Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015

Y. N. Patt, Instructor

Ben Lin, Kishore Punnivamurthy, Will Hoenig TAs
Exam 2

April 22,2015

Sb \u"‘rmﬁ

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (15 points);
Problem 4 (25 points);
Problem 5 (25 points);

Total {100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam,

Please sign the following. I have not given nor received any unauthorized help on this exam,

Signature;

GOOD LUCK!

Mame;

Problem 1 {20 points)

Part a (5 points): A 7 by 6 word array (i.e. 7 rows by 6 columns) is stored in Row major order. Memaory is word-
addressable. We wish to load column 1 (i.e. the second column; column 0 is the first column) into a vector register.
Before we initiate the vector load, what values must we load into VSTRIDE and VLEN registers.

VSTRIDE 6 VLEN 7—

Part b (5 points): The Decoupled-Access-Execute (DAE) execution relaxed one constraint from VLIW, i.e., the parts
of a wide instruction did not have to execute in lock-step. In fact, the access stream (LDs and STs) could slip ahead or
behind the execute stream (ADDs, MULS, etc.). The diagram below shows the two streams.

e LT T

Memory Execute
Access Unit

LDs, 5Ts ADDs, MULSs, ete,

Tﬁr_f

Instructions

One might think that allowing one stream to slip ahead or behind the other could cause the wrong result of a LD to

be supplied to a subsequent ADD, for example. What characteristic of the execution model made this not a problem.
(Ten words are more than enough to answer this question.

S+]|[‘\Lw|.‘¢ Ty T O E‘Ler" 28 Lt o

MName:;

Part ¢ (10 points): The data flow graph shown below gets two inputs, the value N (N > 0) and the value 3. What is
output at "Answer'™?

n 3

b Copy

ANSWER

l ';Jl: i t_‘lw'.-&.'.‘hllh‘t l:-"?r 3- G*E‘]h’&rw-%*t O

'

MName:

Problem 2 (15 points)

The numbers 235/8, 9/16, and 1/16 can all be representated exactly with a 7-bit floating point representation, in the
format of the IEEE Floating Point standard. Note: One or more of the numbers may be represented as a subnormal
number.

Part a: Show the representation of the three numbers, clearly identifying which bits are the fraction and which are the
exponent,

25/ "1 "' Te e]

9/16: |0 '© "o "1 "o "o "I | Thebiasis:| |

lflﬁ:lﬁ 0 Tolo!l olol|

Part b: Add the thre¢ numbers in the following sequence. First add 25/8 and 9/16 and show the resulting 7-bit floating
point number. Whenever necessary, round to zero, i.e., chop off the low order bits:

\

Mow add 1/16 to the intermediate result, and show the final result here:

o' V! 6 p b b]

(O Vo T)]

Part ¢: Add the same three numbers, this time by first adding 9/16 and 1/16. Show the result here. Again, whenever
necessary, round to zero, i.e., chop off the low order bits:

QO ! c_;:-__D_'_I T T 4 Ui

Mow add 25/8 to the intermediate result, and show the final result here,

o' Tg Ty Ty T} O]

Part d: Compare the final result of part b and of part c. If they are identical, explain why. If they are not identical,
express the difference as a fraction and explain why,

Didfereq~te 5 'J’E
D'."'.—"EE'IQ_.F[E' C\-.A‘i T Hrurncation Glur'hnj 'f"'EJ--M"C}*;ﬁ':

Mame:

Problem 3 (15 points)

I learned recently that current ARM chips have improved on the standard method of processing interrupts in the fol-
lowing sense:

Suppose the machine is operating at priority 2 and an interrupt signals at priority 4. We push PSR and PC onto the
system stack and initiate the interrupt. During the execution of the interrupt service routine, an interrupt at priority
3 signals. Since priority 3 is less than priority 4, we continue processing the priority 4 service routine. HOWEVER,
When we execute RT1 at the end of the priority 4 service routine, rather than do what we currently do, ARM immedi-
ately initiates the priority 3 service routine,

We wish to implement this improvement. Your job is to augment the state machine to make it happen. In this exercise,
you can assume we do not have to be concerned with exceptions.

Part a (7 points): What do we currently do when we execute RTI from the priority 4 service routine and then intiate
the priority 3 interrupt? Hint: Four accesses to the system stack are necessary to do this,

Pep PC and PSR off e sva de | then

PU‘:\H"} %\S&_W‘\ Ck‘j oY

On the next page is an improved state machine that will allow, in our scenario, the priority 3 service routine to imme-
diately initiate as part of the execution of RTI for the priority 4 service routine. In fact, by so doing, we will save three
of the four accesses required in your answer to Part a,

We include below definitions of new signals we have used in the state machine: You may or may not need to look at
them to understand what is going on.

s INT Priority: the priority of the highest prionity interrupt which is currently pending

s INT: a signal signifying a pending interrupt whose priority is higher than the priority of the running process
— i.e. INT = (INT.Priority = PSR[10:8])

o INTV: the vector of the highest priority interrupt which is currently pending

» Vector: the vector of the interrupt which we will handle next

o Saved_USP: the saved User Stack Pointer

Saved_S5P; the saved System Stack Pointer
¢ TEMP: a temporary register

Part b (8 points): Identify the appropriate modifications to the execution flow of RTI to accomplish this improvement,
That is, identify X, identify the state that RT1 takes you to from state 32 (shown in bold), fill in state 58 (shown in
bold), and connect the arrow out of state 58 to the state you 20 10 next.

X is TEMp Llo:8)] <« INT F.r'.ww/

Mame:;

A few hints about the state machine to help you get started: The flow starting at state 49 is the normal interrupt from
states 18,19. The flow on the left is the flow for RTL. Normally, X is 0 and the RTI completes as usual along the
left path. If a higher priority interrupt is pending, you instead go to state 58 to initiate processing the higher priority
interrupt. Finally note that in state 44, you are loading into MDR the next to top element on the stack, NOT the top of
the stack.

49

Vector <= [INTWV
PSR[10:8] <= INT_Priority

MDR =<— PSE
PSR[15]<- 0
-
I
]
BT | BEN<AR<I1=N = [R<1{=Z + [R<8=P
[1R[15:12]] 35

Saved LISP<- 5P
SP <— Saved SSP

MAR, SP<- 5P-2

FITTEED VAN

rest of state machine

[] S

Veclor & INTY

poR[o:8) L
-IN'_T . Fr.ﬂ'r‘.:‘j

ﬂ MAR, SP<=5P=2 :l
L | Tl
.,

R

r
MAR=— x0200 + LEHF(Vector,1} :|

Y =

:i MDR<M |
PSR <- TEMP R

 J “

¥ 54 PC=-MDR

pL]
MAR<—SP
o)
< M
A MDR <= M
R
Y

il L] To IH

. Saved S5P<-Sp
Nath £
[i J [SP<-Saved USP J

| l

To Ik To K

Mame:

Problem 4 (25 points)

A Vector Processor is attached to a multiplexed, asynchronous, pending bus. (Recall pending is the opposite of split-
transaction.) A non-interleaved memory is also attached to this bus. We wish to perform a vector store, transferring
the components of the vector register to memory locations during one very long bus cycle.

We assume that the controller on the memory side is a typical dumb controller. If it receives an address it latches it to
an address register, [f it receives data, it stores the data in the location specified by the address register. The controller
on the memory side does no arithmetic.

The vector processor bus controller; on the other hand, contains all that is needed to make this work. It contains a
64-element BUFFER to hold the vector to be stored, an index register i, so we know which BUFFER[i] we are deal-
ing with at any moment, a VSTRIDE register, 2 VLEN register, and a Memory Address Register (MAR). We load
BUFFER, MAR, VSTRIDE, VLEN, and set i ta 0 before the bus controller requests the bus.

Note: BUFFER entries are BUFFER[0] to BUFFER[VLEN-1].

Your job: complete the timing diagram and the state machine for the processor bus controller.

Two new signals are provided for you: M-CNTRL for the processor and S-CNTRL for memory.

Processor Nk
L BBSY, MSYN, MAR WRITE
__—————_______;___

Time
MAR & MAR —+ l
VsiRlIoE
gy é—\+l W{?O*ﬁ

P
i S5— CNTR
K
TV, MTChvTRE ———
= SSo

MName;

Note: Your job is to complete the Moore-model (not Mealy-model) state machine, starting with the state shown in
boldface. You can assume VLEN is non-zero. Any signal not written in a state we will assume is not asserted while in
that state. ‘

Note that we have provided one state for you. This is the state in which MAR is updated, i is updated, and i is tested.
Use this state as you find useful in your state machine,

D&BGy,, BGy,, BBSYpy
IDLE i /ER?\ BGy,, SACK

s da [VSTRIDE £—— [M vy,
i< (VLEN-1) \\xiiiif//-fm{MTﬂL
--______-—-.

S_CNTRL

MName:

Problem 5 (25 points)

Assume a Tomasulo-style, out-of-order execution machine that handles ADD and MUL instructions. Instructions are
of the form ADD Rx,Ry,Rz and MUL Rx,Ry.Rz, as discussed in class. Each instruction requires a Fetch cycle, a
Decode cycle, some number of Execution cycles (2 for ADD, 5 for MUL), and a final cycle to store the result into a
register and/or one or more reservation station entries that are waiting for the result. A result is available to subsequent
instructions after it is stored in a register or reservation station entry.

A program fragment, consisting of four instructions, is executed on this machine. The first instruction is fetched in
cycle 1. Your job: Complete the table below, i.e., the complete specification of the four instructions:

Instruction | Opcode DR SR1 SR2
1 |[dOD [R2 |Ro | B)
2 ML R% | R2 | R3
3 AD D R> | R> RI
4 |moL R RI| R

Information on the next page will help you identify the four instructions executed.

Name:

The following information is provided to help you specify completely the four instructions executed. The machine has
one adder and one multiplier, Neither 1s pipelined. Each has three reservation stations supplying it with instructions to
execute,

The adder and multiplier are in use only during the cycles containing an E in the table below:

1[2]3J4]S]e6[7[8[9JO[N2 3] 141516 17]
Adder E|E E

E
Multiplier | E|E|E|E|[|E|E|JE|E|E|E

The Register Alias Table before cycle 1 and after cycle 9 are shown below. Note that some entries are missing. Part of
your job is to fill them in.

V_ TAG VALUE ¥ TAG VALUE
(R0 [1 [~ [3 RO 1] T3
[R1 | 1 - | 4 el | o F B
R2 | = 0 R2 1 7
R3 1 5 L R3 0 =
Registers Before Cyele | Registers After Cycle 9

The contents of the Reservation stations after cycle 4. Note that reservation stations are assigned from the top down,
and that the topmost reservation station with both data entries valid is the next to be processed. Each instruction
remains in its reservation station until its result is stored. Note also that some entries are not filled in. It is also part of
your job to fill them in.

¥ TAO VALUE ¥V TaG VALUE ¥oOTAG WALLE ¥V TalO VaLLE
o[- [z [[4 o[- N—|%]"
Bllar [= N=|¢ i i] Mt

P L= |

——

. = X

Reservation Stations after Cycle 4

The contents of the Reservation stations after cycle 9. Note that some entries are not filled in. It is also part of your
job to fill them in,

VoOTAG VALUE WV TAG VALLE ¥ TAG YALUE ¥V TAG WVaLUE
o i =i | =] ||_— !:]_ 1| —]_u -| n
B D A~ Il = f-l— i — | 4 | | 4 T
] S I [R H CL =1 — 71— = |'®
_\!/— U T T
4 x

Reservation Stations after Cycle 9

Part b (5 points): The design of this machine was not particularly well suited to out-of-order execution. What simple
change would you make to it that would yield a lot more performance processing instructions out of program order
{20 words or fewer).

P]FK,;:\I.-LH?_ -\Sne_ mm\-hp'hw f_‘h“\a }m‘ QC‘}C\- ore

Ao 9\’1&,1‘ s

