Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 7: Virtual Memory

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2025

Outline

Virtual Memory Characteristics

Pages and Page Tables

Access Control and Translation

Case 1: Process Page Table in physical memory

Case 2: Process Page Table in system virtual memory
Layout of VAX Virtual Memory

How do we process: LD R1, X

A complete example

The Translation Lookaside Buffer (TLB)

Granularity (i.e., page size) of memory that is transferred

Virtual Memory

ISA has a large virtual address (VA) space
— Allows the user program to uniquely identify all objects
— Required memory space partitioned into pages

Physical memory is usually smaller
— It is shared among all processes in the Balance Set
— Granularity is the frame. One resident page occupies one frame

Virtual memory management does two things
— Access Control and Translation

Requires cooperation of Architecture and O/S

— Microarchitecture provides the structures
« And executes the actual protection and translation code

— Operating System manages the memory
« What is resident (i.e., in physical memory), what is on the disk
 What gets kicked out of memory to handle page faults

The Page Table Entry (PTE)
(A descriptor for each page)

Access Control and Translate

Access Control

oy (KE3 90— Loare
pccsss (No, 1T T e—

Translation
VA ‘W‘

Three Concepts

« The Process
— Granularity of process space is a page. Process consists of n pages.
— All are on the disk, some (the working set) are in physical memory
« A page of virtual memory occupies a frame of physical memory
« The Process Context

— State information specific to a process (Intel: Task State Segment)
* Includes GPRs, Stack pointers, PC, PSL, Memory Management Registers

— Loaded when turning control of the computer over to a process
— Saved when removing a process’ control of the computer
— Includes registers specific to the memory management system

« The Page Table

— Consists of n page table entries (PTE)
— Each page has a PTE (The PTE is the descriptor for that page)

« The PTE is used for translation (What frame is the page occupying)
« The PTE is used for access control (Does the process have the right
to make the desired access on this page)

Layout of Virtual and Physical Memory

N processes share physical memory
Virtual memory partitioned into user space and privileged space
Virtual memory pages mapped to physical memory frames
Balance set is the set of all processes alive in the system

Working set is the no. of resident pages for a productive process
— Pages D, E, and G comprise the working set of Process 2

(ivj/l,L ANC < S

.’/,.f VSICA L

Mowu'-/

= &}

/l";_,f —

’,J :__I:\” |

s f ol A
=2 — O

| 4 ;;;(

Case 1. The Page Table is in Physical Memory

VIRTUALC
ADDLESS SPACE

PhGE &
PAGE |
PACE =

pacE -

f BR
\ A Joo, ob—=
P LR

PACE TABLE _ fﬂz{lfa&

T Voo ﬁprg PAQ—’&Z{ "W F:Zﬁf“‘e‘ gb’
ol PTE/Faqe | nce o | Feame
T—F—'—"“”‘"‘ 4 | pte / PACE 2. P R Awff -
o o HZAM(&H 2

| f Tace L_|fearte &
ey — - ' 2 ACE
o o) PTL’/{AL n-\ ’ A A
A= 7ATT TARE| FIRAME A

L

« The process consists of n pages, three are resident

« The Process Base Register (PBR)
— Note that A is a frame number since the Page Table is in
Physical Memory; i.e., PBR contains a physical address

— PBR points to the first address in that frame
* i.e., the address of the PTE of Page 0 of process space

« The Process Length Register (PLR)
— PLR contains the number of virtual pages in the process

The Translation Process (From VA of x to PA of x)
Assume x is on virtual page k

Step 1: Is PLR <k, the page number of VA of x?
— If yes, VA of x is ill formed, access is denied

Step 2: Get the PTE
— Since PTEs are 32 bits, address of PTE of page kis PBR +4 x k

Step 3: Check protection, verify process’ right to access
— If no, take an access control violation (ACV)

Step 4: Check the valid bit

— If O, page is not resident, take a page fault

Step 5: Perform translation

Case 2: The Page Table is in System Virtual Memory

Why do we use this more complicated structure?
— No need for the whole page table in physical memory at same time
— 2GB of process space yields a 16MB page table for the VAX

« A 16 MB page table in system virtual space requires 128KB of physical memory
if the entire page table is resident, which is almost never necessary.

The Process Base Register (PBR)
— Note the page number, indicating PBR contains a virtual address

— PBR points to the first address on that page
« Address of the PTE of Page 0 of process space

— The high bit of PBR is “1” indicating the Page Table is in Sys. Space

The Process Length Register (PLR)
— Again, PLR contains the number of pages comprising the process

The System Page Table is in physical memory

Cost of Page Table in Physical Memory
VS
Cost of Page Table in System Virtual Memory

« Suppose we have available 248 bytes of virtual memory

* In physical memory:
— 27482712 = 2736 pages = 2738 bytes for the page table
— =256GB of physical memory

e In system virtual memory:
— 2748/2712 = 2736 pages = 2738 bytes for the page table is System Virtual memory
— 2/"38/2"12 = 226 pages of System Virtual Memory — 2" 28 bytes of Sys Page Table
— = 256MB of physical memory

P:ZDC‘{S/S
<PACE,

\
’

YT
NGO

{*-:ﬁr—'——:——-‘:‘

Pages and Page Tables for Case 2
(The Process Page Table is in System Virtual Space)

hGES OF
VILTvAL Memody

—

[pree #
FAGE |
pacE 2

M

THeE
| [fzocs3s

-
ACE N~ |

NCEDED

race #
,“——————/—-
PACE {
/———-————”-—’—.
' procESS
e - PALE THABLE
PACE M+ g
FARMENINEES S

\/;44(K~

—

} NoT NEEPED

PRIk

[t m

PRoCESS Jace T4BLE
Sraers OW tace M

Jr SksTER Vi ﬂjiﬁ ;Cé(
PL 1%
N |
N
SBK

FRAME Aloo-—2

< ysTEm PAE 7HRLE
STARTS AT BEINNIVE

o FRAME A
pr Ay SIens

SLR
/
W —

M E)”(a?.r\—/

Oo#o‘.————y——-r"‘@v

PR ocess PAce TABLE

priee (7ace |

H ‘\‘
L

PTE/PAE M-\

Sysrem PACE TABLE
."______,__—_——"""—”—
pre [PALE F

pre [PAce |

P
pre [pase =l

An example of Case 2: VAX Virtual Memory System
(Note:We are ignoring Control (P1) Space in EE460N)

V(RTV# & prySicA L
APDLL>S ch{l‘y

CAST PALs

cocezs \[PrEL,
pees \Wj

paas

/_:‘7-—’
CoNTIO ,\/uu)’
(_‘fﬂ) LAS‘ Vﬁﬁﬂ

74
Pé,‘}/“— oPﬁ tVACf)

- O TL‘
\M}Nef P/_Mgl /’f

aﬁfﬁfﬁiﬁj

PL PAGLE THBLE

—”—__’——’_’A -
PACE K3 /\

/

. i _——

Ce Kt+7 : -

: S |
A ,xr‘ll’rwgsf / \
/ = — vf—/«

,TQZs J/-/"—"’"

Explanation of the VAX Virtual Memory Layout

The 4GB virtual address space is in 4 regions
— Bits [31:30] =00 = PO Space (user space)

— Bits [31:30] =01 = P1 Space (user space)

— Bits [31:30] =10 = System Space

— Bits [31:30] = 11 = Reserved for future use

PO Page Table is on Page k of System Virtual Space

— Page 2 of PO Space is resident in frame 1 of Physical Memory
* Note: valid bit of PTE of Page 2is 1
« Page 0 and 1 of PO Space are not resident. The valid bits of their PTEs are 0

P1 Page Table is on Page k+2 of System Space, not resident
— Last page of P1 space is resident in frame 0 of Physical Memory

System Page Table is resident in Physical Memory
— Pages k and k+1 of System Space are resident in Physical Memory

The flow: LD R1,X

« How does the uarch find the physical address (PA) of X

Let us say X is on virtual page number A.

To get the PA of X, the uarch needs the PTE of page A

(VA of X contains: region bits, page no., byte on the page)

We compute the virtual address (VA) of the PTE of page A,

l.e., PBR + 4times A. [The Process Page Table is in Sys Space]
Let us say the PTE of page A is on page B of system space

We can get the PTE of page B of System Space from the
System Page Table, which is in Physical Memory [SBR + 4 x B]
The PTE of Page B gives us the frame containing the PTE of Page A
The PTE of Page A gives us the frame containing X.

Since we now have the PA of X, we can access X.

The Abstraction

« Start with VA, end with PA (6 steps)
— 1.Which page table
— 2.1s Page No. < Proc length register? If no, ACV fault
— 3. Get the PTE (using the page tables)
— 4. Check protection field. If no, ACV fault
— 5. Check V bit, is page resident. If no, TNV fault (Page Fault)
— 6. All cool, access the physical address

The Step-by-step Translation Process
(“Walking” the Page Table)

« X Is invirtual memory on Page A
« The PTE of Page A is in Page B of System Virtual Space

Vé& ;,('\’c—f)’— A | obbset | \’4//[/7)]
f g

A Complete Example!

« We will modify the ISA to make it easier to digest:
— Page size will be 16 bytes (instead of 512 bytes)
— VA will be 9 bits (instead of 32 bits), 32 pages of 16 bytes
— Physical Address will be 7 bits, 8 page frames of 16 bytes
— PTE will still take 4 bytes
— Process space consists of 16 pages, our example: 6 pages
— System space consists of 16 pages, our example: 5 pages

 QOur example:

— Process page table starts (PBR) at VA 0x120
« 6 PTEs times 4 bytes/PTE = 24 bytes = 1.5 pages of system space

— System page table starts (SBR) at PA 0x50
« 5 PTEs times 4 bytes/PTE = 20 bytes = 1.25 pages of physical memory

— System page table indicates pages 0,3, 4 are resident
— Process page table indicates page 5 resident, page 4 not so.

pxece?

oxo\o
"_'_____—_———/— e
s
/‘____/ ¢

¢x 010
o,(oiio
0)(090

A Memory Map

MS"\O,Q'{

Pace B, pracess SPKE

PACE (PRoCESS
SPACE

o* 05 e
ﬁ/zmzz

welee
ox“a

ox1to

X130

OX 40

PHfsicac MErnory

ppcE 3
SYSTEM
SPACE

PACE S~

PROCS S
s FAC ¢

pACc.‘
SYS. S

P
z Ol S cmass

"'—_‘//A_}_ - _jﬁi.\
- g{ Jox SO

—
\0
(\\
‘—W\"’\)

PACE

?
T
(O]
et N AN e A
L.-—.(\)\-/N—'

Processing the instruction: LD R1, X

X is aVA: 00101 1000

l.e., byte 8 on page 5 of process space

We need the PTE of page 5 of process space.

Page 5 x 4 bytes/PTE = 0x00010100. Add to PBR.
Therefore, Page 5 PTE is at VA = 0x134
Note the crosshatch on the figure. We can not read VM.

To get the physical location of page 5, access SPT

SBR + 4x page 3 gives us physical address of PTE of page 3
SBR = 0x50, i.e., 0x 1010000; 4 times 3 =12, i.e., 0001100

l.e., PA of PTE of page 3 of system space is in O0x5c

We read physical memory: PTE of page 3 indicates PFN is 1
Since VA of this PTE was 0x134, we add 4 (offset) to PFN
yielding 0x14, the address of the PTE of the Page containing x
The PTE directs us to PFN 2, yielding 0x28 as PA of x

The contents of 0x28 is 17 which we load into R1, and done!

TLB Structure

« Example of a Translation Lookaside Buffer (TLB)
— TLB has 16 entries

— Assume 2710 pages of Virtual Memory
« Page number consists of ten bits

* Index to TLB is a 4-bit hash function (bits 8,5,4,2)
— TLB is a Content addressable memory

« We compare ten bit page number in the entry with page number
« If a match, we can immediately output the PTE (no extra cycles)

Cost of translation with a TLB (VAX-11/780)

Page Walk: 22 cycles

TLB hit: O cycles

TLB hit ratio: 95%

Therefore: 0.05x 22 cycles + 0.95 x O cycles =1 cycle

The 4KB Page Size

« Original size for x86 ISA

« Still the only page size for almost all ISAs today
— Including RISCV
— Not x86 —three page sizes: 4KB, 2MB, 1GB
— Not Arm —three page sizes: 4KB, 64KB, 1MB
— Not Faruk — 4KB, 8KB, 16KB, 32KB, ... 1GB

 The original layout for x86 pages

. je e 1 ;_{

V | \

T .
- L ! =g BIC~*

‘ (
, |
e | i
«7 o
3 @A%i‘

o > ‘ .

: DA\ RECTHMY oFFseT (4% 5) W

(4—'4%) <4_K5>

X86 Extension to 3 Page Sizes

(3

5 3%

vpl o

[[

f

W vERL
ADD LESS

I

+8¢TS

1686

_;’LME

N |:’La>'~¢]

;%’ G4 RITS
Ost'cT%j 4 KB
S —>

yafnel

Gracias!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 7: Virtual Memory
	Slide 2: Outline
	Slide 3: Virtual Memory
	Slide 4: The Page Table Entry (PTE) (A descriptor for each page)
	Slide 5: Access Control and Translate
	Slide 6: Three Concepts
	Slide 7: Layout of Virtual and Physical Memory
	Slide 8: Case 1: The Page Table is in Physical Memory
	Slide 9: The Translation Process (From VA of x to PA of x) Assume x is on virtual page k
	Slide 10: Case 2: The Page Table is in System Virtual Memory
	Slide 11: Cost of Page Table in Physical Memory vs Cost of Page Table in System Virtual Memory
	Slide 12: Pages and Page Tables for Case 2 (The Process Page Table is in System Virtual Space)
	Slide 13: An example of Case 2: VAX Virtual Memory System (Note:We are ignoring Control (P1) Space in EE460N)
	Slide 14: Explanation of the VAX Virtual Memory Layout
	Slide 15: The flow: LD R1,X
	Slide 16: The Abstraction
	Slide 17: The Step-by-step Translation Process (“Walking” the Page Table)
	Slide 18: A Complete Example!
	Slide 19: A Memory Map
	Slide 20: Processing the instruction: LD R1, X
	Slide 21: TLB Structure
	Slide 22: Cost of translation with a TLB (VAX-11/780)
	Slide 23: The 4KB Page Size
	Slide 24: x86 Extension to 3 Page Sizes
	Slide 25: Gracias!

