Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 2: The ISA

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2025

Outline

The ISA -- What is it?

— The interface between hardware and software
— A specification

— NOT microarchitecture

— NOT just the instruction set

The Instruction
— The atomic unit of processing
— Changes the state of the machine

Characteristics of an ISA (using LC-3b as an example)
The LC-3b instruction set

Other ISAs
— X86
— RISCV

ISA Tradeoffs (with exambples)

What is the ISA?

» A specification
— The interface between hardware and software

A contract
— What the software demands
— What the hardware agrees to deliver

NOT Microarchitecture

« Architecture
— Software Visible
— Address Space, Addressability
— Opcodes, Data Types, Addressing Modes
— Privilege, Priority
— Support for Multiprocessors (e.g., TSET)
— Support for Multiprogramming (e.g., LDCTX)

 Microarchitecture
— Not Software Visible
— Caches (although this has changed, ...sort of)
— Branch Prediction
— The instruction cycle
— Pipelining

DIGRESSION (nugget): You have a brilliant idea, and
It requires a change to the ISA or to the uarchitecture.

Another DIGRESSION (nugget)

 The pure distinction between ISA vs uarchitecture
— ISA is visible to the software
— Microarchitecture is “underneath the hood”

« BUT some have noticed that...
— If you let the compiler know how the ISA is implemented,
— i.e., if you break the walls between the transformation levels,
— You can produce better code for that implementation
— ...at the expense of compatibility

« Today, with the impending demise of Moore’s Law,
— Computer Architecture is looking for ways to still be relevant
— I have been preaching: Break the layers!
— MIT recent white paper: “There is plenty of room at the top!”

Characteristics of an ISA (e.qg., the LC-3b)

Processor State (memory, registers)
— Memory addressability: byte
— Memory address space: 2*16
— Registers: 8 GPR, Condition Codes N, Z, P
— Word length: 16 bits
— Program Counter (Actually, Instruction pointer)
— Process Status Register (contains Privilege, Priority, CC)

Privilege: 2 levels, supervisor, user

Priority: 8 levels

Instruction format: fixed length, uniform decode. 16 bits

— Flynn’s observation: Two or three lengths better than all the same
Endian-ness: little endian

Instructions (opcode, addressing mode, data type)

— Opcode (14 opcodes, including XOR, SHF, LDB)

— Addressing modes (PC-relative, Register + offset)

— Data types (2’s complement 16 bit integers, bit vector)
— Three-address machine (L. oad/Store ISA)

The LC-3b Instruction Set

15 14 13 12 11 0 ¢ & 7 4 5

ADD" ‘ 0001 | DR ‘ SRI M 00 ‘ ‘
ADD’ ‘ 0001 | DR ‘ SRI ‘ 1 ‘ |mm5 |
+ T T T T T T T T
AND \ 0101 | DR ‘ SR1 ‘ul 00 SR2 ‘
+ T T T T T T T T T T T
AND [0101 | DR } SRI ‘ 1 ‘ imms |
BR \ 0000 |n‘z|p‘ PCoffseNP |
1 L 1 L 1 1 1 L L 1 1
JMP [1100 | 000 BaseR ‘ oooooo |
T T T T T T T T T [T l T
JSR [0100 | 1 ‘ PCoffset1] |
JSRR \ 0100 |0‘ 0 ‘ BaseR ‘ 000000 |
LDB [0010 | DR } BaseR ‘ boftset |
LDW* 0110 | DR ‘ BaseR ‘ offsete |
LEA ’ 110 | DR ‘ PCoffsew |
NOT ‘ 1001 | DR ‘ ‘ 1 ‘ nm ‘
RET \ 1100 | ooo ‘ ‘ oooooo |
RTI [1000 | 000000000000 |
LSHF " l 1101 | DR ‘ ‘0|0| umounM |
RSHFL ‘ 1101 | DR ‘ ‘0‘ || amountd |
RSHFA' [1101 | DR } SR ‘ 1 ’ 1 | amountd |
STB \ 0011 | ‘ BaseR ‘ boffset6 |
1 L 1 L 1 L 11 1
STW ‘ ol | BaseR ‘ offsehﬁ |
TRAP | 1 | 0000 ‘ trapvect8 |
L L 1 1 il L 1 L 1 L L il 1
XOR ‘ 1001 | DR SR1 ‘n‘ 00 ‘ s;zz ‘
XOR \ 1001 | DR ‘ SR ‘ 1 ‘ imm5 ‘
not used | 1010 | |
not used | 1011 | |

Pragmas (aka Pseudo-ops)

* Not part of the instruction set
— Not executed by the computer

 Messages from the programmer to the translater
— Necessary for the translater to produce object code
— Opportunity for programmer to affect performance (e.q., hints)

Characteristics of an ISA (continued)

Vector architecture (instructions, operands)
— Not part of the LC-3b

Virtual memory specification: not yet part of LC-3b!
— Address space

— Translation mechanism

— Protection

— Page size

System architecture
— State to deal with: trap vector table, interrupt vector table

— Interrupt, exception handling
— Instructions for the O/S to use (RTI)

NOT the instruction cycle (that is part of the uarch)

x86

« Variable length instruction (one byte to 16 bytes)

Prefix 1

Prefix2 | Prefix3 | Prefix4 | Opcode [Opcode 2| ModR/M | SIB | Address

Immed

T

up to 4 bytes

Characteristics

Rich set of addressing modes

Two-address machine

SSE extension (originally, MMX)

Not load/store

Three page sizes (4KB, 2MB, 1GB)

Register sizes: 8b, 16b, 32b, 64b, 128b, ...
Example: AH, Ax, EAX, ...

Memory: Byte addressable, 64 bit address space

I

RISCV

The 5% chip from Professor David Patterson’s group

UC Berkeley
Nothing (really) in common with their other four risc chips

Mostly handled by Professor Krste Asonovic

Major selling point: Open Source

Overall structure

Multiple subset ISAs (Integer, Float, MUL/DIV, Atomic, etc.)
Designers build their own system, picking and choosing
MUST contain one of the Integer subsets (32-bit or 64-bit)
The rest (extensions) are up to the designer

RISCYV (characteristics)

 The subsets
— Integer: 32-bit (RV32l), 64-bit (RV64l), 128-bit (RV128I)
— Float extension: 32-bit (RV32F), 64-bit (RV64D), 128-bit (RV128Q)
— M extension: Integer MUL/DIV
— A extension: Atomic instructions
— L extension: Decimal float
— C extension: Compressed
— B extension: Bit manipulation
— J extension: Dynamically translated
— T extension: Transactional memory
— P extension: Packed SIMD
— V extension: Vector operations
— E extension: Embedded Controller (RV32E)
— G extension: A system, really (IMAFD)

RISCYV Characteristics (continued)

RV32I (32 bit Integer data type)
— 47 distinct opcodes (

» loads, stores, shifts, arith, logic, compare, branch, jump, synch, count
— 32 GPRs (x0 to x31, x0=0, x1 used for call return linkage)
— Also contains a PC

— 32 bit instructions
« Can be extended by a multiple of n bits
* Mixture allows for unaligned access
» Also allows for 16 bit instructions, but then restricted to 8 registers

— 4 basic instruction formats N e e il .
R [Fowert 7 l{(szl s Llfur‘(j‘ RO | cpPcopa]

mepiace o]| 251 MM_%J

— Other 1 |[m 1 =

. [H ‘lMP(CD (iv:s7 ‘IZ‘SZ-FZ.% {]Fu,.crglmﬂ[h:s pPcoDE
Little endian 5 = =1 e——

 Load/Store Ul Imnelsuiz® [ep |)

* No predication
e Conditional branches use GPR<s not condition codes

ISA Tradeoffs (examples)

 Dynamic-Static Interface (The Semantic Gap)
« ISA closer to the HLL
« [ISA closer to the control signals

- ISA-level CAPABILITY (aka “Security”)

 instructions included privilege needed
* Intel 432, IBM System 38, Data General Fountainhead
« All failed! Why? Performance was very slow

 PREDICATION
« x86 CMOV, ARM inst[31:28], THUMB IT block

 Support for multiple ISAs on the same chip
« ARM T bit, VAX Compatibility mode bit
* Both in the PSR, making it part of the ISA.

ISA Tradeoffs (continued)

* REGISTER SET -- how many reg, how many bits each
 Many machines: 32 32-bit registers
 More registers save spills to memory, but longer context switch
 x86 now has 512-bit registers
« Itanium has 1-bit predicate registers
* Register window (SPARC ISA) vs set of gprs

« Condition codes vs gprs. (MIPS, CDC6600 used gprs)

« Serialization of code vs getting something done for nothing
« John Cocke RS6000 -- 8 sets of 4 condition codes each

* RICH INSTRUCTION SET vs. LEAN INSTRUCTION SET
* Hewlett-Packard: HPPA RISC had 140 opcodes
 So much for RISC being a small set of instructions!

ISA Tradeoffs (continued)

Do we include complex instructions (faster, but more gates)
« EDITPC -- for COBOL
 INDEX -- for Fortran
- AOBLEQ -- For loop
« LDCTX/SAVCTX -- to swap in/out context needed for next quantum
» Test and Set (an Atomic operation) — for multiprocessing
» CALL -- formal procedure call
 more work, but cleaner interface to libraries
« In addition to JSR (quick and simple)
* FF -- find first
 INSQUE/REMQUE -- doubly linked list data type
 TRIADS - example: MAC (multiply accumulate)
« CHMD -- to change privilege mode

ISA Tradeoffs (continued)

INST SET Orthogonal vs Tailoring to each opcode

LOAD/STORE vs NOT Load/Store

Load/Store: Can’t access storage and operate in same instruction

« LC-3bis load/store, x86 is not
« Load/Store had more importance before 0-0-0 processing

MEMORY ADDRESS SPACE -- keeps getting larger

MEMORY ADDRESSABILITY -- depends on needs

 Most memories: byte addressable (for data processing)
« Scientific machines -- 64 bits
« Burroughs 1700 -- one bit (needed for virtual machines)

ISA Tradeoffs (continued)

 VLIW (compile time) vs. Superscalar (do it at runtime)

Compile time in ISA, runtime is uarchitecture (Superscalar)
VLIW: Hard to find enough instructions to fill the long word,
VLIW is fast because there are no dependencies at runtime.
Examples Multiflow, cydra five

Itanium 3 in one VLIW, but allows for dependencies

« 0,1,2,3 address machines. 3 addresses are needed.
How many have to be explicit?

0. stack machine: pop, pop, compute, push
1. one accumulator when reg were expensive AC € AC + Memory

« 2.two. X86 (Rd € Rd op Rx)
« 3. LD/ST all three are explicit Rd €< Rs1 op Rs2 (LC-3b)

VAX ISA had both 2-address and 3-address

ISA Tradeoffs (continued)

 Word length (max size processed as a unit)

« VAX 32 bits, x86 initially 16 bits, then 32, today 64;
e CRAY-1 64bits

« DEC System 20, an Al Machine. LISP’s car, cdr needed 36 bits

* Help for the programmer or help for the microarchitect

« Aligned vs. unaligned accesses easier — who gets the easy job?
« PDP11 NO, VAX YES, ALPHA NO

« Data types; int, float, bitvector, char string, doubly linked list
» Addressing modes; indirect, index, autoinc/autodec/ SIB byte

ISA Tradeoffs (continued)

« PAGE SIZE
* (4KB vs more than one size
 Intel has 3three: 4KBm 2MB, 1GB)
* Faruk has all sizes 2"n for n greater or equal to 12
» Efficient use of TLB, vs. Wasted space
» Better use of TLB (fewer PTEs) vs. wasted space
« Too many PTEs vs longer access time

* 1/O architecture
 Today most use memory mapped I/O with LD,ST

 OLD days, special I/O instructions
« x86 still has both

« Compile time vs run time
* MIPS use of NOPS rather than hardware interlocks

ISA Tradeoffs (continued)

 Synch vs Asynch

* Instruction format:
» Most: fixed length, uniform decode (easier multiple decode)
« X86: variable length more work done per instruction)
« Intel 432: different sizes for different opcodes (Nightmare!)

« SPEED DEMONS vs. BRAINIACS
» Alpha: Speed demon, 200 MHz;
 Pentium: Brainiac, 66 MHz

Obrigado!!

	Computer Architecture: �Fundamentals, Tradeoffs, Challenges��Chapter 2: The ISA
	Outline
	What is the ISA?
	NOT Microarchitecture
	Another DIGRESSION (nugget)
	Characteristics of an ISA (e.g., the LC-3b)
	The LC-3b Instruction Set
	Pragmas (aka Pseudo-ops)
	Characteristics of an ISA (continued)
	x86
	RISCV
	RISCV (characteristics)
	RISCV Characteristics (continued)
	ISA Tradeoffs (examples)
	ISA Tradeoffs (continued)
	ISA Tradeoffs (continued)
	ISA Tradeoffs (continued)
	ISA Tradeoffs (continued)
	ISA Tradeoffs (continued)
	ISA Tradeoffs (continued)
	ISA Tradeoffs (continued)
	Obrigado!!

