Department of Electrical and Computer Engineering
The University of Texas at Austin

ECE 306 Fall 2025

Instructor: Yale N. Patt

TAs: Madeleine Dreher, Evan Lai, Luke Mason
Final Exam

Dec. 12th, 2025

Name and EID: SOLUTION
Part A: Part B:
Problem 1 (10 points): Problem 6 (25 points):
Problem 2 (10 points): Problem 7 (25 points):

Problem 3 (10 points):
Problem 4 (10 points):
Problem 5 (10 points):

Part A Total: Part B Total:

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required)
are contained in the space provided. Only legible answers will be graded.

Note: Please be sure your name is recorded on each sheet of the exam.
Please read the following sentence, and if you agree, sign where requested:

I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!
(Have a good winter break)

Name:

Problem 1 (10 points): Answer the two following questions about logic and transistor
circuits.

Part A (5 pts):
Look at the following logic circuit. It has two inputs A and B, and one output OUT. This
circuit will NOT be used in Part B of this question.

A

4) l

" —

;_} ouT
B{j* *{>‘*—J

Complete the truth table for the logic circuit. You DO NOT have to use all rows of the
truth table.

A B ouT
0 0 0
0 1 1
1 0 1
1 1 0

Name:

Part B (5 pts):

The following transistor circuit has two inputs A and B, and one output OUT.

Ay

*QUT

VoD
.y
B
Y
I~ B
. -

Complete the truth table for the transistor circuit. You DO NOT have to use all rows of

the truth table.
A B ouT
0 0 1
0 1 0
1 0 0

Name:

Problem 2 (10 points): Design a finite state machine (FSM) for a lock that opens when the user
enters the input 1101. The FSM receives one bit at a time as its input. Its output indicates
whether the lock is currently locked or unlocked. The initial state of the lock is the top left
state.

Before the correct sequence is entered, the lock is locked.
Once the sequence 1101 has been entered, the lock becomes unlocked, regardless of what
the previous inputs were.
a. Examples of a valid sequence include both ‘11101’ and 00001101°
After the lock is unlocked, the lock returns to the initial state after any input.
You may use as many states as you need.

Output: Locked

Name:

Problem 3 (10 points): With the current LC-3 datapath, suppose ADDRIMUX is broken
and always selects the BaseR input, NEVER passing the PC input through.

Your Job: For each of the instructions below, decide whether they would still execute
correctly given the broken ADDRIMUX. If they would, explain in fewer than 10 words.
If they would not, list the registers and/or memory locations that would end up with
incorrect values, as well as the incorrect value they would end up with.

Example: Incorrect, R7 would end up with Mem[BaseR]

STR RO R1 #0

It would execute correctly. STR uses BaseR to calculate
its address.

LDI R2 #5

It would execute incorrectly. LDI uses PC+offset9 to
calculate 1ts address.

R2 would end up with M[M[BaseR+5]]

Instead of M[M[PC+1+5]]

ADD R3 R3 #1

It would execute correctly, ADD doesn’t use an address.

BRnzp #-2

It would execute incorrectly. BR uses PC+offset9 to calculate
its address.

PC would end up with BaseR-2

Instead of PC+1-2

Name:

Problem 4 (10 points): The following program counts the number of elements in an array that
are equal to a value M. The program is given three inputs: the array length is stored in memory
location x4002, the target value M is stored in memory location x4000, and the base address of
the array is stored in memory location x4003. The program must compute and store the number
of elements equal to M in memory location x4001. Assume that the array contains at least one

element.

Part A (7 points): Complete the program by filling in the missing instructions.

Part B (3 points): Modify the program to count the number of array elements greater than M
by replacing a single instruction. Please cross out the original instruction and write your new

instruction next to it.

.ORIG x3000

LDT
LDT
LDT
AND

REP LDR
NOT

RO,
R1,
R2,
R4,

R3,
R3,

START
LENGTH
M

R4, {0

RO, {0
R3

| ADD R3, R3, #1

ADD R3, R3, R2
—BRAP—SKEP BRzp SKIP

| ADD R4, R4, #1

SKIP ADD RO, RO, i1
ADD R1, R1, #-1

BRp REP

STI R4, STORE
HALT

START
LENGTH

M

STORE

.FILL| x4003
JFILL[x4002]

.FILL[x4000]
JFILL[x4001]

Name:

Problem 5 (10 points): You are given the assembly language program shown below:

PRINT1
PRINT2
PRINT3
DONE

A

B

.ORIG
LD
NOT
ADD
LD
NOT
ADD
TRAP
ADD
BRz
ADD
BRz
BRnzp
TRAP
TRAP
TRAP
TRAP
.FILL
FILL
.END

x3000

R1, A

R1, R1

R1, R1, #1

R2, B

R2, R2

R2, R2, i1
x20

R3, RO, R2

PRINT1

R3, RO, R1

PRINTZ2

PRINT3
x21
x21
x21
x25

x41

x42

:GETC

;OUT

;OUT

;OUT

;HALT
;ASCII code for ‘A’
;ASCII code for ‘B’

Your Job: What does the program output in the scenarios provided below? Assume the User
types a character after GETC is called.

AA

User types the character ‘A’ on the keyboard

BBB

User types the character ‘B’ on the keyboard

C

User types the character ‘C’ on the keyboard

Name:

Problem 6 (25 points): Suppose we have two programs: a user program located at x3000 and
an interrupt service routine located at x1000. Both programs share access to the user stack,
whose stack pointer is stored in memory location x5000. Recall user stack begins at xFDFF.

The user program runs in an infinite loop, continuously checking the stack for new data. If it
determines that the stack is not empty, it pops the value from the top of the stack and outputs it to
the display. The keyboard interrupt service routine pushes the input character onto the stack.
Both the user program and the interrupt service routine are shown below.

User Program: op$ 2 bt bebee s prsisInterrupt Service Routine:
.ORIG x3000 s¢is mevd tol 3 .ORIG x1000
CHECK LD RO, EMPTY nhemph: ST RO, SAVE_O
LDI R1, SP — Si_) 3 ST R1, SAVE_1l
NOT RO, RO 9 =D ; LDI RO, KBDR
ADD RO, RO, #1’)._7-_ — | LDI R1, SP
ADD RO, RO, R1 ' — ADD R1, R1, #-1
BRz CHECK STR RO, R1, {0
S\’ao\f V“’+ LDR RO, R1, {0 STI R1, SP
et 0P TRAP x21 ; OUT LD RO, SAVE_O
Aorra ADD R1, R1, #1 > LD R1, SAVE_1
STI R1, SP RTI
BRnzp CHECK — 3
—z__ Sp .FILL x5000
SP FILL x5000 SY =) KBDR .FILL xFEO2
EMPTY .FILL XFEQO® ws pregfam Faishs SAVE_O .BLKW 41
_END vpdeking S 4o\, SAVE_1 .BLKW #1
3 is i ¥le remy plocc. .END

Part A (10 points): Each program functions correctly alone. However, a problem sometimes
arises depending on when the interrupt happens with respect to the user program. Describe the
sequence of events that leads to this problem. Assume that the interrupt service routine cannot be
interrupted.

Kt the uwce prosm dekemines thok ti skock isut emphy it

peps dote fron. Ti< stock and ow}rw‘rs A omedifes He P
bw‘\’ before con 5“'&’(— (‘\’ back +o Xgooo'/'H't ISB s au;‘
\oods He LD valire of SP.IF pusls dota oo th shuck ot mpdq‘fs SP

4o x560C. When Hee usc pregrom mn3 “5““’, & will ":M\S\/\ u‘oc\‘*"”"j lve SP.NoW/
He ntw Ao thot the (SR pnsl«e\ is in He e sf’°+ with rcs‘;ed' bo +ix SP.

THE PROBLEM CONTINUES ON THE NEXT PAGE

Name:

Part B (12 points): Complete the two routines that would solve this problem. The first blank
instruction in the user program represents a call to ROUTINE 1, while the second blank
instruction in the user program represents a call to ROUTINE 2.

Bebre | must enalde MJ'“”“PFSJ Lefs ROUTINE_1

P"""A“"s inH’Y ﬁ-e“' ?t('vicc& (of-P-w.rt Py Z_po
SAVE -
Ve lca& -P'(’MM xSoeec ST e,\ll SwE -H)

honbre 2 must disabl inl-vrup"sfpﬁwwjry LoT Ao kBSA)
\cew\acan& foubne o inl—tmn‘o‘s'ws H~ Lo B\, MASEK set |(g;g,[m)
sl progfam be fece it has MPo\q*l"A o SP, ANO ﬁc/ﬁofﬁ)
NeT A1 A
APD e, e, B |
STL Ro, K8sh 9

Lo Ao, SAVE _ e

User Program:

.ORIG x3000 Lo Al SAVE_A
HhTL
CHECK |
| KBSR .FILL xFE@®
MASK .FILL xBFFF
SAVE_O .BLKW 1
LD RO, EMPTY SAVE_1 .BLKW 1
LDI R1, SP
NOT RO, RO ROUTINE 2
ADD RO, RO, #1
ADD RO, RO, R1 ST Ae, SAVE_Ao
BRz CHECK &\ SwE B
LDR RO, R1, #0 7B\ Skt -
XSSPRzlei Oﬁl Lo ho)cBSA or
STT R1, SP Lo #\, mask o o)
, (
BRnzp CHECK ANO mo Ao f) ik shL
STL ho, Kbsh
Sp FILL x5000
EMPTY .FILL xFE@O

.END
LD Ao SAVE_me
Moia 0¢o. Load SP 4/»19.\‘.10\1 SP > St SP Lo Al SAVE -~
Must bhe (Xfwﬂrf& as o Sinslf/ mdivisibl sl-tp. hTT

This means thek & cANNCT 8Z (NTERRUPTED.|KBSR .FILL xFEG®
MASK .FILL xBFFF
SAVE_O .BLKW 1
SAVE_1 .BLKW 1

THE PROBLEM CONTINUES ON THE NEXT PAGE

Name:

Part C (3 points): Should ROUTINE 1 and ROUTINE 2 be implemented as regular
subroutines that are invoked with JSR or JSRR, or should they be implemented as new TRAP

routines that are invoked with a TRAP instruction? Explain your answer in 20 words or fewer.

TAAP. Both roubines must occess lcBsA, Alhidh resides in

{151--”% 5Y’°’"‘ So AOVAING -\ and BOVIWWE-2 mvd’ extewke in Pnn\'ﬂ)cA modg.

10

Name:

Problem 7 (25 points): A new instruction, MYSTERY, is added to the LC3. We don’t know
what this instruction does, but we know these things are true:

MYSTERY replaces the STI instruction in the ISA and uses the same opcode.
An exception occurs if MYSTERY is executed in unprivileged mode (user mode).
Memory is accessed three times during the full instruction cycle of MYSTERY.
The addition of MYSTERY adds no more than 7 new states.

B o

MYSTERY instruction is executed at PC=x1000, and you record some signals on certain cycles.
8 measurements are taken during the full instructions cycle of MYSTERY. You don’t know on
what cycles these measurements are taken, but you know they are in chronological order.

Measurement #1: GatePC/1, LD.MAR/1

Measurement #2: IRD/1

Measurement #3: COND2/1 (CONDI1 and CONDO unknown)

Measurement #4: LD.MAR/1, BUS =x2345, ADDR2MUX/ZERO
Measurement #5: LD.MDR/1, All gate signals are 0

Measurement #6: GateMARMUX/1, MARMUX/ZEXT(IR[7:0]), LD.MAR/1
Measurement #7: R.W/Write

Measurement #8: J/18, all other control signals are 0, Current State = 63

Part A (5 points): In under 15 words, describe the purpose of this instruction:

Stores address at location specified by BaseR into the trap vector table at ZEXT(IR[7:0])
(In other words: create new trap instruction with vector IR[7:0] with trap routine at M[BaseR])

How to arrive at this answer:
M2 must be state 32.
M1 then must be state 18. So, these are not useful to us.
M3 COND2/1 means we’re checking ACV, PSR[15], or INT
- There aren’t enough added states (we’re given it’s <= 7 new states) to set ACV and use
that for exception checking. PSR[15] is the easier option and fits the criteria. If you
used ACV you may receive partial credit if used correctly.
M4 tells us we must output BaseR to bus, rather than PC because we know PC is x1000
M35 is loading into MDR, but it must not be from the bus since we aren’t putting anything on
the bus. This must be one of the memory cycle states.
M6 Now we load the trap vector into MAR
M7 must be a memory cycle state where we write - we store x2345 into the trap table with this
MBS is state 63 and does nothing, simply returning back to state 18.

THE PROBLEM CONTINUES ON THE NEXT PAGE

11

Name:

Part B (11 points): Draw the sequence of states that is added for this instruction, beginning with
the arrow from state 32. You are allowed to use any of the following unused state numbers: 11,
19, 29, 31, 50, 58, 61, 62, and 63. If you go to a state that already exists, draw an arrow labeled
“To state #X”, where X is the state number.

i- State 32
BEN=—IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12])
MYSTERY
11 50
p
0 -
[PSR[15]]

'H"“# MAR « SR1

/ ;
1 Ky 29
Y
- >
/a .

MDR «— M[MAR] '|
Table «— x01 J
Vector — x00 \ T
MDR « PSR R
PSR[15] — 0 P Y kY
/
f MAR « ZEXT(IR[7:0])
To state 45
A
‘!. 61
~R '
'
(M[MAR] «— MDR
\-HH"' et
l\-\- T
| R
'| 63
)
iTo state 18
Do nothing

THE PROBLEM CONTINUES ON THE NEXT PAGE

12

Name:

Part B explanation: Opcode is 11, so we arrive at state 11 from state 32 due to IRD. We must
check for privilege, else cause an exception. If PSR[15] is set, we are in user mode, so go to state
58 to set up privilege exception (copy of state 44 from RTI). Otherwise, go to state 50 to
continue the instruction. We must use state 58 and 50 here because checking PSR[15] overrides
J[3] in the uSequencer to be 1, effectively adding 8 to the J bits (50 — 58). From part A, we
know the other 5 states. The two memory access state pairs must be 29—31 and 61—63
respectively, because we are given that the last state must be 63, and we need to use those pairs
of states for memory accesses (similar to how uSequencer handles PSR[15] checking, except
checking for R bit overrides J[2]). Lastly, go to state 18.

Other innovative ideas will receive partial credit. For example:

- Using ACV to check privilege, after loading MAR with the trap vector (which would be
in privileged space), or even after loading MAR with the BaseR (which, if using good
security practice, would also be in privileged space). I don’t think this works out with the
state numbers given, but I will give partial credit to those who attempted it, and maybe
I’1l be proven wrong!

- Rerouting 31 to state 16 rather than including 61 and 63 at all. Technically the problem
description forces there to be a state 63 that does nothing before returning to state 18.
But, for reasons discussed in part D, it would not be a bad implementation to make 31 go
to 16, although ruled out by the problem constraints.

Part C (5 points): Assuming each memory access takes 5 cycles, how many cycles does
MYSTERY take to execute in this case, from state 18 until state 18 is reached again?

23 (32 if there is a privilege error)
If there is a privilege error, you would count the states all the way through the context switch
until back to state 18.

13

Name:

Part D (4 points): To improve the performance of MYSTERY, state 63 can be changed to do
something different. Fill in the diagram below for the new state 63 and draw/label any state
transition arrows to/from other states.

The reason we have state 63 doing nothing in part B is because there is no way to return to state
18 immediately after a memory write. The microsequencer could only accomplish that if the
memory cycle was on state 16, so when R is ready we would go to 18. However, state 16 already
exists and does exactly that. Instead, make 63 have the same functionality as state 18 itself, and
skip 18 afterward!

From the same line of thought, you can do even better. Instead of having state 61 and state 63 at
all, simply go from state 31 to state 16. This would be a clever solution on this exam, although it
was not expected since the beginning of the problem is constrained to do it the exact method
above with state 63

From state 61

63

4 N\
PC —PC +1
MAR «— PC
set ACV
[INT]

To state 49
To state 33

v

This page is left blank intentionally. Feel free to use it for scratch work.
You may tear the page off if you wish.
Nothing on this page will be considered for grading.

14

