
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2014
Y. N. Patt, Instructor
Stephen Pruett, Emily Bragg, Siavash Zangeneh TAs
Exam 2
November 5, 2014

Name:

Problem 1 (20 points):

Problem 2 (10 points):

Problem 3 (20 points):

Problem 4 (25 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (5 points): A parity bit can be used to detect any single bit error. But if two bits are transmitted in error, the
parity bit scheme does not work. What characteristic of the bit errors makes this a non-problem for those situations
that use parity for detecting bit errors.

Part b (5 points): Vector instruction A requires the result of vector instruction B as a source. Vector chaining allows
vector instruction A to start processing before vector instruction B finishes. When can vector instruction A start its
execution phase?

Part c (5 points): An SRAM cell consists of two cross-coupled inverters (therefore, at least 4 transistors usually, and
often more). It stores a 1 or a 0 depending on which inverter isoutputting a 1 and which is outputting a 0. On the other
hand, a DRAM consists of only one transistor. How, then, doesit store a 1 or 0?

Part d (5 points): On a page fault, the operating systems often loads a page fromthe disk into a frame that was
previously occupied by a different page. How does the operating system know whether it is necessary to write the
previously occupied page back to the disk? Please be brief and explicit. Answer in fifteen words or fewer.

2

Name:

Problem 2 (10 points)

The following data flow graph receives as inputs a value x, an nelement vectorV0, V1, ..., Vn−1, the value n, and a
value 0 on its four input ports.

Copy

Copy

− 1

Copy

= 0

BR

=
BR

BR

+ 1

BR

x n 0

.

.

.

F T

F T T F

FT

ANSWER

V0

Vn−2
Vn−1

What ”answer” is produced by the execution of this data flow graph?

3

Name:

Problem 3 (20 points)

Part a (10 points)Assume we have a byte addressable memory that has the following address format:

Row Col Rank Byte on Bus
10 5 1 2 2 5 4

ColBank

028

Channel

i (2 points): What is the maximum size of physical memory?

ii (2 points): Circle the correct answer: Multiple (Channels / Banks / Ranks) enable simultaneous transfer of data
from different parts of memory to the processor in the same cycle.

iii (3 points): How many bits of data can be transferred between the processor

and memory simultaneously?

iv (3 points): How many bytes of storage are there on a single DRAM chip?

Part b (10 points)Suppose we have a byte addressable memory system made up of 1 rank and some number of banks.

For the following program fragment, assume the elements of arrays a, b, and c occupy a single byte each. Assume that
the variable ”i” is kept in a register for the duration of the fragment and does not cause any memory accesses. Initially
none of the elements of a, b, and c have been loaded into a row buffer. What is the minimum number of banks and the
minimum size of the row buffer such that exactly 4 row buffer misses occur?

for (i = 0; i < 63; i++)
c[i] = a[i] + b[i];

Banks

Bytes in row buffer

4

Name:

Problem 4 (25 points)

We wish to enhance the LC-3b by adding Virtual memory and a newinstruction. Virtual memory will be implemented
by a VAX-like scheme as we studied in class.

The new instruction will be STI SR,BR,offset and will use opcode 1010. The format is:

 1 0 1 0 offset6

15 12 11 9 8 6 5 0

STI SR BR

STI stands for Store Indirect.

STI operates as follows: We compute a virtual address (call it A) by adding the sign-extended offset to the contents of
BR. The memory location specified by A contains the virtual address B. We wish to store the contents of SR into the
address specified by B.

(Note: For those of you who studied the STI instruction in EE306, note that the address A is calculated differently
from the way it was in the LC-3.)

Part a (5 points): To process the STI instruction, one must go through the Fetch, Decode, etc. instruction cycle. What
is the maximum number of physical addresses that can be accessed in processing an STI instruction.

Part b (20 points): You are given the following information:

Virtual Address Space: 64 KB Physical Memory Size: 4 KB
User Space Range: x0000 to x7FFF PTE Size: 2 Bytes
System Space Range: x8000 to xFFFF

15 0
PTE Format: V 00...0 PFN

R0: x8000
R1: x401E
PC: x3048

A 4 entry TLB.

V Page #
PTE

V PFN
1 x0C1 1 x1A
1 x182 1 x24
0 - - -
0 - - -

5

Name:

Problem 4 continued

To process STI R0,R1,#0, seven physcial memory accesses areneeded. The table below shows the VA, PA, Data, and
whether or not there was a TLB hit for each of these seven physical memory accesses in the order they occurred.

Your job: Complete the table and fill in the four boxes. You canassume no page faults occur.

Virtual Address Physical Address Data TLB Hit
Yes

x360 No
x8040 No
x40FE No
x8004 No

xB00E No
x1DE No

Frame size:

Number of frames:

UBR:

SBR:

6

Name:

Problem 5 (25 points):
In this problem, we wish to add the capability to handle two new exceptions to the LC-3b ISA: (1) awrite-only ex-
ception if the program tries to read the Display Data Register (address xFE06) and (2) aread-only exception if the
program tries to write to the Keyboard Data Register (address xFE02).

Assume the same baseline machine you started with in Lab 4. i.e., none of the exception handling you added in lab 4
is present.

If one of these two exceptions is detected, a flag (E) will be set and a corresponding exception vector EXCV will be
loaded. The exception vector for the write-only exception is x05. The exception vector for read-only is x06.

You can assume that the states (starting at state X) needed for pushing the PSR and PC on the stack, setting the privi-
lege mode, and loading the PC with the address correspondingto the correct exception vector are done for you.

Your job: Modify the state machine, design the logic to generate E and EXCV, and modify the microsequencer.

PROBLEM IS CONTINUED ON THE NEXT PAGE!
7

Name:

Problem 5 continued:

Part a : Modify the state machine.

There are several places in the state machine where one of these exceptions could occur. We have provided enough
two-state sequences for you to check and initate each exception. Complete each of the two-state sequences you need
for each of the places where they are needed. Note the ”from” and ”to” boxes associated with each two-state sequence.
These are used to identify where the two-state sequence is tobe inserted. You may not need all the two-state sequences
that we have provided.

To State To State X
To State To State X

To State To State X

To State To State X To State To State X

To State To State X

From State From State

From StateFrom State

From StateFrom State

Figure 1: Two-state sequences

8

Name:

Problem 5 continued:
Part b : Design the logic to generate E and EXCV. You are not allowed toadd any additional control signals to the
control store.

EXCV

E

8

1

16

LD.E

LD.EXCV

LC−3b BUS

R.W

Figure 2: Modified Datapath for new exceptions

PROBLEM IS CONTINUED ON THE NEXT PAGE!
9

Name:

Problem 5 continued:
Part c : Modify the microsequencer. You are not allowed to add any additional control signals to the control store.

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

10

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 3: LC-3b Instruction Encodings

11

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

12

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 4: A state machine for the LC-3b

13

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 5: The LC-3b data path

14

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 6: The microsequencer of the LC-3b base machine

15

