
Department of Electrical and Computer Engineering
The University of Texas at Austin

ECE 460N Spring 2023
Instructor: Yale N. Patt
TAs: Michael Chen, Ali Mansoorshahi
Exam 2
April 12, 2023

Name: __________________________________________________________

Problem 1 (20 points): _______

Problem 2 (10 points): _______

Problem 3 (20 points): _______

Problem 4 (25 points): _______

Problem 5 (25 points): _______

Total (100 points): ______________

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested:
I have not given nor received any unauthorized help on this exam.

Signature: _____________________________________________________________

GOOD LUCK!



Name: ___________________________________

Question 1 (20 Points): Answer the following questions.
Note: For each of the four answers below, if you leave the box empty, you will receive one point.

Part a (5 points): An integer, expressed as a 16 bit 2's complement number is 0000000100110000.
What is its 16 bit representation in BCD?

Part b (5 points): Synchronous logic assumes a clock, and the result is latched at the end of the
clock cycle, even if the result was available long before that. Asynchronous logic implies no clock,
which means the machine does not have to wait and the result can be used as soon as it is generated.
Therefore, which provides higher performance? Explain in fewer than 15 words.

Part c (5 points):Most ISAs have a "reference bit." In 15 words or fewer, what is the purpose of the
reference bit?

Part d (5 points): The physical address space is 1 GB, with 18 bits of row address and 12 bits of
column address. Assuming one bank, the chip contains one row buffer. How big is that row buffer?
Just the size, please.

2



Name: ___________________________________

Question 2 (10 Points):We want to specify the behavior of the Priority Arbitration Unit (PAU) in an
asynchronous IO system.

Note: If you leave the question blank, you will receive one point.

Below is the state machine for each device’s controller.

Draw the state machine for the PAU. Start in the bold state. Use as many states as you need.

3



Name: ___________________________________

Question 3 (20 Points): Access to the DRAMs that make up physical memory is controlled by a memory
controller. The memory controller has the following properties:

● The Memory Controller can send one request per cycle
● The Memory Controller can receive data in the same cycle as it sends a request
● The Memory Controller sends requests to the DRAM in the order specified by its scheduling

algorithm
The DRAMMemory has the following characteristics:

● There is one channel, one rank, two banks, m rows and n columns
● Page_mode_access (row buffer hit) returns the data in the next cycle after the memory controller

sent the request.
● Non-page_mode_access (row buffer miss) takes a fixed number of cycles
● All rows start closed

For example, if non-page_mode_access is 14 cycles, and the
first access on the right is non-page_mode_access, a request sent
in cycle 0 receives the data in cycle 14. If the second access is
page_mode_access to a different bank, the request can be sent in
cycle 1, and the data received in cycle 2.

Send Cycle Receive Cycle

0 14

1 2

Part a (8 points). The table below shows the start and end cycle for 7 memory accesses that are serviced
in the order received (in this case, A,B,C,D...). This scheduling mechanism is referred to as First Come
First Served (FCFS) scheduling.

Your job: Fill in the missing entries.

Access Send Cycle Receive Cycle Bank Row Address Page Mode

A 0 20 0 miss

B hit

C 21 1 miss

D 0 hit

E 41 0 miss

F 42 1 miss

G 62 0 miss

PROBLEM CONTINUES ON NEXT PAGE

4



Name: ___________________________________

Part b (3 point). How many bank conflicts occur using FCFS?

An alternative scheduling algorithm is Open Row Priority (ORP). ORP sends page_mode_accesses first.
If there is a tie between two accesses, then they are scheduled in FCFS order.

Part c (6 points).What is the order of accesses under the Open Row Priority scheduling algorithm? Does
this new order improve, degrade, or not change performance? (Empty tables are provided for scratch work
on the next page)

Part d (3 point). How many bank conflicts occur using ORP?

5



Name: ___________________________________

Access Send Cycle Receive Cycle Bank Row Address Page Mode

Access Send Cycle Receive Cycle Bank Row Address Page Mode

6



Name: ___________________________________

Question 4 (25 Points): Question 4 requires you to solve several problems dealing with virtual memory.
All of them are on the next page. Shown below is all the structure you will need to solve those problems.

● The machine is the LC3-b that has VAX-like 2 level virtual memory
● 16KB of Physical Memory
● We partition memory into 2 regions: system space starts at x0000, user space starts at x8000
● SBR points to the start of a frame
● The machine has a 2 entry TLB that starts initially empty.

The virtual address is of the following format with a page size that you must figure out.

Region VPN Offset

The PTE is 2 Bytes and has the following format shown below.

0 0 PFN 0’s V Ref Mod

We execute instruction LDW R1, R0, #0. Afterward, we are given a snapshot of the TLB. The TLB does
not map system pages.

Page No.
PTE

Region VPN

1 x34 x2B06

---- ---- ------------

We are also given a portion of physical memory. The contents of physical address x1468, x2368, x3168,
x0852, x084A, and x085A are PTEs. Some are used during translation.

Virtual
Address

Physical
Address Physical Address (bits) Contents Contents (bits)

0x0268 x1468 0 1 0 1 0 0 0 1 1 0 1 0 0 0 x2B06 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0

0x0168 x2368 1 0 0 0 1 1 0 1 1 0 1 0 0 0 x2B06 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0

0x0368 x3168 1 1 0 0 0 1 0 1 1 0 1 0 0 0 x2B06 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0

--------- x0852 0 0 1 0 0 0 0 1 0 0 0 0 1 0 x1447 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1

--------- x084A 0 0 1 0 0 0 0 1 0 0 1 0 1 0 x2207 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1

--------- x085A 0 0 1 0 0 0 0 1 0 1 1 0 1 0 x3003 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

x__ __ __ __ x__ __ 3E __________ 0 0 1 1 1 1 1 0 x5007 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1

x__ __ __ __ x__ __ 30 __________ 0 0 1 1 0 0 0 0 x6200 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

PROBLEM CONTINUES ON NEXT PAGE

7



Name: ___________________________________

Part a (3 points): LDW accesses memory twice (FETCH and LOAD). Why is the TLB only populated
with 1 entry? Use 15 words or fewer.

Part b (3 points). What is the physical address of the PTE in the process
page table used in the access?

Part c (6 points). What is the page size?

Part d (5 points). Fill in the bold boxes on the previous page.

Part e (3 points). What is the SBR?

Part f (3 points). What is the PBR?

Part g (2 points). What are the contents on R0 and R1 after the instruction executes?

R0 R1

8



Name: ___________________________________

Question 5 (25 Points): An Aggie lost the data sheet with the specifications for a cache. It’s your job to
recover this information. You are given a subset of the cache specifications and the results of some code
execution.

● The cache is Physically Indexed Physically Tagged
● The TLB, L1 tag store, and L1 data store are accessed at the same time
● L1 and L2 use LRU replacement
● L1 and L2 have the same number of sets
● The caches are inclusive
● The caches are designed to minimize associativity
● The L1, L2, and memory are accessed sequentially (i.e. L2 is accessed on an L1 miss. Memory is

accessed on an L2 miss)
● Block size = 8B
● Page size = 256B
● 16KB of physical memory

Part a (3 points) Show the address layout. Use “I” for index, “T” for tag, and “O” for offset into the
cache line.

I

The 4 code snippets are executed with the results shown in bold. In all the snippets below:

● `A` is an array of `int` that starts at 0x3000
● `sum` and `i` are kept in registers
● `int` is 32-bits

for (int i = 0; i < 3; i++) {

sum += A[128*i] + A[(128*i) + 1]

}

for (int i = 0; i < 3; i++) {

sum += A[128*i] + A[(128*i) + 1]

}

3 accesses to DRAM, 9 hits in L1, 0 hits in L2

for (int i = 0; i < 6; i++) {

sum += A[128*i] + A[(128*i) + 1]

}

sum += A[128] + A[128 + 1]

6 accesses to DRAM, 7 hits in L1, 1 hit in L2

PROBLEM CONTINUES ON NEXT PAGE

9



Name: ___________________________________

for (int i = 0; i < 6; i++) {

sum += A[128*i] + A[(128*i) + 1]

}

for (int i = 0; i < 6; i++) {

sum += A[128*i] + A[(128*i) + 1]

}

6 accesses to DRAM, 12 hits in L1, 6 hits in L2

for (int i = 0; i < 7; i++) {

sum += A[128*i] + A[(128*i) + 1]

}

for (int i = 0; i < 7; i++) {

sum += A[128*i] + A[(128*i) + 1]

}

14 accesses to DRAM, 14 hits in L1, 0 hits in L2

Part b (8 points).What is the associativity of the L1 and L2 cache?

L1 L2

Part c (4 points).What is the size of the L1 and L2 cache?

L1 L2

Part d (10 points). Can the L2 maintain the same total size but have double the number of sets? Would
we see an increase in performance on the code snippets above? Explain.

10


