Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2019

Y. N. Patt, Instructor

Aniket Deshmukh, Chester Cai, Mohammad Behnia, TAs
Exam 2

April 17,2019

Name:

Problem 1 (20 points):
Problem 2 (20 points):
Problem 3 (30 points):
Problem 4 (30 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested: I have not given nor received any unau-
thorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (20 points): Note: For each of the four answers below, if you leave the box empty, you will receive one
point of the five.

Part a (5 points): In an asynchronous system, a device controller in the Idle state receives the Bus Grant (BG) signal.
If its device does not want the bus, it passes the BG signal to the next device at the same priority level. The controller
can stop asserting the BG signal and return to Idle (a) when it receives the SACK signal or (b) when it stops receiving
the BG signal. Using one of these is problematic. Which one and why?

Part b (5 points): The VAX ALU performs addition on 32 bit, 2’s complement integers. It can perform BCD arith-
metic on 8 BCD digits with the assistance of a register that is hard-wired to x66666666. What is the purpose of the
value x66666666. Please be specific.

Part c (5 points): A microarchitecture executes instructions in program order with a ten-stage pipeline and obeys the
requirement for precise exceptions. Assume we have ten instructions in various stages of execution. Instruction 1 is in
the last stage of the pipeline, about to complete execution. Instruction 10 has just entered the pipeline. Instruction 4,
in the 7th pipeline stage, takes a page fault. What should the microarchitecture do before turning control over to the
exception service routine to process the page fault.

PROBLEM CONTINUES ON NEXT PAGE

Part d (5 points): You are given a 16-bit physical memory with the address bits broken down as follows:

15 10 9 4 3 2 1 0
I I I I I I I I I I I I
ROW COLUMN BANK BYTE ON BUS
| | | | | | | | | | | |

The elements of an array containing 32-bit integers are accessed. Program A accesses consecutive elements in the
array. Program B accesses elements at even indices. Memory takes more than 3 cycles to access. Given both programs
access the same number of elements, which one takes longer to complete the array accesses? Explain.

Name:

Problem 2 (20 points):
Part a (10 points): A 64-byte physical memory has a direct mapped cache consisting of 4 cache lines, where the line

size is L bytes. The cache is initially empty.

Six byte-accesses were made to the cache, as shown in the table below on the left. After the six accesses have

completed, the state of the Tag Store is as shown below on the right.

Your job: Determine L, the line size of the cache. Also, fill in the missing address bits of the six accesses.

Cache line size:

The six accesses

State of Tag Store
after the six accesses

Set || Valid | Tag bits
0 1 1 0 1
1 1 0 0 0
2 0 0 1 0
3 1 1 1 0

Access | Hit/Miss Address
1 M 0 0
2 M 0 0
3 H 0 1
4 M 110 1
5 M 0
6 M 1 1

PROBLEM CONTINUES ON NEXT PAGE

Name:

Part b (10 points): Replace the direct-mapped cache with a 2-way set associative cache with LRU replacement. Phys-
ical address space has not changed. We still have four cache lines, but the line size may have changed. The cache is
initially empty.

Again, six byte-accesses were made to the cache, as shown in the table below. After the six accesses have com-
pleted, the state of the Tag Store is as shown in the next table.

Your job: Determine L, the line size of the cache. Also, fill in the missing address bits of the six accesses.

Cache line size:

The six accesses

Access | Hit/Miss Address
1 M 11101
2 H
3 M 1
4 M 1
5 M 0 0
6 H 1 1
State of Tag Store after the six accesses
Set || Valid Tag bits Valid Tag bits
1 O 0 0 1 1 1 0 O 1 O
1 1 1 0 1 0 O 0 1 1 0 1

Name:

Problem 3 (30 points): There are times when more than one process wants to be able to read a single page of data,
but occasionally wants to write to that page also. For example, suppose process X has page A in physical frame M.
Suppose process Y has page B that happens to contain the same data as page A. The O/S could allocate a second
frame of memory for process Y’s page B. However, since the contents of process X’s page A and process Y’s page B
contain the same information, the O/S can save a frame of memory if it simply has the corresponding PTEs point to
the same frame, and designates in their respective PTEs that these pages are sharing the same frame (marking them
both as Read-Only), even though the two processes have nothing to do with each other. If later, one of the processes
wants to write to that page, an exception will occur, and the O/S can at that time allocate a second frame, copying the
contents of the frame that both processes were reading. In the vernacular, this is referred to as a “copy-on-write.” That
is, until the data on the two pages are different (due to writing), there is no reason to copy the page to a second frame.
This approach is often called lazy copying since the O/S does not copy until absolutely necessary.

The O/S action of designating PTEs to point to the same frame is copy-on-write setup. The actual copying of
the contents of the shared frame to a second frame is performing the copy-on-write. In this problem, we will only
deal with copy-on-write setup.

Suppose we augment the LC-3b with VAX-like virtual memory. “VAX-like” so we don’t have to deal with such
large numbers. For example, we will use 16 bits for virtual addresses, 14 bits for physical addresses, and page size of

256 bytes. Process virtual space: x0000 to x7FFF, System space: x8000 to FFFF.

A PTE is 2 bytes with the following format:

15 14 m ¢ 8 7 & 5 0

|] I I
Vv 00000 PROT| 00 PFEN
|

The PROT bits specify:
No Access: 00
Read-Only: 01
Read & Write: 10

Assume that SBR = 0x0100, Process X’s Process Space Page Table Base Register (PBR) = 0x9500,
Process Y’s PBR = 0x9700.
System Length Register (LR) = 0x18, Process X’s Length Register (LR) = 0x3A, Process Y’s LR = 0x18.

Part a (4 points): How many bits should SBR be? How many bits should Process X’s PBR be?

PROBLEM CONTINUES ON NEXT PAGE

Name:

Parts b), c) and d) on the next page assume the contents of memory are as shown below.

il(li)(,isszgsl Contents il:i}(]is:(ca:sl Contents gl;):;zssl Contents
0x0110 0x8235 0x2160 0x8218 0x2920 0x8224
0x0112 0x801B 0x2162 0x0876 0x2922 0x0828
0x0114 0x0A2C 0x2164 0x094F 0x2924 0x8215
0x0116 0x8007 0x2166 0x0835 0x2926 0x7856
0x0118 0x8001 0x2168 0x8238 0x2928 0x8245
0x011A 0x8000 0x216A 0x8224 0x292A 0x8038
0x011C 0x021C 0x216C 0x8012 0x292C 0x810F
0x011E 0x8212 0x216E 0x0323 0x292E 0x002F
0x0120 0x8003 0x2170 0x810F 0x2930 0x020F
0x0122 0x0211 0x2172 0x0023 0x2932 0x4493
0x0124 0x8120 0x2174 0x010F 0x2934 0x23AB
0x0126 0x8109 0x2176 0xFEC7 0x2936 OxEF7C
0x0128 0x8127 0x2178 0x800E 0x2938 0xEE23
0x012A 0x8121 0x217A 0x5678 0x293A 0x800F
0x012C 0x0228 0x217C 0x17BD 0x293C 0x000F
0x012E 0x8129 0x217E 0x821E 0x293E 0x881E

PROBLEM CONTINUES ON NEXT PAGE

Name:

Part b (6 points): The O/S wishes to setup page 0x12 in process Y’s process address space as a copy of page 0x34 in
process X’s process address space. What is the PFN for page 0x34 in process X’s address space?

Part ¢ (12 points): Now that the O/S has found where in physical memory the source page (page 0x34) is located,
it wishes to setup the copy-on-write. Your job: Set up the PTE for page Ox12, the destination page, in process Y’s
address space.

Where is this PTE located in Process Y’s virtual address space?

What is the physical address of this PTE?

Specify the bits in the PTE:

15 14 13 12 11 10 9 &8 7 & &5 4 i 2 1 0

PTE:

Part d (8 points): At the time the snapshot of memory on the previous page is taken, frame 0xOF in physical memory
is another frame whose permissions are setup to be read-only for process X and Y via copy-on-write. Your job: Locate
the pages in process X and process Y that are mapped to frame OxOF.

What is the VPN of the page mapped to frame 0x0F in process X’s address space?

What is the VPN of the page mapped to frame 0x0F in process Y’s address space?

Name:

Problem 4 (30 points): A Binary Search Tree is a useful data structure for searching quickly for a value in a sorted
list. The Binary Search Tree has the property that for every node in the tree, if we consider that node as the root of two
subtrees, all nodes in its left subtree have values smaller than the value in the root, and all nodes in its right subtree
have values greater than the value in root, as shown in the example below. The root has value 7, there is one node in the
left subtree, its value is 3. There are two nodes in the right subtree, their values are 8 and 10. If we consider the node
with value 10 as a root, it has one node in its left subtree whose value is 8. There are no nodes in the right subtree of 10.

Searching for a value is a simple matter of querying a root, and then moving on to the root of its left subtree or the root
of its right subtree, depending on whether the value you are searching for is smaller or greater than the root.

We represent each node in the Binary tree with three words of memory: its value, the pointer to the root of the left
subtree, and the pointer to the root of the right subtree. If there is no subtree, the pointer is x0000 (the null pointer).

The actual implementation in memory for the tree whose root has the value 7 is also shown below.

PROBLEM CONTINUES ON NEXT PAGE

x3000
3 L 10
x0000 .
x0000 x0000
8
x0000
x0000

Name:

It is useful to be able to add a value to the sorted list, which means adding a node to the Binary Search Tree, while
retaining the property that we can search for a value in the manner discussed above. The mechanism is to search for
the value until we find a null pointer and insert the node by replacing the null pointer with the address of the node
being inserted. In the example on the previous page if we wanted to insert the value 9, we would traverse the tree until
we got to the node whose value is 8. At this point, we would replace the null pointer of the right subtree of 8 with the
address of the new node whose value is 9.

Your job: Implement a new instruction ADDNODE to the LC-3b, which will insert a value as described above into a
binary search tree. We will use unused opcode 1010. The format of the instruction is shown below:

15 12 1 ? 8 & 5 0
T T I T T T T

ADDNODE 1010 RootR | NodeR 000000

RootR contains the address of the root node of the Binary Search Tree. NodeR contains the address of the first word
of the node to be inserted. We can assume that the node to be added consists of three words: a value, and two null
pointers. We also assume that if RootR is null, we do not want to insert this node anywhere so we are done. The
procedure for adding a new node into our Binary Search Tree is as follows:

while (Root != 0) { // exit if Root is NULL
if (Node.Data == Root.Data) return; // node exists, do not add duplicate
if (Node.Data < Root.Data) {
if (Root.Left == 0) { Root.Left = Node; return; } // insert node here
else Root = Root.Left; // so you can traverse left subtree

}

if (Node.Data > Root.Data) {
if (Root.Right == 0) { Root.Right = Node; return; } // insert node here
else Root = Root.Right; // so you can traverse right subtree

PROBLEM CONTINUES ON NEXT PAGE
10

Name:

Part a (7 points): To implement ADDNODE, we need to make changes to the data path, the state machine, and the
microsequencer. We show below the changes necessary to the data path. They are: four registers (NODE, NODE-
DATA, ROOT, ROOTDATA) with their respective Load Enable and Gate signals, four muxes and their control signals
(AMUX, BMUX, ROOTMUX, X), and an unspecified logic block. NODE and ROOT contain pointers to nodes.

Your job: Fill in the missing logic block.

16

LDROOT —DE}GI |

3 REG ¥
DR —7F FILE

LD.REG— =

1 1 | sr2 SR1 3
SR2 = OUT OUT [SRI

16

SEXT(IR[4:07) 16 16 16 ROOTMUX

! !

IR[S] _cx'; 0/ T
SRIMUX GateROOT

16

LD.NODE

GateNODE
16 16
| y

i ¥
- 0 0 1 .
BMUX BMUX AMUX AMUX

ALUK 2)
2 ALU

LD.ROOTDATA ROOTDATA | NODEDATA = LD.NODEDATA

16
N/ GateALU

PROBLEM CONTINUES ON NEXT PAGE

11

Name:

Part b (16 points): With respect to the state machine, we need to add additional states after state 32.

Your job: Complete the state machine for ADDNODE shown below. Note: States 26, 34, and 36-63 in the con-
trol store are available.
Also, identify the control signals needed to perform the actions specified in state 58 in the box below.

p
BEN«IR[11]&N + IR[10]7&Z + IR[9]&P l i

[IR[15:12]] 32 R C[MDR < M[MAR]] |:|
A/ . . k‘ ¢R
AND

ADDNODE [] 13
Y
-

NODE « NodeR |:| J’

MAR < NodeR
\ A
[] 44

S

v
R C MDR < M[MAR] 36 Jv

i IR [(2]] 45

NODEDATA < MDR |:| 0 1\\ To state 19

| 4' J [v] I:I
39 ,L

setCC ® C[MDR < M[MAR]] |:|

54
To state 18 /1 0 []

Y ¢

[MAR « ROOT] |:| [-] is

(J /\

ﬁd M[MAR] < MDR] 17

lR

To state 19

PROBLEM CONTINUES ON NEXT PAGE
12

Name:

Part c¢ (7 points): To handle the new micro-branches, we need to augment the microsequencer with an additional
control signal ECS (Extra Control Signal).

CONDI CONDO
|
ECS Z _
BEN R IRJ11]
wlwlw,
Branch Ready Addr.
Mode
5] 4] 3] 2] 1] J[0]
0,0,IR[15:12]

6
¥

IRD

Address of Mext State

ECS is asserted in a number of states in the state machine. Use as many entries as you need to indicate these states.

The mux signal X in the datapath can be replaced with an existing signal from the LC3-b datapath. Which signal?

13

