
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 382N.19, Spring 2024
Y. N. Patt, Instructor
Ali Mansoorshahi, TA
Written Midterm
March 20, 2024

There are 16 problems on the exam. You are asked to solve ALL problems. Leaving a problem blank counts as 1

point.

Name: EID:

Problem 1: _______________

Problem 2: _______________

Problem 3: _______________

Problem 4: _______________

Problem 5: _______________

Problem 6: _______________

Problem 7: _______________

Problem 8: _______________

Problem 9: _______________

Problem 10: _______________

Problem 11: _______________

Problem 12: _______________

Problem 13: _______________

Problem 14: _______________

Problem 15: _______________

Problem 16: _______________

Total (100 points):___________

Please make your handwriting clear, legible, and use a dark enough pen or pencil that it is easily readable. If I

can not easily read your handwriting, the answer will be marked wrong. I apologize if you take this as

offense, but I think it is unreasonable to scribble on the exam and expect me to squint and struggle to

decipher your handwriting.

Note: Be sure to sign your name in the space below to acknowledge that you’ve read the instructions and will

not cheat on the exam. Please be sure your name is recorded on each sheet of the exam.

I WILL NOT CHEAT ON THIS EXAM

Signature:

GOOD LUCK!

Question 1.
We all know the importance of dependency checking. It is easy to check dependencies when the
number of locations is small (e.g. the register file), but becomes more difficult when the number
of locations is large, and each access can access multiple locations (e.g. memory). Still we have
to check dependencies.

We say two memory instructions are dependent if they access the same bytes. In order to check
this we need the starting address of the access, and the size of the access.

Your job: Finish the following verilog module on the next page that determines if two memory
accesses overlap.

module your_module (
input[31:0] addr0,
input[31:0] addr1,
input[2:0] size0, //size provided in bytes
input[2:0] size1,
output[0:0] is_dependent

)

You are allowed to use the following modules:
module comp_32b(leq, geq, in0, in1); // leq = 1 if in0 <= in1, 0 otherwise

// geq = 1 if in0 >= in1, 0 otherwise
module add_32b(out, in0, in1); // out = in0 + in2 (signed addition)
module mux2_1(out, in0, in1, sel); //1-bit 2 to 1 mux
Any basic logic gate (inverter, or, and, xor) you need

module your_module (
input[31:0] addr0,
input[31:0] addr1,
input[2:0] size0, //size provided in bytes
input[2:0] size1,
output[0:0] is_dependent

)

Question 2.
The contents of memory at starting location 0x3000 are shown below.

0x3000: 66 81 E2 81
0x3004: E2 81 E2 81
0x3008: E2 81 E2 0F
0x300C: 7F 04 CD 50
0x3010: 51 52 53

Note: Location 0x3000 contains x66, and location x3012 contains x53. The machine is running
with user privileges in 32-bit mode.

Your job: Decode the x86 instructions specified by these bytes. Show the exact address
calculation for any memory operand. Use M_32[] to indicate a 32 bit memory location.
Immediates, displacements, and literals should begin with the $ symbol. Shown below is some
example assembly. Please use this as a reference for notation.

OR M_32[(ES<<16) + EDX], $0x87654321
MOV AX, $0xAB87
DAA

Note: you may not need to use all the rows

Instruction Bytes Instruction

Question 3
One solution proposed for the branch prediction problem is to simply generate two pipelines, one
if the branch is taken, the other if the branch is not taken. In fact, IBM developed a product that
did that. Is it a good idea or a bad idea? EXPLAIN.

Question 4
The x86 ISA has a mechanism that gets rid of the need for a conditional branch at the end of
some "for loops." How does it work?

Question 5
Scott McFarling's gshare predictor improves over my GAg predictor. How?

Question 6

A Trace Cache element contains three basic blocks A,B,C, as shown, and the predictions for the
branches terminating each block. The next time (at t-one) that the Trace Cache access
corresponds to the starting address of A, the branch terminating B is predicted to fetch the block
D, rather than C, as shown. In my implementation of the Trace Cache, what does the
microarchitecture do with each block (A,B,C,D) at time t-one?

A: B: C: D:

Question 7
A major plus of the Block-Structured ISA is that it eliminates most accesses to the register file.
How is that possible?

Question 8
A wish branch can act like a normal branch or be turned into predication. This can be
accomplished by the compiler and microarchitecture working together. The compiler's job is to
determine whether predicating the branch can make sense. If the compiler determines that it can
make sense, it turns the branch into a wish branch. How does the compiler decide if it makes
sense? If the compiler turns the branch into a wish branch, the microarchitecture determines if
the branch should be predicted or predicated. How does the microarchitecture determine that?

How the compiler decides: How the microarchitecture determines:

Question 9
What benefit does a two-address ISA have over a three-address ISA? The x86 is a two-address
ISA. What problem results from this?

Benefits of two-address:

Problems with two-address:

Question 10
Consider an in-order pipeline. A common occurrence in programs is MUL R1,R2,R3 followed
by ADD R4,R5,R1. This requires a hardware interlock to prevent the stale contents of R1 to be
fetched as a source of the ADD instruction before R1 is written with the result of the MUL. The
MIPS R2 initially had no hardware interlocks. How did it prevent the microarchitecture from
using stale data from R1.

Question 11
Many would-be comparch experts promote performance as satisfying the equation: Performance
= 1/(N times CPI times t), where N is the number of instructions executed, CPI is cycles required
per instruction and t is cycle time. What tragic flaw is present in this equation? EXPLAIN!

Question 12
What is endianness? Part of the ISA or part of the microarchitecture?

Question 13
Intel has added 2MB and 1GB page sizes to the classic 4KB page size that has been around for
more than 40 years. What benefit does that provide to the microarchitecture? What negative
does it create?

Question 14
Most ISAs use condition codes to determine whether to take a conditional branch or use the fall
through path. A few ISAs use general purpose registers. What is the advantage of using
condition codes? What is the advantage of using general purpose registers?

Question 15
The industry has seen a few examples of machines that support two ISAs. IBM produced a
Power PC chip that allowed Power PC code and x86 code to run on it. DEC produced a VAX
machine that allowed VAX and PDP 11 code to run on it. What prompted these two companies
to allow two ISAs to execute on its machine?

Question 16
I have given the RISC V the nickname: buffet. Is the nickname appropriate? If yes, why? If not,
why not?

