Department of Electrical and Computer Engineering
The University of Texas at Austin

ECE 460N/382N.1 Fall 2024

Instructor: Yale N. Patt

TAs: Anna Guo, Nadia Houston, Logan Liberty, Luke Mason, Abhay Mittal, Asher Nederveld,
Edgar Turcotte

Final Exam

December 13, 2024

Name: SOLUTIONS
PART A PART B
Problem 1 (10 points): Problem 5 (30 points):
Problem 2 (10 points): Problem 6 (30 points):
Problem 3 (10 points): Problem 7 (30 points):
Problem 4 (15 points): Total Part B (90 points):
Total Part A (45 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required)
are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested:
I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (10 points): Tomasulo
An out-of-order processor executes the following program segment using Tomasulo’s original

algorithm (no ROB).
ADD RO, RO, RO

ADD R1, R2, R3
MUL R4, R3, RS
MUL R6, RO, R1

ADD R7, R4, R6

There are four stages: Fetch, Decode, Execute, and Writeback.

Fetch, Decode, and Writeback take one clock cycle each.

Fetch, Decode, and Writeback can only operate on one instruction at a time.

Instructions with no dependencies can start executing immediately after Decode.

There are two functional units:
o A pipelined adder that takes 3 cycles.
o A pipelined multiplier that takes 5 cycles.

e Entries are put into Reservation Stations at the end of Decode and removed at the end of
Writeback. There are 8 unified Reservation Stations.

e The results of an instruction are broadcast at the end of Writeback and a dependent
instruction can begin execution in the next cycle.

e The Writeback bus supports only one result being stored at a time. Earlier instructions
take priority for Writeback.

Your job: Fill in the timing diagram below for the code above. Use F for Fetch, D for Decode, A
for Add, M for Multiply, and WB for Writeback. Use - to indicate waiting in a Reservation
Station, and * to indicate a stall that clock cycle.

0 |1 (2 (3 |4 (5|6 |7 |8 (9 |[10]11 |12 (13|14 15|16 (17|18
In|F [D[A |JA |A [W
12 F D [A]JA AW
I3 F |IDM|M[M|M|[M|[W
14 F |D|- |[- IM[M[M|M|M|[W
IS F [D |- |- |- 1|[-1-1-1|-|A|A[A[W

Name:

Problem 2 (10 points): Floating Point
Part a (3 points): Consider an 8-bit IEEE-like floating point representation. In this format,

00100101 represents the value 21/32 exactly. How many bits are used for the fraction and
exponent, and what is the bias?

of Fraction bits: # of Exponent bits: Bias:

- 3 3

Part b (4 points): Now add that number, 00100101, to the floating point number represented by
00011101, using an always round-up scheme. What is the result? (Leave the answer as a fraction)

9/8

Part c (3 points): In class, we discussed another rounding mode, “unbiased nearest rounding”.
What makes “unbiased nearest rounding” unbiased?

It is equally likely to round a number up or down, resulting in an average rounding error of
Zero.

Name:

Problem 3 (10 points): Branch Prediction
Below you are given a 2-level branch predictor with the g-share modification.

0| 00

1| 10

2] 01

3| 00

4l n

BHR | 0 |0 |1 |0 Sl u
61 01

Y VYV VY V¥ 71 10
XOR >» 8| 00

A A 9 01

10| 00

11| 10
PC01010001001001001211
131 01

14| o0

15| 10

Part a (5 points): Given the values in the schematic above, would the predictor predict taken or
not taken? Briefly explain.

Taken. XORing the BHR with the given bits of the PC gives 1011 as the index into the PHT.
Entry 11 in the PHT contains 10, indicating a weakly taken prediction.

Part b (5 points): What is the prediction without the g-share modification? (using a GAg
predictor) Briefly explain.

Not taken. Without the g-share modification the index is just the BHR, which is 0010. Entry 2
of the PHT contains 01, indicating a weakly not taken prediction.

Name:

Problem 4 (15 Points): Virtual Memory

Consider the LC-3b as implemented in Lab 5. Recall the following details:
- The LC-3b uses a 1-level page table for each access.
- VA contains 7 bits for VPN and 9 bits for offset. There is no region bit.
- PTE contains 5 bits for PFN as well as P, V, M, and R bits. The rest of the bits are Os.

Part a (5 points): You want to design a TLB (Translation Lookaside Buffer) for the LC-3b. The
TLB has 8 entries and a random replacement policy. The TLB is fully associative. How many
total storage bits do you need to implement the TLB if you don’t include any unused zero bits in
the PTE? Show your work.

Each entry has: 7 bits for VPN, 5 bits for PFN, 4 bits for P, V, M, R, no replacement bits
8 entries * (7 + 5 + 4) bits per entry = 8 * 16 = 128 bits

Also accepted: adding a valid bit for the TLB entry in addition to the PTE valid bit
8entries* (7+5+4+1)=8*17=136 bits

Part b (2 points): In fewer than 15 words each, give one benefit of 1-level virtual memory and
one benefit of 2-level virtual memory.

One level:

Faster translation because fewer memory accesses are required

Two level:

Entire page table does not need to be loaded in memory at once

PROBLEM CONTINUES ON THE NEXT PAGE

Name:

Part c (8 points): The following program runs on the LC-3b with a correctly implemented lab5.
You are also given the data at a few memory locations before execution starts. The PBR contains
the value x1000. Remember, the PTE format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]

0 0 PFN olo|loe|oe|oe|P|V]|M]|R
Memory locations before Program
execution start
Addr Data .ORIG x4000
x102E x220C LEA R1, ADDRESS
LDW R2, R1, #0
x103E x3004
LDW RI1, R1, #1
x1040 x3006
LOOP STB R2, R2, #0
x1044 x3001 ADD RI1, R1, #-1
x1080 x3806 BRNP LOOP
x1082 x3C04 HALT
ADDRESS .FILL x8000
x1084 x3804
ITER .FILL x0300
.END

Fill in all VPNs accessed and their corresponding PFNs in the order they are first accessed. The
first entry has been filled in for you. You need not use all the boxes.

VPN PFN
0x20 0x18
0x40 0x1C

0x41 Ox1E

Name:

Problem 5 (30 points): Caches and Vectors

A computer contains a vector unit, and write-back L1 and L2 data caches. An engineer executes
the following program, where X, Y, and Z are the starting addresses of three one-dimensional
arrays in memory. Each array starts at the beginning of a cache line (in both caches).

LVL 20 ; set vector length

LVS1 ; set vector stride (in elements)
VLD V1, X ; vector load

VLD V2,Y

VLD V3,Z

VMUL V2, V3, V2 ; vector multiply
VADD V1, V1, V2 ; vector add
VST V1, X ; vector store

Memory is byte-addressable. Each vector register holds up to 64 elements of 32 bits each.
Memory accesses work as follows: first, the L1 data cache is checked. If it misses, the
processor then checks the L2 data cache. On an L2 data cache miss, the processor
accesses DRAM. Data is filled into both the caches as part of the DRAM access.

There is one port to the memory hierarchy. DRAM accesses have a fixed latency.

Assume there are no page faults. All caches are initially empty.

The following diagram shows the cycle in which each component of V1 is loaded. For example,
the 3rd component of V1 is loaded in clock cycle 29. Note that 90 cycles are required to load V1.

[~
(1]

Number of Elements Loaded

=
o

[~}
o

[
[

(4]

o

Elements Loaded Versus Cycle Count (VLD V1, X)

"__.———'
.~

o

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 B7 90 93 96
Cycle Count From Start of VLD V1, X

The diagram below shows the clock cycle in which each element of V1 is stored to the memory
system as the program executes. The VST instruction takes 38 clock cycles to execute.

[
(]

20

15

10

Number of Elements Stored

o

Elements Stored Versus Cycle Count (VSTV1,X)

B

.__—-0/'/

o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Cycle Count From Start of VSTV1, X

PROBLEM CONTINUES ON THE NEXT PAGE

Name:

Part a (4 points): What is the size of a cache line for the L1 and L2 caches in bytes?

L1: 16B L2: 64B

Part b (6 points): How many clock cycles does it take to access the L1 cache, the L2 cache, and
DRAM?

L1 Cache L2 Cache DRAM

1 cycle 6 cycles 20 cycles

Part ¢ (8 points). The L2 cache is fully associative with LRU replacement. What is the lower
bound for the size of the L2 cache? Explain

All elements of the vector at X are still in the L2 cache after Y and Z have been loaded. Each
vector is 80B, so it takes up two cache lines in the L2 cache. Thus at least 6 cache lines are
needed to store all 3 vectors.

6 * 64B =384B

Part d (6 points): How many clock cycles would this program take to execute without vector
chaining? For this problem, LVL and LVS each take 1 cycle to complete. VADD takes 6 cycles
to complete per element, and VMUL takes 8 cycles to complete per element. Both the Adder and
Multiplier are pipelined. The cycle counts for VLD and VST depend on whether they hit in the
L1 cache, L2 cache, or DRAM.

Loads take 90 each when no elements are in the cache as seen in the graph. VMUL takes 8
cycles for the first element, then 1 cycle each for the remaining 19, and similarly for VADD.
Store takes 38 as seen in the graph.

1+1+90+90+90+ (8+19)+ (6+19) + 38 =
362 cycles

Part e (6 points): If vector chaining is implemented, how many clock cycles would this
program take to execute?

VADD and VMUL instructions end up completely hidden by memory latency

1+1+90+90+90+38=
310 cycles

Name:

Problem 6 (30 points): Datapath

The top graduating student at Texas A&M created an addition to the LC-3b ISA. Unfortunately,
he did not include documentation for his instruction, and you don’t know its name or function.
Luckily, you have his instruction encoding and most of his design, which you will complete in
this problem.

Below is the encoding of the mystery instruction:

[[[[[[[[[[[
1 0 1 1 0 0 0 SR 1 0 Len%th
l l l l l l l l l l

SR contains the starting address of an array of bytes. Length refers to the number of elements in
the array.

Part a (9 points): Examine the state machine on the next page. What function does this new
instruction perform? Explain in 15 words or fewer. Hint: try using an example array.

Bubble sort,<< ascending. Sorting algorithm did not need to be specified for a correct answer.

PROBLEM CONTINUES ON THE NEXT PAGE

Name:

Part b (9 points): Fill out the three missing state numbers in the bold boxes.

DECODE:
[BEN « IR[11] &N +IR[10] & Z + IR[9] & P
[R[15:12]]
11
—— [
i—0
Swap — 0
-

BUS — IR[@4:0]-1-i
SelCC

i+—0
Swap +— 0
BUS «— Swap
SelCC

[]

MDR « MEM[MAR]
(R]

A

lR

Temp1 « MDR[7:0]
Temp2 « MDR[15:8]

)

Temp1 - Temp?
SalCC

}

[P]

ie—i®1

To State 18

MDR[15:8] «— Temp1
Swap — 1

MDR[7:0] «— Temp2 }

MEM[MAR] — MDR]

(R]

62

PROBLEM CONTINUES ON THE NEXT PAGE

10

Name:

Part ¢ (6 points): The datapath has been augmented with registers TEMP1, TEMP2, SWAP,
and i. Fill in these names in the corresponding boxes labeled A, B, C, and D.

In addition to the other datapath changes you see:
- The ALU has been modified to support the ability to subtract in the format of A - B.
- Memory has been modified to support unaligned accesses.

CateMARMUX Y GatePC

i3

REG
FILE

3 | sR2 SRI | 3
SR2—“| QUT OUT [97—5RI

Als Als 16
i
[SEXT | |
[840] SRIMUX
. t 4400 |)| EOC
1 CONTROL
52]- SEXT [Py ,
R
o]
g N N

TEMPI

]

A

[15:8]

(>

Crabesy

[15:8]

TEMP2
3

[>

GuteRl

1700

6
. toce—{n|z[p _,;.\;.\-“ v A\I{U 4 / SHF \§74m451}]
SWAP D ALUK
= LOGIC p ,

]

i Gate AL Y A= GateSHF

16

PROBLEM CONTINUES ON THE NEXT PAGE

11

Name:

Part d (6 points): This new instruction involved changes to the microsequencer. A new control
signal, COND?2, has been added to the microsequencer. Complete all missing wires and
determine the signal X.

COND2 CONDI CONDO
| .
L]
.
P X BEN R IR[11]
) C Q
Branch Ready Addr.
Mode
I[5] 1[4] J3] 2] 1] J[0]
0,0,IR[15:12]
j A6
¥
IRD

Address of Next State

Another valid solution is to only connect the output of the AND gate into the OR gate with J[3]
and make state 58 in Part b both state 58 and 26.

Name:

Problem 7 (30 points): Physical Memory
A student writes the following code to transpose an N by N matrix A and stores the transposed
matrix into B. Each element is 64-bit.

for (int 1 = 0; 1 < N; i=i+1) {
for (int jJ = 0; j < N; j=j+1) {
int64 t temp = A[i*N+j];
// note: the following store cannot begin executing until the
// previous load returns (data won’t be in temp otherwise)
B[j*N+i] = temp;

You may assume that local variables, such as 1, j, and temp, are stored in registers and all matrix
accesses go to memory. Matrix A starts at x4000, and matrix B starts at x8000. Suppose we have
DRAM memory with the following address scheme:

15 13 12 4 3 2 1 0

Row Column Bank BoB

The processor is byte-addressable

Due to the bus width, it takes 2 memory accesses to load an element from the matrix
Only one request can be sent to DRAM memory per clock cycle

Loads and stores are sent to the DRAM in order, but the data may return out of order
All row buffers are initially empty

It takes 60 clock cycles to open a row buffer

It takes 30 clock cycles to get data from a row buffer hit

A bank conflict occurs only when the oldest request cannot be sent to DRAM because the bank
to be accessed is busy dealing with another request.

PROBLEM CONTINUES ON THE NEXT PAGE

13

Name:

Part a (12 points): How many bank conflicts occur when transposing a 4x4 matrix? Show your
work

Because each element is 64 bits wide, it takes an access to two different banks to get each
element. However, because accesses must be issued in order, a bank conflict in the first bank
means that there won’t be a bank conflict in the second bank, so an element can cause at most
1 bank conflict.

There are 32 elements accessed total. Because there’s a data dependency between loads from
Matrix A and stores to Matrix B, the stores (which are to the same bank as the previous load)
have bank conflicts (the access from the load must have finished beforehand). Hence, there are
at most 16 bank conflicts. Notice that because the width of the array is even, elements in the
same column access the same banks.

As j changes while 1 is constant, Matrix A is alternating between two groups of banks, whereas
Matrix B always stores to the same bank. Thus, after the first two entries of every row, the
stores cause bank conflicts in half of the subsequent loads (i.e. the store to B when i=0, j=1
uses banks 0 and 1, which conflicts with the subsequent load from A when i=0 and j=2, which
also used banks 0 and 1).

In the case of the first two elements for each row, no bank conflicts occur in the first row
(they’ve never been accessed before), both of the first two elements cause conflicts in every
row where 1 is odd (the first element has a conflict from a store to an even column (3, i-1) and
the load from an even column (i, 0), and the second element has a conflict between the store to
an odd column (0, 1) and the load of an odd column (i,1). All other rows have no conflicts in
the first two columns. To summarize, half of the loads in the first two columns have conflicts.

Hence, there are 8 bank conflicts.

How does this change if we increase the number of banks to 8 by making bit 4 a bank bit?
Explain

Reduces bank conflicts because the max address is 4x4 array goes up to x4040, x8040,
meaning bit 4 changes throughout the execution of code.

Part b (18 points): How many bank conflicts occur when transposing a 16x16 matrix? Show
your work

14

Name:

128

Because the width of this is also even, the same logic as part a applies. Thus, we get
16*%16*2/2/2=128.

Alternatively, one could have counted out the bank conflicts when answering part a: 8 loads at
(0,2),(1,0), (1, 1), (1, 3),(2,2), (3, 0), (3, 1), and (3, 3) rather than providing the logic above
in part a. In that case, the work would need to be shown in this box, where the numbers are
chosen such that the bank conflicts are deliberately impractical to count.

How does this change if we increase the number of banks to 8 by making bit 13 a bank bit?
Explain

No effect because the thirteenth bit never changes. The last index of loop accesses x4400 and
x8400, and the 13th bit is low for both x4XXX and x8XXX.

THIS PAGE IS LEFT INTENTIONALLY BLANK FOR SCRATCH WORK

15

