
Department of Electrical and Computer Engineering
The University of Texas at Austin

ECE 460N Fall 2024
Instructor: Yale N. Patt
TAs: Anna Guo, Nadia Houston, Logan Liberty, Luke Mason, Abhay Mittal, Asher Nederveld,
Edgar Turcotte
Exam 1
October 9, 2024

Name: __________________________________________________________

Problem 1 (15 points): _______

Problem 2 (25 points): _______

Problem 3 (30 points): _______

Problem 4 (30 points): _______

Total (100 points): ______________

Note: Please be sure that your answers to all questions (and all supporting work that is required)
are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested:
I have not given nor received any unauthorized help on this exam.

Signature: _____________________________________________________________

GOOD LUCK!



Question 1 (15 points): Two five-stage pipelined processors are shown in the table below. The amount of
time needed to process the work in each stage is shown in the table.

Fetch Decode Execute Memory Writeback

Processor A 200ns 250ns 200ns 500ns 100ns

Processor B 400ns 150ns 100ns 300ns 150ns

Part a (2 points):What is the minimum cycle time for each processor? How long does it take for a single
instruction to be carried out by each processor?

Cycle time Time to process an instruction

Processor A 500ns 5 * 500ns = 2500ns

Processor B 400ns 5 * 400ns = 2000ns

Part b (4 points): A program that has no control instructions and no stalls due to dependencies is
executed by each processor. The number of instructions in the program is large. What is the average
number of instructions executed per ns for each processor?

Processor A 1/500 instr/ns Processor B 1/400 instr/ns

Part c (5 points): Suppose Processor B needs to execute 10% more instructions than Processor A for a
particular program. Assuming the answers from (b), which processor provides higher performance?
Please show your work.

Using the performance equation from class:
Performance = 1 / (length * CPI * cycle time)
Processor A: Performance = 1 / (100 instr * 1 CPI * 500ns) = 1/50000
Processor B: Performance = 1 / (110 instr * 1 CPI * 400ns) = 1/44000
Since 1/44000 > 1/50000, Processor B provides higher performance.

PROBLEM CONTINUES ON NEXT PAGE



Part d (2 points): Suppose you can split one of the pipeline stages of each processor into 2 stages, each
requiring half of the time of the full stage. Which pipeline stage would you select for each processor and
why?

Processor A
stage: Memory Processor B

stage:
Fetch

Explain:

These are the longest stages for each processor. Splitting these stages can reduce the cycle time for
each processor.

Part e (2 points): For your selections in (d), what is the minimum cycle time and how long does it take
for a single instruction to be carried out by each processor?

Cycle time Time to process an instruction

Processor A 250ns 6 * 250ns = 1500ns

Processor B 300ns 6 * 300ns = 1800ns



Question 2 (25 points) A Texas A&M student is designing his first computer for his graduate thesis.
Unfortunately, he was never taught how to make a datapath or use microcode, so he made many mistakes
when creating the datapath based on the ISA below.

Instruction
Opcode
[15:13] [12] [11] [10] [9:0] Description

ADD [MEM]/Imm* 000 Steer 0 0 Addr/Imm10 Accum = Accum +M[Addr]/Imm10

AND [MEM]/Imm* 001 Steer 0 0 Addr/Imm10 Accum = Accum &M[Addr]/Imm10

OR [MEM]/Imm* 010 Steer 0 0 Addr/Imm10 Accum = Accum |M[Addr]/Imm10

XOR [MEM]/Imm* 011 Steer 0 0 Addr/Imm10 Accum = Accum ^M[Addr]/Imm10

JMP Addr 100 0 0 0 Addr PC = Addr

LD [MEM]* 101 0 0 0 Addr/Imm10 Accum = MEM[Addr]

ST [MEM] 110 0 0 0 Addr MEM[Addr] = Accum

BR cc Addr 111 N Z P Addr If condition met, PC = Addr, else PC+=1

*These instructions set condition codes.

Answer the questions on the next page. Here are some important details of the ISA and the datapath:
- He made no mistakes in specifying the ISA.
- The steering bit, if present, selects between a value from memory at the specified address and a

sign-extended immediate value.
- The memory uses a 10 bit address, and can complete an access in one clock cycle.
- The ALU supports these operations: ADD, AND, OR, XOR.



Given 2kb memory size, 10 bit address, what is Addressability?
How many architectural registers are there? Is this machine 0-address, 1-address, 2-address, or 3-address?

Addressability:
2KB / (2^10) = 2 bytes or 16
bits addressability

Number of architectural
registers:
1 (The accumulator)

#-Address machine:
1

Part b (5 points): This is the student’s current list of control signals generated by the control store:
LD_ACCUM, LD_IR, LD_PC, LD_BEN, LD_MAR, GATE_MDR, MEM_EN, IRD, COND.
Given the data path, list 5 of the missing control signals.

1 pt per correct answer: MARMUX, PCMUX, MemR_W, Set_CC, GateALU, LD_MDR, J

These will generally detract from score:
Incorrect: ALUK, BMUX, R (ALU already has select lines from the opcode)

Some exceptions are made for examples such as this:
- Add a control signal specifically to allow the ALU to PASSA

Part c (15 points): Other than missing control signals, there are some major issues in the data path. Find
3 different mistakes that cause ISA features to not be properly supported. Keep each explanation to fewer
than 20 words, and identify the instruction(s) that are affected by each mistake.

3 correct issues get full credit, 5 pts each. There were more
than 3 possible issues, and issues not listed here will also get
credit if reasonable.

When using memory addressed operands, RAM and ALU
have to drive the BUS at the same time.

Instruction(s) affected:
ADD, AND, OR, XOR

There is no way for Addr to get to PC Instruction(s) affected:
BR, JMP

You cannot write to memory because you can’t load from bus
to MDR

Instruction(s) affected:
ST

You can’t output accumulator to the bus, because there is no
PASS A or gate to BUS.

There was not meant to be an immediate addressing mode on
LD [MEM] in the ISA, but that is also not supported here.

Instruction(s) affected:
ST



Question 3 (30 points): The C standard library has a string compare function, strcmp(), that
compares two null-terminated ASCII strings in memory. Your job is to implement STRCMP as
an instruction in the LC-3b.

Recall that a string is an array of one-byte characters, ending in a null terminator, which has the
value 0x00.

The STRCMP instruction is to operate as follows: Starting with the first character in each string
(N=0), if the Nth character of string A is equal to the Nth character of string B, and both
characters are not the null terminator, set N to N+1 and repeat. If the Nth character of string A is
not equal to the Nth character of string B, STRCMP outputs the difference between their ASCII
values. If the Nth character of both strings are the null terminator, then STRCMP outputs 0.

Additionally, here is a C implementation of strcmp() to help you:
int strcmp(char *ptr_A, char *ptr_B) {

char c1, c2;
int diff;
int N = 0;
do {

c1 = ptr_A[N];
c2 = ptr_B[N];
diff = c1 - c2;
N++;

}
while(diff == 0 && c1 != 0);
return diff;

}

The instruction encoding is shown below. We will use the unused opcode 1011.

1 0 1 1 DR SR1 000 SR2

SR1 contains the starting address of string A in memory. SR2 contains the starting address of
string B in memory. The execution of this instruction does not destroy the contents of SR1 or
SR2. The output is written to DR. This instruction updates condition codes based on the
value in DR.



Your job: Implement STRCMP. There are 5 parts: State machine, datapath, microsequencer,
control store and analysis. Note: Examine all parts of the problem before completing your
implementation, as that may help you understand how to solve it.

Part a (10 points): Complete the state machine below:



Part b (8 points): The additions to the datapath are shown in boldface below.
Fill in the 2 boxes in the datapath and answer the questions below.
Points will not be deducted for missing the buffer and GateTEMP3.

What is the function of LOGIC A? What is the function of LOGIC B?

~TEMP2 + 1
(Negate TEMP2)

TEMP1 != 0



Part c (4 points):Modify the microsequencer below with the correct control logic:

Part d (5 points): Shown below are six of the control signals. Fill in the missing entries and the
missing state number. If the value of a control signal does not matter, label that entry as ‘X’:

State COND[2:0] J LD.CC ALUK MUXASEL MUXBSEL

37 000 40 0 ADD 2 0

43 000 44 1 ADD 1 1

44 100 18 0 X X X

Part e (3 points): Does a programmer using the STRCMP instruction need to know the length of
register TEMP3? Explain in 20 words or fewer.

Yes. Executing the STRCMP instruction on strings with greater length than what
TEMP3 supports results in an infinite loop because TEMP3 overflows.



Question 4 (30 points): A microarchitecture using Tomasulo's algorithm is executing a program.
Specifications are as follows:

● The instruction cycle is 4 stages: FETCH, DECODE, EXECUTE, and WRITEBACK.

● FETCH, DECODE, and WRITEBACK take one cycle each.

● ADD takes 3 cycles to execute, MUL takes 4 cycles to execute.

● The reservation stations for ADD and MUL have 3 entries each.

● The tags are α, β, and γ for ADD, and π, ρ, and σ for MUL

● There is one pipelined adder and one pipelined multiplier.

● Registers are renamed and allocated to reservation stations at the end of DECODE in a
top-to-bottom manner.

● Instructions with no dependencies can start execution directly after DECODE.

● There is no data forwarding. Dependent instructions can begin execution in the cycle after
the source value is written back.

● Reservation station entries are deallocated at the end of WRITEBACK. An instruction that
cannot enter a reservation station must stall in DECODE and can enter the reservation station
in the clock cycle following the WRITEBACK of a previous instruction.

● Only one instruction can be in WRITEBACK in each clock cycle. If multiple instructions are
ready to write in the same clock cycle, the oldest instruction is written back while the others
stall.

● Tags remain in the register alias table after a value is written back.

Your job:

Part a (10 points): Fill in the missing entries in the program.

Part b (10 points): Complete the pipeline timing diagram for the execution of the program.

Part c (10 points): Determine and fill in the missing entries in the register alias tables.

PROBLEM CONTINUES ON NEXT PAGE



OP DR SR1 SR2

Instruction 1 MUL R1 R7 R2

• Stall
A ADD execute
M MUL execute
R# Writeback

Instruction 2 MUL R5 R1 R6

Instruction 3 ADD R2 R3 R1

Instruction 4 ADD R4 R4 R1

Instruction 5 ADD R5 R3 R7

Instruction 6 ADD R6 R3 R6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I1 F D M M M M R1

I2 F D • • • • M M M M R5

I3 F D • • • A A A R2

I4 F D • • • A A A • R4

I5 F D A A A R5

I6 F D • • • A A A R6

V Tag Value V Tag Value V Tag Value

R0 1 α 0 R0 1 α 0 R0 1 α 0

R1 1 β 1 R1 1 π 14 R1 1 π 14

R2 1 γ 2 R2 0 α 2 R2 1 α 17

R3 1 π 3 R3 1 - 3 R3 1 - 3

R4 1 ρ 4 R4 0 β 4 R4 1 β 18

R5 1 σ 5 R5 0 γ 5 R5 1 γ 10

R6 1 α 6 R6 1 - 6 R6 0 γ 6

R7 1 β 7 R7 1 - 7 R7 1 - 7

Before cycle 1 After cycle 9 After cycle 13



Below are blank reservation stations and a timing diagram to use for scratch work. Nothing on
this page will be graded

V Tag Value V Tag Value V Tag Value V Tag Value

α π

β ρ

γ σ

V Tag Value V Tag Value V Tag Value V Tag Value

α π

β ρ

γ σ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I1

I2

I3

I4

I5

I6



This page is left blank intentionally. Feel free to use it for scratch work.
You may tear the page off if you wish.
Nothing on this page will be graded.


