instruction is dispatched and the younger instruction waits.

e For ADD and MUL, one cycle is needed to write the result to a destination register. Only one result can be
written in a single clock cycle. If two instructions want to write results in the same clock cycle, the older
instruction writes, and the younger is stored in a buffer and is available for writing in the following cycle.

e Data forwarding is not implemented.

The adder and multiplier each have 3-entry reservation stations. Note: if an instruction is of the form ADD Rx, Ry,
Rz or MUL Rx, Ry, Rz, and Ry contains valid data 74 and Rz contains valid data 27, the reservation station entry has
the form:

V TAG VALUEV TAG VALUE

Iy — 174 | 1] — | 27

The reservation stations are initially empty and are filled from top to bottom. Each instruction remains in the reserva-
tion station until the end of the cycle in which it writes its result to a register.

The table below contains a program of seven instructions that are executed.

Il ADD

12 R4

I3

14 R3

IS

Ie R2

17 ADD RS

PROBLEM CONTINUTED ON NEXT PAGE

Name:

Three snapshots of the machine are shown: (a) before execution, (b) after clock cycle 5, and (c) after clock cycle 9.
Note that some information in the program (shown on the previous page), in the register file, and in the reservation
stations are missing.

V TAG VALUE V TAG VALUE V TAG VALUE
RO 1| — 0 RO 1| — 0 RO 1| — 0
R1 1] — 1 R1 1| — 1 R1 o v —
R2 1| — 2 R2 0| o — R2 1| — 4
R3 1| — 3 R3 |0 — R3 1| — | 3
R4 1] — 4 R4 1| — 4 R4 1| — 4
R5 1| — 5 R5 0 — R5 0 —
R6 1| — 6 R6 1| — 6 R6 0 —
R7 |1| — 7 R7 |0 B — R7 [0 B —
(a) Beginning (b) After cycle 5 (c) After cycle 9
V TAG VALUEV TAG VALUE V TAG VALUEV TAG VALUE

all| — 1 1] — | 2 1| — 1 o

B 1 — 1 Ola| —|[1I|—| 0O

Y o

N X/
(b) After cycle 5
V TAG VALUEV TAG VALUE V TAG VALUEV TAG VALUE

alll—| 3 |1|]— | O o

B 1 — 1 11—10

yiil— | 11— |3 opg|—1|¢

N X/
(c) After cycle 9

Part a (20 points): Your job: Fill in the missing information in the program (shown on the previous page), and in the
bolded boxes in the register file and reservation stations at each of the snapshots.

Part b (5 points): The figure below shows, for each clock cycle, which phase of the instruction cycle each of the
seven instructions are in. Complete the figure. We have provided 20 clock cycles. Only use what you need.

1] 2
I1 | F| D
12 F | D
I3 F|D
14 F | D
I5 F | D
16 F | D
17 F | D

314567891011 12|13 |14 |15]16 |17 | 18| 19| 20

Name:

Problem 5 (25 points): Suppose we have a 4-way interleaved DRAM memory, with bits[2:1] designating the bank.
All address bits are as shown. Note, the question marks below; in part b, you are going to have to determine how many
row bits and how many column bits.

15 11 10 777 32 1 0

Rank Row Column Bank Byte on Bus

Recall that a single memory bank has the following form:

Memory Bank
Y ———-—=» Chipl L Chip 0 l
1 [l
! Row Buffer Row Buffer !
X b/ —__/

A row access takes 13 cycles, and a subsequent column access takes 3 cycles.

We store sequentially in this memory, starting at location x8000, an array of 64 English words, each containing 7
letters. Each word is stored in 8 consecutive locations, one location each for the corresponding ASCII code, and one
location for a null terminator (x00). For example the word “Compute” would be stored as:

x43
X6F
x6D
x70
x75
x74
x65
x00

PROBLEM CONTINUTED ON NEXT PAGE

Name:

Part a (6 points): Suppose we were to load the contents of location x8000. After the load completes, A, B, C, and D
are bytes of data in the row buffer. What are the addresses of the locations containing those bytes of data?

Memory Bank

I
I
Yy 4 chipl L Chip 0

I
w7 [A[B] [- [C[D]
Bufferm Bt C
RN [s
I
X I

Address containing A:

Address containing B:

Address containing C:

Address containing D: x8000

Part b (19 points): We wish to determine how many of the 64 English words end in the letter ‘e’ with a minimum
number of memory accesses.

Part bl (7 points): If we end up having to load 8 rows into the row buffer, how many bits must have been used to
specify the row, and how many bits must have been used to specify the column?

Row bits: Column bits:

Part b2 (6 points): How many clock cycles are necessary to access this information from memory, assuming memory
accesses are sent to DRAM in order of increasing addresses? (Note: Your answer will depend on how much you can
use interleaving.)

Clock cycles:

Part b3 (6 points): Suppose we interchange the column bits and the bank bits. Now how many clock cycles are nec-
essary to access this information from memory, assuming memory accesses are sent to DRAM in order of increasing
addresses?

Clock cycles:

10

ADD'
ADD’
AND'
AND’
BR
JMP
JSR
JSRR
LDB*
LDW *

+

LEA
NOT’
RET
RTI
LSHF "
RSHFL'
RSHFA'
STB
STW
TRAP

XOR'

+

XOR

not used

not used

oo | or | i o] w0 s
o | o s 1 m
: OI:O'I : :DR: :SR]: 0 0:0 :SRZ:
oo | e | s 1] s
o0 |nlzlp| rcomes
oo | et o
o0 |1 rowen
:01:00: 0 0:0 B:ase:R : :000:000: :
:00:10: :DR: B:cxse:R : t::off:sef:b :
:01:10: :DR: B:cxse:R : :offs:etb: :
wo | o | e
:10:01: :DR: :SR: 1 : 1:]]]:1 :
CREARIANE==)
W | v
ot | ok | st [0]o] amoun
Dot | o | e o] 1] amouns
Dot | o | e |1]1] amouns
oo | st | seser | | boteets
:O'I:H: :SR: B:ase:R : :offs:eié: :
W oo | s
: 10:01 : :DR: :SR]: 0 0:0 :SR2:
‘10‘0]‘ ‘DR‘ ‘SR‘ 1 | ir‘nm‘s |
—— —
‘10‘10‘ L
‘IO‘H‘

Figure 1: LC-3b Instruction Encodings

11

Table 1: Data path control signals

Signal Name

Signal Values

LD.MAR/I1:
LD.MDR/1:
LD.IR/1:
LD.BEN/I:
LD.REG/1:
LD.CC/1:
LD.PC/1:

GatePC/1:
GateMDR/1:
GateALU/1:
GateMARMUX/1:
GateSHF/1:

PCMUX/2:

DRMUX/1:

SRIMUX/1:

ADDRIMUX/1:
ADDR2MUX/2:

MARMUX/1:

ALUK/2:

MIO.EN/1:
R.W/1:
DATA.SIZE/1:
LSHF1/1:

NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)

NO(0), YES(1)
NO(0), YES(1)
NO(0), YES(1)
NO(0), YES(1)
NO(0), YES(1)

PC+2(0) ;select pc+-2

BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
11.9(0) ;destination IR[11:9]

R7(1) ;destination R7

11.9(0) ;source IR[11:9]

8.6(1) ;source IR[8:6]

PC(0), BaseR(1)

ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

7.0(0) ;select LSHF(ZEXTI[IR[7:0]],1)
ADDER(1) ;select output of address adder

ADD(0), AND(1), XOR(2), PASSA(3)

NO(0), YES(1)
RD(0), WR(1)
BYTE(0), WORD(1)
NO(0), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:
COND/2: CONDgy ;Unconditional
COND; ;Memory Ready
COND, ;Branch
COND3 ;Addressing Mode
IRD/1: NO, YES

12

18,19

MAR <-PC
PC<-PC+2

33
MDR <-M

IR <- MDR

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P

To8 [IR[15:12]]

DR<-SR1+0OP2*
set CC

To 18

To 18

To 18

To 18

R7<-PC
PC<-BaseR

R7<-PC
To 18 \ PC<-PC+LSHF(off11,1)

R
PC<-MDR
13 i

To 18 DR<—SHF(SR,A,D,amt4)
set CC To 18

To IS/ DR<- PC+LSHF(off9 1)
set CC CMAR< B+0ff6) CAR<—B+LSHF(0ff6) G/IAR< B+LSHF(off6) CMAR<—B+0ff6)

To 18

24

23
NOTES CG/IDR< M[MAR[15:1] 9 @DR<—M[MA9® MDR<-SR MDR<-SR[7:0]
B+off6 : Base + SEXT][offset6]

PC+0ff9 : PC + SEXT][offset9] 17

*0OP2 may be SR2 or SEXT[imm5]
[15:8] or [7:0] depending on CR<‘SEX££1?YTE DAT/’) C DRS; gICDR) M[MAR]<—MDR M[MAR]< MDR@D
MARJ0] L L L - —_
R R L R R
To 18 To 18 To 18 To 19

Figure 2: A state machine for the LC-3b

13

GateMARMUX

ZEXT &
LSHF1

4

[10:0]

A
[7:0] 2: /

ADDR2MUX

LD.REG—

3
SR2 —4>

SR2
OouT

SR1
ouT

l<t+—4-DR
3
I<t4—SR1

16

z?z?z?ooo

Y

CONTROL

\

6
SHF \vLIRLS:OJ

I<—DATA.SIZE o)
LOGIC WE <_L] RW
l<—MAR[0] | || | A f—e |] A P
roare MIO.EN | npuT I OUTPUT !
v DATA. | \
‘} WEI WEO SIZE \d : KBDR |
\
16 _ ADDR. CTL. I _D@E I
MEMORY LOGIC | |
| |
S = R N PR
MDR LD.MDR MEM .EN
MIO.EN t
TS}
16 Ai6
LOGIC P
<+—DATA.SIZE INMUX
<—MAR[0] 4-‘

Figure 3: The LC-3b data path

14

J[5]

0,0,IR[15:12]

|

COND1

J

CONDO

iﬁ

Address of Next State

Figure 4: The microsequencer of the LC-3b base machine

BEN R IR[11]
O O U
Branch Ready Addr.
Mode
J[4] J[3] J[2] J] J[0]
<F—"1IRD

