Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2017

Y. N. Patt, Instructor

Chirag Sakhuja, Sarbartha Banerjee, Jonathan Dahm, Arjun Teh, TAs
Final Exam

May 12, 2017

Name: % ’O\kk)ﬂ O n

Problem 1 (20 points):
Problem 2 (10 points):
Problem 3 (10 points):
Problem 4 (20 points):
Problem 5 (20 points):
Problem 6 (25 points):
Problem 7 (25 points):

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested: I have not given nor received any unau-
thorized help on this exam.

Signature:

GOOD LUCK!

s17 final Page 2

Name:

Problem 1 (20 points): Answer the following questions.

Part a (5 points): Write a program fragment in LC-3b code that will take a value stored in R1, divide it by 4, and
store the result in R2. Use as many instructions as you need.

LS5WEA RL, RV, %)

Part b (5 points): A physical cache read access requires a TLB access, a Tag Store access, and a Data store access.
In general we decrease latency substantially by doing the Tag Store access at the same time as we do the Data Store
access. If we do that, a direct mapped cache has shorter latency than a 4-way set associative cache. What is the major
reason for this?

AEXer e dodon sYore access, dne "\-Wjj wdne needs & mur
toselect Hhe daln, bur He dired-mapped cadne Juesi .

Part ¢ (5 points): Several device controllers are connected to the asynchronous bus discussed in class. What two
things must be true for a device controller to assert SACK? What must all be true for a device controller to subse-
quently negate SACK?

To assert SACK tBR &ﬂ.d g ("\f\ To negate SACK —%_’_5-77

Part d (5 points): As you know, wobble is a problem in floating point arithmetic. Is it a problem in fixed point
arithmetic? Why or why not? Explain in 15 words or fewer.

No, the re PJ'Eﬁn’rn\nle values are a\\ ewn\j seqnecl .

(39

s17 final Page 3

Name:

Problem 2 (10 points): Shown below are the addresses and contents of five memory locations.

Addr | Contents
x00 | 00000000
x01 | 00000001
x02 | 00000010
x04 | 00000011
x1E | 00000100

Memory address bits are broken down as follows:

|

Row Column Rank Byte

Part a (5 points): Your first job, identify the five locations specified above by putting their contents in the proper

locations of the memory structure:

S e |
hipO Chip 1 ' ' Chip0 Chip :

[0]3 V[]e—rov Ol 12

| Rank 0 ' | Rank 1 -

| L |

| | | 1

: | Row BuITerl | Row Buffer : : | Row Buffer | Row Buffer :

8 8 8 8

16

Part b (5 points): How many clock cycles would it take to read the contents of the five memory locations specified
above in sequential order, if we are restricted to access the memory one byte at a time? Assume it takes 3 cycles to
open a row, | cycle to access an open row, and 2 cycles to close a row.

(34) (1) + (301)+ 1) + (2434

s17 final Page 4

b cydes

Name:

Problem 3 (10 points): Three processors P1, P2, and P3; each has its own cache C1, C2, and C3. The caches are
connected to the memory via a bus. Cache coherency is maintained by a Goodman Snoopy Cache protocol. Initially,
cache lines A, B, and C are not contained in any of the three caches. P1, P2, and P3 access memory data from lines A,
B, and C in the following order:

Pl | read | A
P2 | write | B
Pl | write | A
P3| read | B
P2 | write | B
P1 | write | C
P3| read | C
Pl | write | A

What is the state (Invalid, Valid, etc.) of each cache line in each cache after the 8 accesses have completed?

Cl1 C2 C3
Dvrrvy Tavahid Tavalvd
Twvall & Reserved Aaval) &
Vali d Taval & Ya\i &

Q| | >
0| &= >
0| =| >

s17 final Page 5

Name:

Problem 4 (20 points): Consider the LC-3b, augmented with a multiply instruction. In this problem, Both ADD and
MUL are restricted to the single format OPCODE Ra,Rb,Rc. i.e., no immediates. ADD instructions take 1 cycle of
execution, MUL instructions take 8 cycles of execution. The data path contains exactly one pipelined multiplier.

The dataflow graph of a seven-instruction fragment of a program that is in the process of execution is shown below:

2 6
[x)
X @l 57 -3 2 -4
o P v
[+) (+) L+)
/@O
< Py
[x | L+)
A » &0 ‘),'\h'
™~ . \
A s ¢
[x|

Prior to fetching the first instruction, the Register file is as shown:

RO | 7

R1 | 2
R2 | 6
R3 | 6
R4 | -3
R5 | -4
R6 | -5
R7 | 1

At the time that the seventh of the seven-instruction fragment is stored in a reservation station, the Reorder Buffer is
as follows:

V | R | Ret | DR | Value

i1 1 R 4

1170 R| 6

T10l 0 R | = <n
o0 R =

I1] 0 |RO| 4 0 M\O‘p
T 110 |RI| 2 Yy
1ol 0 [RO| - (»?

T 11 0 [RI| -

170 0 |R6| -

Each entry contains 3 bits to indicate its state. The Valid (V) bit indicates if the entry is in use, i.e. V=0 indicates
an empty slot in the reorder buffer. The Ready (R) bit indicates that the entry corresponds to an instruction that has
successfully completed execution. The Retirement bit (Ret) indicates that the executed instruction has retired.

PROBLEM CONTINUES ON NEXT PAGE

s17 final Page 6

Name:

Part a (5 points): What is the value of R2 when the Reorder Buffer is as shown on the previous page?

LA

Part b (15 points): Completely specify below the seven instructions in the seven-instruction fragment.

MUL @1 R, Rz
pop 1, L P
AUy o, Yo, py
APo \’Lll | A X
MUL pb R, o
pDO ¢l R, K
MUL W, fo,p

Lynee Bane Cyeo¥ Vasdturion 'n the RO% Yna¥s5 jn Yhe ?m;m’.n Y

nu . |
\:9 nY doncy nuy gm’\'“f‘L vasymuons mﬂ, YWre g(g\/ NSy adh
paoY Be @ M QY-

The Ins¥m (Honr Hhat ave dine Can be conficnedk wiY Hel,
Va|u.gs.

s17 final Page 7

Name:

Problem 5 (20 points): We wish to add a new instruction to the LC-3b, called ARRAYCMP, which compares two
equal size, word arrays. If they are identical, the Z bit will be set to 1. If not, the Z bit will be set to 0. We will use
unused opcode 1010. The instruction format for ARRAYCMP is:

15 14 13 12 11 10 9 8 7 6 5 4 3

1 0

1010 | DR | SRI ‘0‘ 00 I_ISRZI ‘

SR1 and SR2 contain the starting addresses of the two arrays. DR contains the size of the arrays in words. Note the
side effects: SR1, SR2, and DR are clobbered by ARRAYCMP.

We implement ARRAYCMP by comparing the two arrays one word at a time. After each compare, we decrement DR.
If the two arrays are identical, DR will equal 0, and the Z bit will be set. If a mismatch occurs, ARRAYCMP will stop

S . . X
execution with Z=0). * P‘\QD q([uVV“- ;L\(l{g lg_\ and Jsv_(}.‘o—\ O-d‘a QA. '}D DQ’MU

The datapath is modified to implement ARRAYCMP, shown below in bold. We have also added a third input to
SRIMUX to select IR[2:0]. Your job: Complete the state machine and microsequencer and fill in the control store
signals on the following two pages.

<%

GateMARMUX —7/\

GatePC —}5
6

REG
FILE

LD.REG—t+ {<~DR

5, |SR2 SRI | 3
SR2—4 OUT OUT |[@+SRI

flo

9
— [a]=— o
— 6 ¢ ..
[4:0)
SEXT
| R

|n|k—«>E

LOGIC
| -

GateMDR
MAR LDMAR

{(<—DATASIZE

- GateALU

LOGIC
[a—MAR[0]

ADDR. CTL.
LOGIC

MEMORY

— MEM EN

¥

R

INMUX]

7

s17 final Page 8

Name:

Part a (10 points): Complete the state machine to implement ARRAYCMP given the datapath modifications on the

previous page.

10,50

(MAR(—S’(ZI

v
C(r«o (A(—M[MAH)

y R

R
(Aév\pk)

PROBLEM CONTINUES ON NEXT PAGE

s17 final Page 9

Name:

Part b (5 points): Add logic to the microsequencer to support the state machine from Part a. Put all your modifications
in the bold box. You may use two additional control store signals called US1 and US2. You may also add additional
inputs to the bold box.

CONDI CONDO
115] Ji4) 113) J
| | .
2z ‘IJS\ 14 \\15? BEN R IR[11]
G & el
o U U
Branch Ready {\-\A%%re
e 112] I J[0)
| | #/
0.0.IR[15:12]
6

IRD

W
I

Address of Next State

Part c (5 points): We have added several control signals for controlling the data path, as shown below:

Signal name Signal values

LD.A/1: NO, LOAD
LD.B/1: NO, LOAD

AMUX/2: SR2MUX :select output of SR2ZMUX
2 :select the value 2
-1 ;select the value -1
A ;select the value in A
BMUX/I: SRI1OUT ;select the value in SRIOUT
B ;select the value in B

Fill in the control signals needed to implement states A,B,C shown in bold in the state machine.

State | ALUK | LD.CC | LD.A | LD.B | AMUX | BMUX | GateALU
A | \o L Olo ! | |
B Y 0 [¢) o) b) o \
C ol { 0 Q (V) (% \
9

s17 final Page 10

Name:

Problem 6 (25 points): Consider the LC-3b augmented with a direct-mapped, write-back cache that contains instruc-
tions and data. Line size is 8 bytes. The cache is initially empty.

In the execution of a program, a number of accesses between memory and the cache occurred. The table below shows
the first several cache line transfers between the cache and memory during execution of the program.

Hint: Recall, in a write back cache, transfers go from memory to cache and from cache to memory.
Hint: Recall, the LC-3b is little-endian.

Address Qachq Line
3000 | xE00030006000E001
x3008 | xF0230BFDD0076200
6010 | x0000000000000000
xC020 | x0000000000000000
x8040 | x0000000000000000
0080 | x0000000000000000
x3000 | xE00030006000E000
x0100 | x0000000000000000

Part a (5 points): Shown below is part of the program that was executed. Your first job: Complete the table with the
remaining instructions of the program. ...in assembly language, of course!

Label | Assembly
.ORIG x3000
LEA RO, A
LOW (4, 2b, i
A 15Te 09,00 490
Leh 94,9
% LYW ¢\ g S
LSvie ep ¢p
BRnp B
HALT

J

U

>

Part b (5 points): Why is there an access to x3000 after the access to x0080? Please answer in 20 words or fewer.

Wyen ouessng \ree %100, i mugr Q\rsy evier dirky \int ¥ 3000
t’ue Yo se¥ coaflic¥

X"A\So Vq\'\&.—\—bgmj evicHon Vs due 4o

PROBLEM CONTINUES ON NEXT PAGE
¥bO§ O

s17 final Page 11

Name:

Part ¢ (15 points): Finally, complete the specification of the cache, i.e., how many bits of index, how many bits of
tag, how big is the data store? Please show your work.

Number of index bits: 6 Number of tag bits: E Size of data store: 26 ‘a
WA g en
\ne
N4 %Doo DO \\ Do Ooo OPUVa
X Oloo Dowo ©L9 |l o wO ©ooo

]

mu sk be here e @UE
YOIEO Ak qo¥ (o€ A

Lovf\‘c\'\d’) \(J‘M’ O Wwo

S(SQ-X‘) i;

s17 final Page 12

Name:

Problem 7 (25 points): Consider a byte-addressable memory system with two levels of virtual to physical translation
(like the VAX).

Virtual Address Space: 64KB Physical Memory Size: 4KB

User Space: 0x0000-0x7FFF Page Size: 128B

System Space: 0x8000-OxFFFF PTE Size: 2 bytes
A PTE is shown below:

|V |M | PROT [0..0] PFN |

A PTE includes a Valid bit, a Modify bit, and a 4 bit PROT field. The low bits (the exact number is for you to deter-
mine) are used for the PEN. In user mode, the processor can read/write to all user space pages and does not have any
access to system pages. The system pages can only be read/written in supervisor mode. To implement this protection,
the encoding of the PROT bits is 1111 for user page PTEs and 1100 for system page PTEs.

Each process, as you know, has its own user space page table. Process page tables are stored in contiguous system
virtual memory as follows: Process! user space page table is stored immediately after Process0 user space page table,
and Process2 user space page table is stored immediately after Process| user space page table.

All user space page tables start at the beginning of a page. The system space page table starts at the beginning of a
frame.

Process0 user space Length Register (LR): 128 Process| user space LR: 64 Process 2 user space LR: 64

The processor executes the following code:

]

Process0O: ADD RO, R1, R2 oo o\ covo oo ©00 oo v lOUZ
Process0: RSHFL R3, R1, #1 1oV 'O\ co\ o\ leogo) ¥ ObS\
<Context switch> . .
Processl: ADD R1, R2, R3 ©OoP\ OO) O)\0
<Context switch>

] ' L kO
Process2: ADD Rl, R2, #0 peoo\ poO)Y O\0 | OvoO0D ¥ |2

Process2: AND R2, R2, R3 b15 \ ot D‘\O DOIO oW X 5Ug3

Note: context switches are required if the processor moves from executing code from one process to executing code
from another process.

oo oll x l28%

PROBLEM CONTINUES ON NEXT PAGE

s17 final Page 13

Name:

The microarchitecture includes an 8-entry TLB. Its state, before the user code starts execution, is shown below. Note
that the Process ID is included so the TLB is not flushed on a context switch. The TLB only contains PTEs for user
space.

Process | Page Number | Frame Number

x000 x04
2 x003 x05
1 x013 x1B
2 x042 x08

Part a (12 points): Fill in the following values:

SBR X Foo

Process0 user space BR X A-a o0

Process1 user space BR| A =1 Ge ¥
these

Process2 user space BR v Al%-o Y% le
vser

Part b (13 points): The following table shows successive entries for successive memory accesses due to execution of Pa ge {avle 3
the user code shown above. Memory operations due to the OS during context switches are not included. a .
Your job: Complete the table. Some entries may remain blank. VTA]’\ cont ‘guous

Process ID VA PA Data TLB Hit?
— | xF¥°| xBOIB —
xA004 | xpg4y | xBCO2
x0104 | ¥loY | x16y
xA00E | Xlop | ¥DbE\
xbo\L | X212 [x|2%%
X01FE [x72FE |x\1A?
— xF86 [x 80\0O

xh13% | XE88 |¥Bo)
x 07200 | X080 | x5433

x U INISISPE

r-:v—‘r"r’—éooo

s17 final Page 14

ADD'
ADD
AND
AND"
BR
JMP
JSR
JSRR
LDB*
LDW*
LEA
NOT
RET

RTI
LSHF
RSHFL
RSHFA’
STB
STW
TRAP
XOR'
XOR'

not used

not used

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
T T T T T T T T T T
0001 DR SR1 0| 00 SR2
— — — ——r—
0001 DR SR1 1 imm5
1 1 1 L 1 1 1 1 L 1 1
T T T T T T T T T T
0101 DR SR1 0| 00 SR2
1 1 1 1 Al 1 1 Al 1 Al
T T T T T T T T T T T
0101 DR SR1 1 imm
T — e I
0000 njiz p PCoffset?
— — ——
1100 000 BaseR 000000
T
0100 1 PCoffset11
1 1 1 1 1 | | 1 1 1 1 1 L
T T T T T T T T T T T
0100 0| 00 | BaseR 000000
| | | | | 1 1 | 1 1 L
T T T T T T T T T T T T
0010 DR BaseR boffseté
| 1 | 1 1 | | 1 | 1 1 1
T T T T T T T T T T T T
0110 DR BaseR offseté
— — —————
1110 DR PCoffset9
— — ——r
1001 DR SR 1 11
1 1 1 1 | 1 1 1 1 1 1
T T T T T T T T T T T T
1100 000 111 000000
— ————r
1000 000000000000
T T T T
1101 DR SR 0| 0| amount4
— — — —
1101 DR SR 0|1 amountd
1101 DR SR 1|1 amount
o — _— .
0011 SR BaseR boffseté
—r — — —
o1 SR BaseR offseté
| 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T
1 0000 trapvect8
1 1 1 1 1 | 1 1 1 1 1 1 1
T T T T T T T T T T
1001 DR SR1 0| 00 SR2
1001 DR SR 1 imm5
1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T T
1010
1 1 1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T T
1011
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1: LC-3b Instruction Encodings

s17 final Page 15

14

Table 1: Data path control signals

Signal Name

Signal Values

LD.MAR/1:
LD.MDR/1:
LD.IR/1:
LD.BEN/1:
LD.REG/I:
LD.CC/I:
LD.PC/1:

GatePC/1:
GateMDR/1:
GateALU/1:
GateMARMUX/1:
GateSHF/1:

PCMUX/2:

DRMUX/1:

SRIMUX/1:

ADDRIMUX/1:
ADDR2MUX/2:

MARMUX/1:

ALUK/2:

MIO.EN/I:
R.W/1:
DATA.SIZE/1:
LSHF1/1:

NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)
NO(0), LOAD(1)

NO(0), YES(1)
NO(0), YES(1)
NO(0), YES(1)
NO(0), YES(1)
NO(0), YES(1)

PC+2(0) iselect pe+2

BUS(1) :select value from bus
ADDER(2) ;select output of address adder
11.9(0) ;destination IR[11:9]

R7(1) :destination R7

11.9(0) ;source IR[11:9]

8.6(1) ;source IR[8:6]

PC(0), BaseR(1)

ZERO(0) :select the value zero
offset6(1) select SEXT[IR[S5:0]]
PCoffset9(2) select SEXT[IR[8:0]]
PCoffsetl 1(3) :select SEXT[IR[10:0]]

7.0(0) :select LSHF(ZEXT(IR([7:0]],1)
ADDER(1) :select output of address adder

ADD(0), AND(1), XOR(2), PASSA(3)

NO(0), YES(1)
RD(0), WR(1)
BYTE(0), WORD(1)
NO(0), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:

COND/2: CONDy ;Unconditional
COND; :Memory Ready
COND> :Branch
COND3 :;Addressing Mode

IRD/1: NO, YES

15

s17 final Page 16

MAR <~ PC
PC <-PC +2

33
MDR <- M
R

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

To IS 15
@AIK—LSHF[ZEXTIIR[?:O]]D

1
<-PC+LSHF(off9.1
12

4

PC<-BascR

[IR[11])

To 18

DR<~PC+LSHF(0ff9, 1)
se1 CC

To I8

To I8

To I8
29 A4 24 9
NOTES @mm-mmmus.n'@ G(DI«—M[MARD:D MDR<-SR
Beoffé - Base + SEXToffsct6] — —
PC+off9 : PC + SEXT]offsetd)] R Ry 1 R R 6
*0OP2 may be SR2 or SEXT[immS] 3l
3 - DR<-MDR
. LlS:S]ut [7:0] depending on GR< SEXTSL‘BXCI'E'DATA) (set CC (M[MARK—MDRD
1AR[0] —
R R
To 18 To 18 To I8

Figure 2: A state machine for the LC-3b

16

s17 final Page 17

GateMARMUX

MARMUX

16 16

ADDRIMUX

'

bggeee ||

CONTROL

LD |R—«>[

GaleMDR

? w

R

LDCC—e=|IN|Z|P

9

4

1
2 8 VA
ALU
ALUK -

16

V()UTPUT

I

LD MAR
[—DATA SIZE 0 -
LOGIC WE ~—"] R
l—MAR(D] o |
LoGIC 1, MIOEN | puT
v e I
} e £ v | LKBDR
16 ADDR. CTL 1
MEMORY LOGIC I
I
. L
MDR LD.MDR MEM EN c——l - [[
MIO EN i
fie Ao
LOGIC »
-a—DATA SIZE mmm\
ka—MARI0] - ']

Figure 3: The LC-3b data path

s17 final Page 18

17

CONDI CONDO

l

BEN

=

IR[11]

Branch Ready

J[5] 114] 113] J12] I

) O C

J10]

J

Addr.
Mode

0,0,IR[15:12]

-

' A

Address of Next State

Figure 4: The microsequencer of the LC-3b base machine

s17 final Page 19

