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Outline

The ISA -- What is it?

— The interface between hardware and software
— A specification

— NOT microarchitecture

— NOT just the instruction set

The Instruction
— The atomic unit of processing
— Changes the state of the machine

Characteristics of an ISA (using LC-3b as an example)
The LC-3b instruction set

Other ISAs
— X86
— RISCV

ISA Tradeoffs (with exambples)



What is the ISA?

» A specification
— The interface between hardware and software

A contract
— What the software demands
— What the hardware agrees to deliver



NOT Microarchitecture

« Architecture
— Software Visible
— Address Space, Addressability
— Opcodes, Data Types, Addressing Modes
— Privilege, Priority
— Support for Multiprocessors (e.g., TSET)
— Support for Multiprogramming (e.g., LDCTX)

 Microarchitecture
— Not Software Visible
— Caches (although this has changed, ...sort of)
— Branch Prediction
— The instruction cycle
— Pipelining

DIGRESSION (nugget): You have a brilliant idea, and
It requires a change to the ISA or to the uarchitecture.



Another DIGRESSION (nugget)

 The pure distinction between ISA vs uarchitecture
— ISA is visible to the software
— Microarchitecture is “underneath the hood”

« BUT some have noticed that...
— If you let the compiler know how the ISA is implemented,
— i.e., if you break the walls between the transformation levels,
— You can produce better code for that implementation
— ...at the expense of compatibility

« Today, with the impending demise of Moore’s Law,
— Computer Architecture is looking for ways to still be relevant
— I have been preaching: Break the layers!
— MIT recent white paper: “There is plenty of room at the top!”



Characteristics of an ISA (e.qg., the LC-3b)

Processor State (memory, registers)
— Memory addressability: byte
— Memory address space: 2*16
— Registers: 8 GPR, Condition Codes N, Z, P
— Word length: 16 bits
— Program Counter (Actually, Instruction pointer)
— Process Status Register (contains Privilege, Priority, CC)

Privilege: 2 levels, supervisor, user

Priority: 8 levels

Instruction format: fixed length, uniform decode. 16 bits

— Flynn’s observation: Two or three lengths better than all the same
Endian-ness: little endian

Instructions (opcode, addressing mode, data type)

— Opcode (14 opcodes, including XOR, SHF, LDB)

— Addressing modes (PC-relative, Register + offset)

— Data types (2’s complement 16 bit integers, bit vector)
— Three-address machine (L. oad/Store ISA)



The LC-3b Instruction Set

15 14 13 12 11 0 ¢ & 7 4 5

ADD" ‘ 0001 | DR ‘ SRI M 00 ‘ ‘
ADD’ ‘ 0001 | DR ‘ SRI ‘ 1 ‘ |mm5 |
+ T T T T T T T T
AND \ 0101 | DR ‘ SR1 ‘ul 00 SR2 ‘
+ T T T T T T T T T T T
AND [ 0101 | DR } SRI ‘ 1 ‘ imms |
BR \ 0000 |n‘z|p‘ PCoffseNP |
1 L 1 L 1 1 1 L L 1 1
JMP [ 1100 | 000 BaseR ‘ oooooo |
T T T T T T T T T [ T l T
JSR [ 0100 | 1 ‘ PCoffset1] |
JSRR \ 0100 |0‘ 0 ‘ BaseR ‘ 000000 |
LDB [ 0010 | DR } BaseR ‘ boftset |
LDW* 0110 | DR ‘ BaseR ‘ offsete |
LEA ’ 110 | DR ‘ PCoffsew |
NOT ‘ 1001 | DR ‘ ‘ 1 ‘ nm ‘
RET \ 1100 | ooo ‘ ‘ oooooo |
RTI [ 1000 | 000000000000 |
LSHF " l 1101 | DR ‘ ‘0|0| umounM |
RSHFL ‘ 1101 | DR ‘ ‘0‘ || amountd |
RSHFA' [ 1101 | DR } SR ‘ 1 ’ 1 | amountd |
STB \ 0011 | ‘ BaseR ‘ boffset6 |
1 L 1 L 1 L 11 1
STW ‘ ol | BaseR ‘ offsehﬁ |
TRAP | 1 | 0000 ‘ trapvect8 |
L L 1 1 il L 1 L 1 L L il 1
XOR ‘ 1001 | DR SR1 ‘n‘ 00 ‘ s;zz ‘
XOR \ 1001 | DR ‘ SR ‘ 1 ‘ imm5 ‘
not used | 1010 | |
not used | 1011 | |




Pragmas (aka Pseudo-ops)

* Not part of the instruction set
— Not executed by the computer

 Messages from the programmer to the translater
— Necessary for the translater to produce object code
— Opportunity for programmer to affect performance (e.q., hints)



Characteristics of an ISA (continued)

Vector architecture (instructions, operands)
— Not part of the LC-3b

Virtual memory specification: not yet part of LC-3b!
— Address space

— Translation mechanism

— Protection

— Page size

System architecture
— State to deal with: trap vector table, interrupt vector table

— Interrupt, exception handling
— Instructions for the O/S to use (RTI)

NOT the instruction cycle (that is part of the uarch)



x86

« Variable length instruction (one byte to 16 bytes)

Prefix 1

Prefix2 | Prefix3 | Prefix4 | Opcode [Opcode 2| ModR/M | SIB | Address

Immed

T

up to 4 bytes

Characteristics

Rich set of addressing modes

Two-address machine

SSE extension (originally, MMX)

Not load/store

Three page sizes (4KB, 2MB, 1GB)

Register sizes: 8b, 16b, 32b, 64b, 128b, ...
Example: AH, Ax, EAX, ...

Memory: Byte addressable, 64 bit address space

I




RISCV

The 5% chip from Professor David Patterson’s group

UC Berkeley
Nothing (really) in common with their other four risc chips

Mostly handled by Professor Krste Asonovic

Major selling point: Open Source

Overall structure

Multiple subset ISAs (Integer, Float, MUL/DIV, Atomic, etc.)
Designers build their own system, picking and choosing
MUST contain one of the Integer subsets (32-bit or 64-bit)
The rest (extensions) are up to the designer



RISCYV (characteristics)

 The subsets
— Integer: 32-bit (RV32l), 64-bit (RV64l), 128-bit (RV128I)
— Float extension: 32-bit (RV32F), 64-bit (RV64D), 128-bit (RV128Q)
— M extension: Integer MUL/DIV
— A extension: Atomic instructions
— L extension: Decimal float
— C extension: Compressed
— B extension: Bit manipulation
— J extension: Dynamically translated
— T extension: Transactional memory
— P extension: Packed SIMD
— V extension: Vector operations
— E extension: Embedded Controller (RV32E)
— G extension: A system, really (IMAFD)



RISCYV Characteristics (continued)

RV32I (32 bit Integer data type)
— 47 distinct opcodes (

» loads, stores, shifts, arith, logic, compare, branch, jump, synch, count
— 32 GPRs (x0 to x31, x0=0, x1 used for call return linkage)
— Also contains a PC

— 32 bit instructions
« Can be extended by a multiple of n bits
* Mixture allows for unaligned access
» Also allows for 16 bit instructions, but then restricted to 8 registers

— 4 basic instruction formats N e e il .
R [ Fowert 7 l{(szl s Llfur‘(j‘ RO | cpPcopa ]

mepiace o ]| 251 MM_%J

— Other 1 |[m 1 =

. [ H ‘lMP(CD (iv:s7 ‘IZ‘SZ-FZ.% { ]Fu,.crglmﬂ[h:s pPcoDE
Little endian 5 = =1 e——

 Load/Store Ul  Imnelsuiz® [ep | )

* No predication
e Conditional branches use GPR<s not condition codes



ISA Tradeoffs (examples)

 Dynamic-Static Interface (The Semantic Gap)
« ISA closer to the HLL
« [ISA closer to the control signals

- ISA-level CAPABILITY (aka “Security”)

 instructions included privilege needed
* Intel 432, IBM System 38, Data General Fountainhead
« All failed! Why? Performance was very slow

 PREDICATION
« x86 CMOV, ARM inst[31:28], THUMB IT block

 Support for multiple ISAs on the same chip
« ARM T bit, VAX Compatibility mode bit
* Both in the PSR, making it part of the ISA.



ISA Tradeoffs (continued)

* REGISTER SET -- how many reg, how many bits each
 Many machines: 32 32-bit registers
 More registers save spills to memory, but longer context switch
 x86 now has 512-bit registers
« Itanium has 1-bit predicate registers
* Register window (SPARC ISA) vs set of gprs

« Condition codes vs gprs. (MIPS, CDC6600 used gprs)

« Serialization of code vs getting something done for nothing
« John Cocke RS6000 -- 8 sets of 4 condition codes each

* RICH INSTRUCTION SET vs. LEAN INSTRUCTION SET
* Hewlett-Packard: HPPA RISC had 140 opcodes
 So much for RISC being a small set of instructions!



ISA Tradeoffs (continued)

Do we include complex instructions (faster, but more gates)
« EDITPC -- for COBOL
 INDEX -- for Fortran
- AOBLEQ -- For loop
« LDCTX/SAVCTX -- to swap in/out context needed for next quantum
» Test and Set (an Atomic operation) — for multiprocessing
» CALL -- formal procedure call
 more work, but cleaner interface to libraries
« In addition to JSR (quick and simple)
* FF -- find first
 INSQUE/REMQUE -- doubly linked list data type
 TRIADS - example: MAC (multiply accumulate)
« CHMD -- to change privilege mode



ISA Tradeoffs (continued)

INST SET Orthogonal vs Tailoring to each opcode

LOAD/STORE vs NOT Load/Store

Load/Store: Can’t access storage and operate in same instruction

« LC-3bis load/store, x86 is not
« Load/Store had more importance before 0-0-0 processing

MEMORY ADDRESS SPACE -- keeps getting larger

MEMORY ADDRESSABILITY -- depends on needs

 Most memories: byte addressable (for data processing)
« Scientific machines -- 64 bits
« Burroughs 1700 -- one bit (needed for virtual machines)



ISA Tradeoffs (continued)

 VLIW (compile time) vs. Superscalar (do it at runtime)

Compile time in ISA, runtime is uarchitecture (Superscalar)
VLIW: Hard to find enough instructions to fill the long word,
VLIW is fast because there are no dependencies at runtime.
Examples Multiflow, cydra five

Itanium 3 in one VLIW, but allows for dependencies

« 0,1,2,3 address machines. 3 addresses are needed.
How many have to be explicit?

0. stack machine: pop, pop, compute, push
1. one accumulator when reg were expensive AC € AC + Memory

« 2.two. X86 (Rd € Rd op Rx)
« 3. LD/ST all three are explicit Rd €< Rs1 op Rs2 (LC-3b)

VAX ISA had both 2-address and 3-address



ISA Tradeoffs (continued)

 Word length (max size processed as a unit)

« VAX 32 bits, x86 initially 16 bits, then 32, today 64;
e CRAY-1 64bits

« DEC System 20, an Al Machine. LISP’s car, cdr needed 36 bits

* Help for the programmer or help for the microarchitect

« Aligned vs. unaligned accesses easier — who gets the easy job?
« PDP11 NO, VAX YES, ALPHA NO

« Data types; int, float, bitvector, char string, doubly linked list
» Addressing modes; indirect, index, autoinc/autodec/ SIB byte



ISA Tradeoffs (continued)

« PAGE SIZE
* (4KB vs more than one size
 Intel has 3three: 4KBm 2MB, 1GB)
* Faruk has all sizes 2"n for n greater or equal to 12
» Efficient use of TLB, vs. Wasted space
» Better use of TLB (fewer PTEs) vs. wasted space
« Too many PTEs vs longer access time

* 1/O architecture
 Today most use memory mapped I/O with LD,ST

 OLD days, special I/O instructions
« x86 still has both

« Compile time vs run time
* MIPS use of NOPS rather than hardware interlocks



ISA Tradeoffs (continued)

 Synch vs Asynch

* Instruction format:
» Most: fixed length, uniform decode (easier multiple decode)
« X86: variable length more work done per instruction)
« Intel 432: different sizes for different opcodes (Nightmare!)

« SPEED DEMONS vs. BRAINIACS
» Alpha: Speed demon, 200 MHz;
 Pentium: Brainiac, 66 MHz



Obrigado!!
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