
Chapter 6

Physical Memory

In the next three chapters, we will turn our attention to storage. This chapter
(Chapter 6) deals with physical memory, actual real memory that we can access
if we know the actual address of the memory location we wish to access. Chapter
7 will deal with virtual memory, the amount of memory each process thinks it
has, which is usually much, much larger than the physical memory it actually
has. Most of this virtual memory actually resides on the disk so any access to
one of its locations has to first check its virtual address to see if it corresponds
to an actual physical memory location, or if some intervention is necessary to
obtain it from the disk. Finally, Chapter 8 will deal with Cache Memory, an
even smaller fraction of storage that is located on the microprocessor itself.

Our goal is to approximate an infinite capacity memory that can be accessed
in a single clock cycle. Unfortunately, the laws of physics do not permit that,
so the best we can do is approximate it by the effective utilization of cache
memory, physical memory, and what is stored on the disk (virtual memory).
Together they form what we call the storage hierarchy.

6.1 The Storage Hierarchy

The structures that make up the storage hierarchy are: registers, on-chip storage
called cache memory, physical memory, and disk. The cost of each storage device
is inversely proportional to its access time, Not surprisingly, we we have fewer
units of devices that we can access faster. Registers are the fastest structures
to access but they are also the most expensive and we have fewer of them.

In the early days of computers, an ISA had one register, which grew to
8 registers in the late 1970s with for example the Intel 8086 and Motorola
68000, and to 32 registers in the mid 1980s. Today, some processors have
hundreds of registers, but this is still far less storage than the next fastest storage
structure, the first level cache. Originally, processors did not have caches. By
the late 1980s, most computers had two levels of cache, the first level having
fewer storage locations but being much faster than the larger but slower second
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14 CHAPTER 6. PHYSICAL MEMORY

level cache. The rationale was to make the first level cache fast enough to
approximately keep pace with the speed of the on-chip logic, and the second
level cache large enough to hopefully find the needed storage location on the
chip. Having a faster first level cache made it smaller. Having a larger second
level cache made it slower. Such are the tradeoffs of the laws of physics. Today,
three levels of cache is not uncommon with the third level being much larger
and much slower than the second level.

Slower than caches is physical memory where access time can take hundreds
of clock cycles to access, but have capacities of multiple megabytes or gigabytes.
In fact, some computer systems having memory capacity in the terabyte range.
Larger still is disk storage with capacities in the gigabyte to terabyte range and
having access times of milliseconds.

Figure 6.1 gives representative numbers of size and access time of each of
the members of the storage hierarchy.
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Figure 6.1: Capacity and Access Times of Storage Structures

6.2 Access Methods

Different storage structures use different methods of accessing storage. The
most common method, used in Cache Memory and physical memory is RAM,
which stands for Random Access Memory. Its defining characteristic is that
the access time of the next location accessed is independent of the location of
the current location being accessed. In reality, an examination of any computer
program will note that if the current location accessed is N, the address of the
next location access is most frequently N+1, and most microarchitectures go
to a good deal of trouble to exploit such behaviors. Nonetheless, the myth
persists: RAM implies the address of the next location accessed is independent
of the address of the current location being accessed.

Disks are accessed by a method referred to as DASD, which stands for Di-
rect Access Storage Device. This method behaves according to the accesses
performed by the disk: a disk head is moved into position that it is hovering
just above the track that is to be read. Once the head is in place, the method
waits until the rotating disk puts the start of the data to be read under the
track. Then a page is read, a page consisting of some number of sequential
accesses.

Tape is accessed sequentially. If location N is currently being accessed, a
tape will access location N+1 next. This is the slowest access method, and
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suffers particularly from the situation where location N+1 is not the location
usually wanted next. The result: a lot of time wasted moving the tape forward
or reverse. Tape is pretty much today not part of the storage hierarchy.

Finally, there are accesses wherein part of the address is contained within the
data accessed. Such accesses are referred to as Content Addressable. The struc-
ture is referred to as CAM (content addressable memory). Two very widespread
structures, the Translation Lookaside Buffer in a virtual memory system and
the Tag Store in a cache memory both utilize CAM. We will discuss both in
detail in Chapters 7 and 8.

6.3 Aligned and Unaligned Access

6.3.1 The Definition of Alignment

B

D

1

3

5

7

A

C

0

2

4

6

Figure 6.2: Aligned and Unaligned Information

Whether a computer system will require memory accesses to be aligned or
whether unaligned accesses will be allowed is an important specification in an
ISA. An aligned access is one in which all bytes of the access can be accomplished
with the same address being used for all bytes required by the access.

Figure 6.2 shows a byte-addressable memory consisting of two chips, one
containing the contents of all even addressed locations and the other containing
the contents of all odd addressed locations. For example, a word consisting of
the bytes A and B in Figure 6.2 which have addresses 000100 and 000101 is
considered aligned because if you omit the low order bit of the two addresses,
the resulting addresses 00010 and 00010 are identical, resulting in locations 4
and 5 both being read at the same time in a single memory access using the
same memory address.

On the other hand, a word consisting of locations 000101 and 000110 does
not result in an aligned access since omitting the low order bit of these two
addresses results in the addresses 00010 and 00011. To access locations 5 and
6 in the same clock cycle, either we need extra logic to create the different
addresses to address the two chips at the same time, which could increase the
cycle time, or we could make the access of locations 5 and 6 as a single word
require two separate accesses. Neither is a desirable choice, so one solution is
to not allow unaligned accesses.
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6.3.2 Aligned access

Figure 6.3 shows all the structures needed to allow aligned accesses, and not
allow unaligned accesses. The truth table shows eight input combinations, rep-
resenting the eight possible situations: Load or Store, Word or Byte access, and
0 or 1, the low order bit of the address being access.

For word loads, each chip supplies a byte, if aligned (i.e., MAR[0]=0, the
bytes are loaded into the MDR, the low address byte into the low byte position
of the MDR and the high address byte into the high byte position of the MDR.
For byte loads, both chips supply a byte, the relevant byte (MAR[0] is 0 or 1 is
rotated into the low byte position, the high byte is supplied as 8 copies of bit[7]
of the low byte, resulting in the byte loaded as a 16 bit word into the MDR. If
the operation is a load and MAR[0]=1, an unaligned access is indicated, creating
an exception.

The story for stores is pretty much the same. For word stores, with MAR[0]=0,
the MDR supplies the two bytes and WE1 and WE0 signify both bytes are
loaded. For byte stores, MAR[0] indicates where the low order byte of the
MDR is to be stored, and the corresponding WE signal enables the load. If
the operation is a word store and MAR[0]=1, an unaligned access is indicated,
creating an exception.
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6.3.3 Unaligned Access

Figure 6.4 shows what is required in order to allow unaligned word loads and
unaligned word stores. Our preference is to require two memory accesses, rather
than increase the cycle time.

For an unaligned word load, the first access rotates the two bytes from
memory in order to align the low byte with its correct location in the MDR.
The high byte is also loaded into the MDR but that is not a problem since it will
be overwritten in the second access. The memory address is then incremented
to provide access to the high byte of the data being loaded. Finally, on the
second access, the memory data is again rotated to align the high byte with the
high byte of the MDR, and loaded into the high byte of the MDR by the LD H
control signal.

Figure 6.4 also shows what is required for unaligned word stores to be per-
formed.
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Figure 6.5:

Figure 6.5 shows the structure needed to handle unalignment if alignment
is based on 32 bit boundaries. With 32 bit boundaries we need four chips. The
word consisting of DCBA can be loaded or stored as an aligned access, but the
word consisting of GFED requires an unaligned access. Note that in the case
of DCBA, the four addresses 00100, 00101, 00110, and 0011 are identical if the
two low order bits are removed from each address, but in the cae of GFED, that
is not the case.
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6.3.4 A final word about alignment

Like so much of computer architecture, the choice of allowing or not allowing
unaligned accesses is based on a tradeoff, whether it is more important to opt
for higher performance, or opt for ease of use. If you insist that all accesses need
to be aligned then the programmer (or compiler writer) needs to know enough
about memory organization to know what makes an access aligned or unaligned.
If you allow unaligned accesses you make life Easier for the programmer at the
expense of performance.

I am reminded of the products of the Digital Equipment Corporation. The
PDP 11, introduced in 1970, required all memory accesses to be aligned. Their
next product, the VAX (in 1977) permitted unaligned accesses. Their next
product, Alpha (in 1972) required all memory accesses to be aligned. Different
times, different resasons for what is necessary.

6.3.5 Interleaving

A common problem with memory operations is the fact that if a memory access
is in progress, one can not access the part of memory performing the access until
the current access finishes. An effective way to deal with this is called inter-
leaving the memory, that is, partitioning the memory into units called banks,
so that while one bank is processing a memory access, another bank is free to
initiate a subsequent memory access.
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Figure 6.6 shows a very simple implementation, two-way interleaving. There
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Figure 6.7: Interleaving, an important mechanism for vector instructions

are two banks. While one bank is processing an access, the other bank does not
have to wait for that bank to finish, but can initiate a second memory access
when it is ready to do so. Note that each bank requires its own MAR for load-
ing the address of the memory location to be read or written, and each bank
needs its own internal mechanism for accessing the data preparatory to loading
the memory system’s MDR on a load or obtaining the data from the processor
preparatory to storing it in the memory system on a store.

Note the bus is 16 bits wide, requiring two chips to load the bus from each
bank. Notice also that in a given clock cycle the bus is loaded from bank 0 or
bank 1, requiring an interleave bit for tri-stating which bank accesses the bus.

Figure 6.7 shows a more complicated example, one in which a vector in-
struction is executed. A vector instruction is processed by loading (or storing)
N values, from addresses Base, Base+k, Base+2k, ... Base+(N-1)k. Computers
supporting vector instructions require vector registers, registers that can contain
more than a single value. These computers also need two additional registers
that need to loaded with N and k before the vector instruction is performed.
In the example of Figure 6.7, the vector instruction to be performed is VLD
V1,A. VLD means vector load, A is the Base address, from which values are
to be loaded. V1 is vector register 1, where the values will be loaded. In this
example, we are assuming k is 1 and N is 6. In computerese, k is referred to as
the ”stride,” the distance between memory locations being accessed, and N is
referred to as the ”length,” the number of values to be loaded.
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Here we show the implementation of a vector load instruction, where (in the case
shown) the vector instruction VLD V!,A is carried out by loading the contents
of the six sequential memory locations, starting at location A into the first six
component registers of vector register V1.

In the example of Figure 6.7, the memory is 4-way interleaved. The access
time for each bank is ten clock cycles. We ask the question: once the length and
stride are loaded with N and k, how many clock cycles will it take to perform
the vector load instruction.

In clock cycle 0, we initiate the load of A which let’s say is in Bank 0 into
the first component of vector register V1. That load will complete a the end of
cycle 9. In clock cycle 1, we can initiate the load of the memory location having
address A+1 since that location is part of Bank 1 and so it does not have to
wait for the load in Bank 0 to finish. In cycles 2 and 3, we can initiate the loads
of A+2 and A+3 from Bank 2 and Bank 3. In clock cycle 3 we would like to
load from Bank 0, but since it is done processing the load from A, the computer
must wait until the contents of location A finishes loading, i.e., at the end of
clock cycle 9. Thus the load of A+4 can not start until clock cycle 10. The load
of A+1 will finish from Bank 1 at the end of cycle 10, so the load of A+5 can
start in Bank 1 at the beginning of cycle 11. Since it will take ten clock cycles,
the vector instruction will finish at the end of 20.

Our final example of interleaving involves the CRAY 1, a vector supercom-
puter that stored 64 bit values in each memory location, i.e., it had an ad-
dressibility of 64 bits. The CRAY 1 had an access time of 11 clock cycles. To
optimize the time it took to do a vector load, its chief architect Seymour Cray
decided to make the memory 16-way interleaved. Thus, in the clock cycle after
Bank 15 was initiated, the hardware was free to initiate the load of A+16 from
Bank 0 since Bank 0 had completed the load of A at the end of clock cycle 11.
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Figure 6.8: Interleaving. The CRAY I model.

Suppose the vector length was 50. That is, 50 values were to be loaded
into the first 50 components of a vector register from memory. If the memory
was not interleaved, this would take 50 times 11, 550 clock cycles to perform
the load. With 16 way interleaving, each of 50 loads can be initiated in one of
the first 50 clock cycles. The 50th value would then take another ten cycles to
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complete, so the instruction would take 50 + 10 clock cycles to complete, 60
cycles, not 550 cycles.

6.4 DRAM

6.4.1 DRAM, SRAM, and NVRAM

We first turn our attention to the structure of the individual memory cell,
DRAM, SRAM, or NVRAM.
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Figure 6.9: DRAM vs SRAM

It is worth noting the differences between the two most popular memory
devices, DRAM and SRAM. SRAM stands for Static Random Access Memory.
We will see momentarily why that name is appropriate. Figure 6.9 shows the
structure of both SRAM and DRAM. To store a single bit of memory, an SRAM
cell requires six transistors. The bit itself is stored in a pair of cross-coupled
inverters, each requiring two transistors, one p-type and one n-type. The output
of each inverter is an input to the gate of the other inverter. The output 1 of one
of the inverters applied to the gate of the other inverter causes the output of the
other inverter to be 0, which in turn causes the output of the first inverter to be
1. As long as power is supplied to the four-transistor circuit, the cross-coupled
inverters will maintain the value stored, either 1 or 0. Ergo, the name Static
RAM. The cell requires two more transistors, necessary to read the value stored,
or to change the value stored. Two pass transistors serve that purpose, yielding
six transistors in all.

The DRAM cell does not store its value in a transistor circuit. Instead the
value 1 or 0 is stored as charge in a capacitor, charge = 1 lack of charge = 0.
We do need a pass transistor to detect whether the capacitor is storing a 1 or
a 0, i.e., whether it is charged or not. This is done by causing the capacitor to
discharge which indicates whether a 1 or 0 was stored. This destructive sampling
is then corrected by returning the capacitor to its charged or uncharged state.
Unfortunately, if left alone, the capacitor will slowly discharge according to an
RC time constant, after which we would have no idea whether the capacitor
was charged or not. To prevent that from happening, the DRAM circuitry
interrupts processing periodically i order to return the charge on the capacitor
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to full charge or full discharge, thereby maintaining the value of the cell to 1 or
0. This refresh step is necessary. Ergo, the name dynamic RAM.

A third device technology has surfaced over the past few decades, called
NVRAM, NV standing for Non-Volatile. Recall we said that an SRAM cell
retains its value as long as power was supplied to the cross-couple inverters.
Remove that source of energy, and the SRAM cell no longer retains its value.
We say SRAM memory is volatile because it requires s power supply to work
properly. There are device technologies that are still effective even if we remove
the course of power, EPROMs being among the most common. We use the term
”persistence” to indicate that the nvRAM cell still retains its value even if the
source of power is removed.

Figure 6.10 lists the characteristics of SRAM, DRAM, and NVRAM with re-
spect to latency, Density, Persistence and Refresh. Only NVRAM is persistent,
only DRAM requires refresh, DRAM has the highest density (one transistor per
memory cell) and longest latency.

SRAM DRAM NVM

Latency Low High Highest

Density Low High Highest

Persistence No No Yes

Refresh No Yes No

Figure 6.10: Characteristics of SRAM, DRAM, NVRAM

6.4.2 The DRAM array

The basic storage unit is the DRAM array. Originally the basic storage unit, a
DRAM array, consisted of storage for 2N bits of information. To identify which
one of the 2N bits of storage we wanted, we organized our 2N bits into 2n rows
and 2m columns, where N = n times m. Two registers, an n-bit ROW address
register, and an m-bit COLUMN address register contained the address bits for
the row and column of the array we wished to access.

To get there, we first loaded the n-bit ROW address register. The on-chip
electronics loaded the 2m column bits comprising the row into a structure called
the ROW BUFFER. Associated with each column bit was a sense amplifier,
which allowed a column bit to be output from the chip. We say a row buffer
is open when it contains the 2m bits corresponding to a row. The row buffer
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must be open before we can access the desired bit we want to load, or store the
bit we want to store. When the row buffer is open, we can then load or store
a bit of information. To do that, we load the COLUMN address register which
causes the one bit corresponding to the address in the m-bit column register to
be output from the DRAM chip.
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Figure 6.11: The DRAM Array

In the early days, if we wanted to access a byte of storage, we would need 8
chips, each providing one bit of the 8 bits comprising the byte of memory. Over
time, device technology shrinked (the fruits of Moore’s Law), allowing a single
array to provide a full byte of memory.

From there, the continued benefits of Moore’s Law enabled us to introduce
interleaving to the DRAM chip. Instead of one array on a chip, several arrays
have been made possible, each forming a different bank. As has been pointed
out, each bank needs its own MAR and internal MDR. In the case of DRAM
arrays, the MAR is the combination of the row address register and the column
address register. The internal MDR is effectively that part of the row buffer
corresponding to the column address register.
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Today’s DRAM chip has bits to specify what piece of a row, what piece of
a column, which bank, and which byte on the bus the chip will be contributing
to. A common configuration can have 3 bits to specify the byte on the bus the
chip is contributing to, 17 bits of row address, 7 bits of column address, and 4
bits to specify which of 16 banks is being addressed. Together, they provide for
31 GB of DRAM memory. If more memory is needed, one can add one or more
channel bits, where each channel specifies a set of pins that are used to access
that 31GB of memory.
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Figure 6.12: Today’s DRAM Chip

6.4.3 Page Mode

Finally, before leaving DRAMs, it is important to mention Page mode, a mecha-
nism that can save substantial access time. In order to access a byte of memory
from a DRAM, as we have said, we first have to load the row address register
which ends up opening the corresponding row buffer. Then the column ad-
dress register needs to be loaded in order to get at the desired column. What
if the address we wish to access has the same row address bits. That is, we
wish to access a different column in the same row. Then we can skip the ”load
row address” part and immediately jump to ”load column address,” saving a
substantial part of the access time. We refer to this as a page mode access.
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6.5 The memory controller

The memory controller keeps track of which memory addresses are required by
the processor, and which of those to initiate next. The memory controller sits
between the processor which requests the data to be read or written and the
DRAMs that will participate in the transfer. To make that decision the memory
controller looks at the characteristics of each request. Is the row corresponding
to that request in an open row buffer? If not, the row buffer would have to
be closed and the correct row put in the row buffer before we could access
the required column. Is the request from the processor due to an access that
is needed now in order to perform some computation, or is the access due to
prefetching, a request that is not needed now, but may be needed in the near
future. If the access is due to a desired prefetch request, how likely is it that
the prefetch will actually be needed in the near future.

Finally, a system may have more than one memory controller. Each accesses
the DRAMs via different sets of pins, and controls the accesses of those DRAMs
connected to its set of pins.

6.6 Dealing with transmission errors

Not all memory accesses complete correctly, so memory systems must provide
for accesses that do not complete correctly. Three common mechanisms for
doing so are (1) checking parity, which will detect a single bit error so that the
system can ask that the transmission be repeated, (2) using error correcting
codes, which will not only detect a single bit error, but also correct it without
having to retransmit, and (3) a checksum mechanism which can detect (but not
correct) multiple errors that are not statistically independent.

6.6.1 Parity

8 bits of data to be transmitted
1 bit is needed for detection

9 bits are transmitted – An even number of 1s.

Ex. 1: 8 bits of data 10101010. 9th bit is 0

Ex. 2: 8 bits of data 11100000. 9th bit is 1

EXAMPLE:

Figure 6.13: Parity Detection of errors

The simplest mechanism used to deal with transmission errors is the parity
check. The probability of an error in transmission is 10−7. That is one transmis-
sion error every 10,000,000 accesses. That seems pretty unlikely at first blush,
but given that we may transmit at a rate approaching one every nanosecond,
we see that errors do occur frequently. However, in most cases, errors across
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multiple bits are statistically independent. That means that two bits will be in
error in the same transmission is 10−14. Very remote. ...which means we must
deal aggressively with single bit errors, and two bit errors not so much. Parity
detection says that every transmission will consist of an even number of 1s in
the transmission. Thus before we transmit, we count the number of 1’s. If it is
an odd number, we tack on an extra bit with value 1. If it is an even number,
we tack on an extra bit with value 0. At the receiver, we count the number of
1’s. If an odd number have the value 1, we must have flipped a bit, so we can
detect it and ask it be retransmitted.

6.6.2 Error Correcting Codes

8 bits of data to be transmitted
4 parity bits are needed for correction

EXAMPLE:

Bit:

Parity8

Parity4

Parity2

Parity1

12
D7

11
D6

10
D5

9
D4

8
P8

7
D3

6
D2

5
D1

4
P4

3
D0

2
P2

1
P1

*

* *

* *

* * *

* *

Figure 6.14: Error Correcting Codes to Detect and Correct errors

We can expand our parity detection scheme to not only detect a one-bit error
but also to correct it, provided the bit errors are statistically independent as
described above. If we wish to transmit N bits of data, we will need to augment
these N bits with an additional (1 + log N) bits. Figure 6.14 shows by example
how to do this for N=8 bits of data (D7, D6, D5, ...D0) with an additional four
bits. The additional four bits (P8, P4, P2, P1) are parity bits that we use to
generate four parity functions, each using a subset of the eight data bits.

The data bits selected for each parity function correspond to the bit number
of each data bit. For example, D7 is bit 12, in binary 1100, so D7 is included in
the parity function for P8 and P4. D6 is bit 11, in binary 1011, so D6 is included
in the parity functions for P4, P2, and P1. Thus each data bit is included in a
unique subset of the parity functions. Each P bit is set at the transmitter to 0
or 1 so that the total number of 1’s in each parity function is even.

At the receiver, if a bit error occurs, the bit causing the problem will cause
all parity functions containing that bit to contain an odd number of 1’s. The
binary bit number corresponding to the parity functions in error will identify the
bit that caused the transmission error. Flipping that bit will fix the incorrect
transmission.
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6.6.3 Checksum (Fig 6.14)
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Figure 6.15: Checksum mechanism for Detecting Burst Errors

There are occasions when a problem causes many bits to be transmitted in
error, often, for example, the result of a burst error. We can not correct a burst
error but at least we can detect it so we can ask for it to be retransmitted. The
favored method for detecting burst errors is with a linear feedback shift register
since it uses all bits to be transmitted in a comprehensive way.

The method is shown in Figure 6.15. Let A be the bits to be transmitted.
A is transmitted sequentially to the XOR gate at the input of the shift register.
As each bit is shifted cycle by cycle through the shift register, some bits are fed
back to the XOR gate. After the last bit to be transmitted is input to the shift
register, the remaining bits in the shift register are recorded. They are referred
to as the checksum.

The transmitter does two things with the bits of A. It transmits A to the
receiver and it inputs A to the shift register, creating a checksum which it
also sends to the receiver. The receiver receives A and the checksum produced
at the transmitter. The receiver also inputs A to the shift register creating
another copy of the checksum. The receiver compares the two checksums, the
one produced by the transmitter and the one produced by the receiver. If
they are identical, the transmission completed correctly. If not, then an error
occurred and the receiver requests a retransmission.


