
Chapter 1

Introduction, Focus,
Overview

3



4 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

1.1 Introduction, Focus, Overview

Welcome to the world of computer architecture and the xxx pages that we hope
to use to introduce you to its fundamentals. We chose the title for the book
“Computer Architecture: Fundamentals, Tradeoffs, Challenges” to reflect three
essential elements of Computer Architecture that transcend the field.

“Fundamentals” because we will focus on fundamentals in the belief that if
you master the fundamentals, there is no limit to how high you can soar, given
your intelligence and the energy you wish to devote to the task.

“Tradeoffs” because computer architecture is an engineering discipline, and
engineering is all about tradeoffs. Throughout the book we will examine choices.
It keeps coming up: Should we do A or should we do B. A is more expensive but
gives us a better result. B’s result is not as good, but costs a lot less. What is
the cost and what is the benefit depends on what choice we are examining. For
example, cost may be the amount of logic required, and benefit may be the time
it takes the computer to carry out the task. Or, cost may be the number of hours
spent on solving the problem and benefit may be the resulting execution time
required, once the design has been completed. What is relevant is that computer
engineering problems almost always come with tradeoffs, stated simply as what
is the cost, what is the benefit, and the engineer is tasked with deciding how to
handle the tradeoffs.

“Challenges” because computer architecture is a live, vibrant, continually
evolving field which is always pointing ahead, creating solutions for new prob-
lems whose solutions will reflect the new resulting state of the field.

1.2 Organization of the Book

The book is broken down into 14 chapters, most dealing with one essential sub-
discipline of computer architecture. This section introduces those 14 chapters,
although we do not expect you to master them yet. Our objective here is to give
you a map of the road we plan to travel, so you will have a better appreciation
of where each chapter fits in the scheme of things when we get to that chapter.

1.2.1 Chapter 1. Introduction, Focus, and Overview.

In this chapter, we take a short look at each of the chapters. The objective is to
give you a sense of what computer architecture is all about. Mastery will come
later.

1.2.2 Chapter 2. The ISA

Chapter 2 deals with the Instruction Set Architecture (ISA), the interface be-
tween the hardware and software of a computer. The ISA is a specification
which both the hardware and software understand. It allows the software to
specify what it needs the hardware to do, and lets the hardware know what it



1.2. ORGANIZATION OF THE BOOK 5

must do to carry out the work specified by the software. There are many ISAs,
with many tradeoffs in their specifications. We will specify a few ISAs, and deal
with the tradeoffs they incur.

1.2.3 Chapter 3,4. Microarchitecture

Chapter 3 introduces the most basic of microarchitectures of a computer, the
logic structures required to carry out the work of the ISA in dealing with the
requirements specified by the software. Here, too, are tradeoffs for us to deal
with. Chapter 3 also introduces pipelining, which provides an opportunity for
higher performance of the resulting computer (i.e., computer programs take less
time to execute). Unfortunately, that benefit comes with a cost that needs to be
solved to obtain that higher performance. We lump that cost into two problems,
one caused by conditional branches, the other caused by the sequential order of
execution of instructions in a program. Chapter 4 deals with those costs.

1.2.4 Chapter 5. Process

Chapter 5 introduces the notion of a process, the atomic unit of activity as seen
by the operating system. Each process has its own priority (how urgent it is
that the process needs to complete its work) and privilege (what the process
has the right to do). Chapter 5 uses these notions to deal with interrupts and
exceptions.

1.2.5 Chapters 6,7,8. Storage

Chapters 6,7,8 deal with storage, the actual physical memory locations that
store instructions and data (Chapter 6), the virtual memory location each pro-
cess has (Chapter 7), and the on-chip storage called Cache Memory (Chapter
8).

1.2.6 Chapter 9. Fixed Point Arithmetic

Chapter 9 deals with fixed point arithmetic, usually integers, but not always.
The important point is that the binary point is fixed for every representable
number. If the binary point is to the right of the least significant bit, each value
is an integer. If the binary point is to the left of the most significant bit, every
value is a fraction having value less than 1. If the binary point is somewhere
in between these two extremes, each value has an integer part and a fractional
part. What those values are depends on exactly where the binary point is. The
chapter deals with addition and multiplication of values expressed as above.
Long integers, Kogge-Stone adders, BCD Arithmetic, Booth’s Algorithm, and
Arithmetic with Residue Numbers are all included.



6 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

1.2.7 Chapter 10. Floating Point Arithmetic

Chapter 10 deals with floating point arithmetic of values expressed in what is
often referred to as scientific notation. IEEE Arithmetic is discussed in detail.
Rounding modes, excess codes for exponents, subnormal numbers, infinities, use
of Not-a-Numbers (NaN), and floating point exceptions are all studied.

1.2.8 Chapter 11. Input/Output

Chapter 11 deals with the basic notions of I/O, and importantly the use of
Asynchronous I/O. The basic notions include the time difference of executing
an I/O instruction compared to an instruction carried out in the processor, the
use of loads and stores to handle input and output rather than special I/O
instructions, bus arbitration, and bus transactions.

1.2.9 Chapter 12. Single Thread Parallelism

Chapter 12 deals with parallelism while processing a single thread. Topics in-
clude pipelining, SIMD - both array processors and vector processors, two ways
to do SIMD, Decoupled Access/Execute, HPS, and compute Data Flow.

1.2.10 Chapter 13. Multiple Thread Parallelism

Chapter 13 deals with parallelism with multiple threads. Topics covered include
Amdahl’s Law, Tightly and Loosely coupled multiprocessors, interconnection
networks, cache coherence, and memory consistency.

1.2.11 Chapter 14. Pot Pourri (Other Stuff)

Chapter 14 is a catch-all chapter to cover other important topics that we de-
cided we did not have enough pages to do them justice. Examples include
Measurement methodology, GPUs, RISC technology, Accelerators, etc.

1.3 Once Over Lightly

Finally, before leaving chapter 1, we introduce a number of topics to give you an
idea of what computer architecture is about, in some sense a preview of coming
attractions.

1.3.1 The Computer System

We generally think of the hardware that makes up a computer system as con-
sisting of three parts: the processor, the memory system, and the input and
output devices.



1.3. ONCE OVER LIGHTLY 7

The processor manages the computer system, processes the instructions, di-
rects the access to information (load/store) from memory and I/O units, com-
putes (operate instructions such as ADD, MUL) with functional units designed
for that purpose, and maintains instruction flow (control instructions).

The memory system consists of main memory and zero or more levels of
on-chip storage called caches. Access time to memory is very long (hundreds of
cycles) so caches, which have much shorter access times usually require far less
time to load or store information.

Input and output devices are sometimes referred to as peripherals since they
are out of the usual processor/memory flow. Some I/O devices are very simple,
like the keyboard (input) and monitor (output) parts of your laptop.

Track
Track

Disk Head

Figure 1.1: Disk Activity

Some are more complex such as a disk, which requires the long latency of
moving the disk head until it is hovering above the track that contains the
information one wishes to access. The track rotates until the disk head lines
up with the start of the information desired. Then the desired information is
either loaded from the track or stored on the track, depending on the direction
of the transfer.

Some input/output devices are sufficiently rich in what they can accomplish
that they are processors in their own right. They are often referred to as I/O
processors.

1.3.2 The Transformation Hierarchy

It is the electrons moving from one voltage potential to another that actually
solve computer problems, and if humans could speak the language of electrons,
we could tell the electrons what we want done, and they could then do the job.
Unfortunately, we cannot speak electron, so we are reduced to systematically
transforming the statement of our problem from a natural language (like English,
French, German, Chinese, Japanese, etc.) formulation to some Algorithmic
language, which gets rid of the uglies (like ambiguity) of natural language.

From there the algorithmic representation is transformed into a computer
program in a mechanical language (like C++, Java, Python, or perhaps LC-
3b assembly language), which is then translated via a compiler, assembler, or
interpreter to the 0s and 1s of the ISA. The microarchitecture understands the



8 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

Programming Language

Algorithm

Microarchitecture

Electrons

Problem

ISA (Instruction Set Architecture)

Circuits

Figure 1.2: Transformation Hierarchy

0s and 1s of the ISA,and transforms the program into the logic gates that process
the program, wherein each logic gate consists of electronic circuits that can move
an electron from one potential to another thereby solving the problem.

At each stage of the hierarchy there are choices. For example, if the problem
involves sorting, the Algorithm has more than a dozen choices, among them
quick sort, heap sort, merge sort, insertion sort, bubble sort, etc.

The ISA provides another choice as to what the 0s and 1s mean. Intel’s
x86, IBM’s POWER, Apple’s use of ARM, etc. are all choices of ISA. And for
each ISA there are multiple microarchitectures that implement that ISA. Thor-
oughly understanding the choices at each level of the Transformation hierarchy
can provide an opportunity to combine them in a way that produces a higher
performance engine.

1.3.3 Architecture and Microarchitecture

Architecture means ISA. Microarchitecture is an implementation that can pro-
cess instructions that obey the specification of the ISA. The key difference be-
tween the two is visibility to the software. The ISA is the interface between
the hardware and the software so clearly everything in the ISA is visible to
the software: the address space, addressability, the set of opcodes, addressing
modes, data types, instructions supporting multiprocessors (such as TSET),
and instructions that support multiprogramming (such as LDCTX).

On the other hand, the microarchitecture is not visible to the software.
Structures in the microarchitecture are not tied to the ISA. They have been put
in the microarchitecture to provide some benefit, such as a pipeline that speeds
up processing, or a branch predictor that predicts the direction of a branch
instruction before all the information needed to know the direction is available.
...or the on-chip storage (caches) which eliminates much of the need to access
the much slower memory.

It is worth noting that for some elements, their visibility has changed over



1.3. ONCE OVER LIGHTLY 9

the years. Cache memory is a perfect example. Historically, caches were part
of the microarchitecture. They would speed up processing each time a cache
access eliminated the need to access memory. But they were not part of the
ISA. They would be part of the microarchitecture or not, depending on what
the architect wanted. At some point some companies (not all) realized that if
the actual locations contained in the caches were known to the ISA, instructions
could be added to the ISA whose job would be to position those locations for
optimal performance. For example, the Digital Equipment Corporation VAX
ISA had a FETCH instruction that could place locations in an optimal place
(on chip, or NOT on chip) depending on when the data in those locations would
next be needed.

One final thought for the moment about ISAs and microarchitectures: Sup-
pose you have the job of designing a microarchitecture to implement an ISA and
you come up with a brilliant idea to improve performance by adding a structure
to the ISA or to the microarchitecture. Which would you do? Answer: Add
it to the microarchitecture. Why? Answer: The idea may turn out to be not
as good as you originally thought. If you add it to the microarchitecture and
it turns out to be a bad idea, you simply do not implement it on future mi-
croarchitectures. If you add it to the ISA you are stuck with it for many future
implementations, probably for the lifetime of the ISA.

1.3.4 Requirements for Optimal Performance

To get optimal performance, we need a large number of micro-ops accessing
the core every clock cycle, a large number of data elements available in the
core every clock cycle, and enough functional units to do the actual concurrent
processing of each micro-op when all its data is available.

Instruction
Supply

- Block-structured ISA
- Trace Cache
- Prefetch
- Branch Prediction

- Restricted Dataflow
- Multiple Issues
- Enough Functional Units
- Irregular Parallelism

- Cache Hierarchy
- Prefetch
- Fetch Instruction (ISA)
- Bandwidth, Latency

Data
Supply

Datapath

Figure 1.3: Requirements in Microarchitecture



10 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

Instruction Supply

Supply of micro-ops means not having to access memory to obtain micro-ops
because the micro-ops needed are present in the on-chip storage (i.e., the in-
struction cache). Access to on-chip storage takes a few clock cycles. Access to
memory takes hundreds of clock cycles. Thus, the requirement is getting the
instructions which get decoded into micro-ops from the instruction cache, and
not having to access memory.

Three mechanisms enhance the ability to get the instructions from the In-
struction Cache. (1) A mechanism to not miss in the instruction cache. The best
solution so far is prefetching, which gets the instructions into the Instruction
Cache before they are needed to be fetched. (2) A mechanism to take advantage
of the full fetch/decode width of the microarchitecture. That is, if the microar-
chitecture has hardware to fetch n instructions at a time, we want the engine to
fetch n instructions each clock cycle. The problem is the dynamic instruction
stream that we are fetching is not the static instruction stream that is stored in
the cache, which means control instructions may allow subsequent instructions
to be fetched, but the time needed to perform that fetch may not allow them to
be fetched in the same clock cycle. The fetch ends with the control instruction,
and the target of the control instruction gets fetched in the next clock cycle. We
refer to this as a packet break. Packet breaks prevent n instructions from being
fetched in a single clock cycle. A solution to the packet break problem is a trace
cache, which stores the n dynamic sequence of instructions in sequential order,
rather than in the static order created by the program itself. (3) A mechanism
to not having to throw away instructions that never should have been fetched
in the first place, i.e., the result of a branch misprediction. That would require
a perfect branch predictor, something we will probably never obtain, although
we keep getting closer and closer to 100%.

Data Supply

Having to access memory to obtain source operands takes hundreds of clock
cycles. Accessing the source operands from on-chip storage (in this case the Data
Cache) takes a few cycles. Data supply does not have the branch misprediction
problem or the packet break problem. But it does have in a very real way the
quest to not miss in the Data Cache. Several approaches are currently being
advanced: Better specification of the cache hierarchy, better cache replacement
policies, prefetching, specifying instructions in the ISA that more effectively
positions locations of the cache, gathering multiple data accesses so they can
access memory concurrently so we pay the cost of a long latency operation once,
where the operation consists of multiple concurrent accesses.

Functional Units

Finally, we need enough functional units to perform the work required of the
micro-ops. Fortunately, this third requirement is less problematic given that
today’s microprocessors have billions of transistors on-chip (which means we



1.3. ONCE OVER LIGHTLY 11

can easily have as many functional units as we need) and that micro-ops are
able to execute when they and the source operands are available, avoiding the
former requirement that micro-ops must execute in program (i.e., fixed) order).

1.3.5 A ChangingWorld Introduced by “Clock Cycle Time.”

It is useful to pay attention to changes in technology which often have the effect
of making us pay attention to something that we used to be able to take for
granted. An obvious case in point is the effect of frequency on our designs. A
chip running at 5 GHz sees things differently than one running at 66 MHz. A
few examples: Wire delay we used to take for granted. We used to x be able to
move the data and still have time to perform the operation in the same clock
cycle. With today’s frequencies, we often have to waste one or more clock cycles
moving data from where it is produced to where it is needed.

Power and energy depend on the operating frequency (the higher the fre-
quency, the more energy is consumed), so this has to be considered when deter-
mining the budget available for the chip.

Soft errors, those that are due to the operating frequency of a chip causing
a bit to be flipped, means that every design needs to pay attention to this
erroneous behavior which occurs even if the logic design of he chip is bug free.

1.3.6 Speculation

Speculation is doing something before you have all the information you need
to know you really have to do it. My favorite non-computer example of this
is an automobile trip you are taking. You come to a fork in the road. Which
way should you go? You don’t remember exactly what you did the last time
you took this trip, although you have a pretty good idea which road you took.
Do you stop, get out a map (we are assuming you do not have GPS at your
disposal) and find on the map the road you should take. Or, do you speculate?
That is, do you guess, expecting to guess correctly, thereby saving the time it
would have taken you to stop and check the map. Of course if you guess, and
guess wrong, you need to retrace and that causes you to waste time. Computer
systems contain many examples of instances where we have confidence that we
will guess correctly and so we will perform speculative execution. That is, we
will guess and hopefully save time and get the problem solved more quickly. Of
course, if we guess wrong, we waste time delaying the execution of the program.

The most common example of speculative execution practiced today is pre-
dicting the direction of a conditional branch instruction before we know the
condition codes on which the direction is based. If your prediction is incorrect,
you will also have wasted a lot of energy executing instructions that you should
not have executed. Years ago, the cost of those incorrect instructions would not
have been a major penalty to accrue. Today, with the strong emphasis on the
amount of energy expended, it is not a simple matter to know whether specu-
lative execution is the right approach. One must examine the two choices (go,
or wait until you know) before you decide which tradeoff makes sense.



12 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

Professor Gurindar Sohi and his PhD students years ago provided a brilliant
example that highlights the speculation tradeoff. Figure 1.4 shows a piece of
code where instructions are allowed to execute out of the order specified by the
program. How that is possible we shall deal with later in this book.

Store R1, ?
Load R2, A

Computer Program

Figure 1.4: Instructions Executed Out of Order

In this case we have a STORE instruction that has not yet completed the
computation of the address where the contents of R1 is to be stored. A LOAD
instruction later in the program has computed the address of the data to be
loaded into R2. Since instructions in our microarchitecture can be executed
out of the sequential order of the program, the question is: should the LOAD
instruction be allowed to load into R2 the data from Memory location A? If
the address computed for the STORE instruction is totally independent of A
(the address of the LOAD instruction), the LOAD should be allowed because
it enables subsequent instructions to be executed sooner, decreasing the time
to complete the execution of the program. However, if the address computed
for the STORE instruction (when finally known) is A, then we should wait. In
fact, in this case, the LOAD would not have to access memory at all. It could
simply load the contents of R1 into R2.

If we speculate (i.e., guess) that the address that will be computed for the
STORE instruction will not be A, and therefore we perform the LOAD, we
will load old data. We will do useless work, waste energy, and slow down the
execution of the program..

Professor Sohi and his former students have a patent governing exactly this
situation, when to speculate and when the better trade off is to wait.

1.3.7 The Preoccupation with Numbers

Computer architecture folks seem to be obsessed with numbers. Unfortunately,
that can lead to erroneous results. I include here several examples where obses-
sion with numbers can leave one twisting in the wind.

For example, I have noticed lately more research results that do not have
a baseline. They report numbers, but don’t compare them to the state of the
art. If I told you I can run a marathon 1000 times faster than your grand-
mother, would you be impressed? Why is that any different from reporting a



1.3. ONCE OVER LIGHTLY 13

pseudo-brilliant computer result that is actually much worse that what is read-
ily available. “Good numbers” come from building on the state-of-the-art, and
doing better.

Most of our research involves simulation. If we are to believe the numbers,
the simulator needs to be bug free.

Some numbers come without any understanding as to how they occurred.
It is not enough to say, “Look, it works!” Why does it work? My pet example
makes this clear. Take the fraction, 16/64. How do we reduce it? Can we
reduce it by canceling the sixes? ..or, 19/95 by canceling the nines or 26/65
by canceling the sixes. “See it works” is really not good enough. Why does it
work?

The numbers you see should not be the numbers the researcher wants you to
see if there are not necessary safeguards. The researcher chooses the experiments
to perform, the instructions that are executed, the data one reports. There are
too many opportunities for chicanery. Finally, an experiment may produce a
data point that is anomalous. Never gloss over such data points. They are
usually the most important data points in the entire experiment.

1.3.8 Moore’s Law

Gordon Moore hypothesized in 1965 that the number of transistors on each
silicon die would double every year. In 1975 he modified his prediction to
doubling every two years. As time has passed the time required for doubling has
been not quite as aggressive, but still aggressive enough to obtain exponential
growth on the number of transistors on a chip. The observation has been known
as Moore’s Law. It has been improperly given credit for all of the benefit we
obtain from more transistors on a chip. The reality is probably closer to half
the benefit from the device technology (Moore’s Law) and half from cleverness
exhibited in the microarchitecture. The demise of the law has been predicted
every few years since the 1980s. Today, it appears that Moore’s will finally end
within the next few process generations. Two obvious reasons: (1) The cost of
producing chips with the geometries required to sustain Moore’s Law is much
too expensive, and (2) the geometries are getting too small. Researchers are
currently working with devices expected to be in the 2 nanometer range. As
you may recall from your study of chemistry, two nanometers is 20 angstroms.
Nonetheless, before we bury Moore’s Law, we should acknowledge what it has
provided: (1) Parallelism. In 1971, when the first microprocessor, the Intel 4004
arrived, there were 2300 transistors on a chip. Today that number is several
billion. (2) Switching speed. Smaller transistors mean faster switching time.
The Intel 4004 was a 106 KHz device. Today frequencies are in the GHz range.
We are computing orders of magnitude faster at orders of magnitude greater in
concurrency. It will be tough to say goodbye!

The current effect of this will be much more demanded of those computer
architects still around. Charles Leiserson and several of his colleagues, referring
to my levels of transformation, say “There is plenty of room at the top.” That
is, compilers and algorithms will need to pick up the slack if we are to maintain



14 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

our historic rate of performance improvement. I am quick to agree, but also
note that there is still plenty to do at the bottom, noting that we have plenty
of opportunity to better harness the device and microarchitectural levels of the
hierarchy.

1.3.9 The von Neumann Machine

The von Neumann machine, the classical model of computing continues to be
declared dead and ready to be replaced by several devices referred to as non-
Vons. The reality is that just about all those that are referred to as non-Vons
are more accurately accelerators rather than computers. In my view, future
chips are going to need von Neumann machines. Why? Answer: Future chips
will more and more be dominated by accelerators that will have to talk to each
other. A very serious communication problem, ready to drown in its own chaos,
unless something is available to maintain order. That, in my view, is the role
the von Neumann will fill for the foreseeable future.

1.3.10 Is Hardware Sequential or Parallel?

Clearly, hardware is both sequential and parallel. It is sequential in the sense
that hardware processes instructions clock cycle by clock cycle. Those clock
cycles occur one after the other, i.e., sequentially. But within a clock cycle,
just about everything happening is happening in parallel. All the electrons
are operating all the time. An old electron does not tell a young electron,
“After you,” to which the young electron responds, “No way. You are the older
electron, you go first.” All the devices in the core are functioning all the time;
ergo, hardware is the ultimate in parallelism.

Software is also both sequential and parallel. Instructions execute sequen-
tially. But a lot of current activity challenges programmers to think in parallel,
and from there, create programs that can execute concurrently.

The bottom line, both hardware and software execute clock cycle after clock
cycle, sequentially. But within each individual clock cycle the work can go on in
parallel. With respect to hardware, this is inherent in the way hardware works.
In the case of software, it more nearly comes as a result of the software producer
“thinking in parallel.”

1.3.11 Do it in hardware or do it in software (or perhaps
use an FPGA)?

Many design decisions resolve as to whether one does the task (or part of the
task) in hardware or in software. A simple rule of thumb: doing it in hardware
takes time to build the capability, and making changes are usually very time
consuming. The good news: generally higher performance. Do it in software
and you get the implementation much more quickly. And you can make changes
much more quickly. The bad news: generally lower performance.



1.3. ONCE OVER LIGHTLY 15

...which brings up a third choice: do it with FPGAs. Not as fast as hardware
but much more flexible, and more easily changeable. Much faster than software,
but not as flexible or changeable as software. Another example of tradeoffs.

1.3.12 Design Principles

There are many principles of effective design. We will mention three of them
here. Critical path design, Bread and Butter design, and Balanced design.

Critical Path Design

Critical path design takes the position that there are a few things going on in
your computer which take so much time that they will define the cycle time.
Since cycle time is generally the most critical element driving performance, it
makes sense to pay close attention to it. Critical path design dictates measuring
the time it takes in each clock cycle to do each task. The one that takes the
longest will determine the cycle time UNLESS you can do something about it.

Critical path design follows the following steps:

Step 1. Identify the longest path.

Step 2. Continually shorten that longest path until it is no longer the longest
path.

Step 3. Move to the *new* longest path and continually shorten it until it
is no longer the longest path.

Iterate the process until you are satisfied with that cycle time, and you are
done. Usually, the three longest paths are (1) the time it takes to access cache
memory, and store the result in a register, (2) the time it takes to source the
registers for source operands, perform an ALU operation on those operands
and store the result back to a register, and (3) determine the control signals
needed in the next clock cycle, and latch them for the start of the next clock
cycle. Often you will have one path much longer than the others, and be unable
to shorten it. In that case, make that path a multi-cycle activity, unless you
get more benefit from doing it in one clock cycle than the loss you incur from
everything else taking a longer clock cycle.

Bread and Butter Design

The “bread and butter” is an American idiom to mean those things that are
most important to some task or behavior. Students’ bread and butter may be
their grade point average (GPA) or some outside activity that to them is more
important than grades. Bread and butter design means paying extra attention
to the things that matter most. In the case of computer design that means
spending an inordinate fraction of the chip resources on those things that will
have the greatest effect on the final product. That does not mean ignore the
rest of the design completely. Everything in the design has to work. But for
things that are not part of the bread and butter, make sure to devote enough



16 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

resources to not create a disaster, while focusing most of the effort on the bread
and butter.

Balanced Design

The parts of the microprocessor have to work together. I remember a design
review many years ago where the chief architect boasted that his front end,
the fetch and decode stages of his pipeline, enabled 6 instructions to be fetched
and decoded every clock cycle. Unfortunately, the core of his processor could
only process three instructions per cycle, resulting in a lot of fetched instruc-
tions waiting to be processed. A bad design – Not balanced! All that extra
fetch/decode bandwidth used a lot of resources but the core could not handle
it so it produced no benefit.

Simply put, the front end (fetch/decode) and back end (execution, retire-
ment) should make sense together.

1.3.13 Design Points and Design Methodology

Every product should have a design point. What is the product you are de-
signing expected to accomplish. In my case the design point has always been
performance. I want the product to perform faster than other products on the
market. But there are other design points. You may want a product that can
be sold for very little; that is, cost is the design point. Not every product has to
deliver the highest performance. Or the product can be designed to use the least
amount of energy, or be built in a way that the computer is working correctly
almost 100% of the time. In this case we may not care about energy consump-
tion or performance. We may be willing to sacrifice energy consumption and
performance if we can guarantee the computer will almost always be functioning
correctly. We call this design point high availability.

Design methodology is the process one goes through in designing a product.
The first step is to specify your design point. Then identify your bread and
butter. Then optimize the bread and butter. Finally, deal with the rest of the
design.

1.3.14 The Role of the Architect

Good computer architects look backward and forward, up and down, as they
develop their designs. What do I mean by that?

Look backward means one should examine old programs. What parts of the
ISA were heavily utilized and need to be part of the new design and perhaps part
of the bread and butter. What parts were never used and should not be part of
the new ISA. Digital Equipment Corporation produced the PDP 11 which had
8 addressing modes. One, “auto-decrement deferred” was never used. The next
product, the VAX removed that addressing mode from the ISA.

Look forward means listen to the dreamers who would like new features that
they can use effectively. Intel produced the Pentium chip, and introduced the



1.3. ONCE OVER LIGHTLY 17

MMX instruction set because the dreamers saw an effective use of those instruc-
tions as applications moved more and more toward multimedia applications.

Look up refers to the transformation hierarchy we have discussed. At the
top is the problem expressed in natural language. Looking up means seeing
what your product will be used for, which should direct your design.

Look down also refers to the transformation hierarchy, where the bottom is
the device technology. Looking down means predicting what will be available for
your product when it is time to manufacture it. If you predict too aggressively,
the technology may not deliver what you predict and you will not have a product.
If you predict too conservatively, you will have a product but no one will buy
it if a more aggressive technology is available that does the job. Predicting
where the technology will be when the product is manufactured is an important
task for the architect. Digital Equipment Corporation discovered that in their
Alpha 21164 chip when the technology did not deliver what was predicted. The
result was a Level 2 cache that was 96 KB, 3-way set associative. Why? Because
there was not enough area on the chip to provide a 128 KB, 4-way set associative
cache.

1.3.15 Thinking Outside the Box

People are always telling us: “Think outside the box.” My response is, “Be
careful.” It is too easy to get carried away and end up producing something
that is guaranteed to never work. I remember a young architect designing a
computer that he thought could resolve 25 conditional branches in a single
clock cycle. An obvious disaster.

My approach is more cautious: Expand the box. Several examples imme-
diately come to mind. The HPS microarchitecture did not invent out-of-order
execution. Robert Tomasulo did that. But HPS built on top of the basic Toma-
sulo algorithm to produce a much higher performance engine. The Simultaneous
Multithreading (SMT) work did not invent multithreading. Burton Smith did
that more than 15 years earlier with the HEP. But the SMT people built on that
paradigm, again producing a higher performing engine. The Perceptron Branch
Predictor did not invent the Perceptron, Frank Rosenblatt did that more than
30 years earlier. But Daniel Jimenez realized the Perceptron was a natural fit
for Branch Prediction and he could build on the Perceptron to create a better
branch predictor.

1.3.16 Finally, a Few Questions to Complete Chapter 1

Finally, we will complete Chapter 1 with a few questions:

Question 1: What is computer architecture? Answer: It is a contrast be-
tween the software(what it demands) and the hardware(what it agrees to deliver.

Question 2: What is microarchtitecture? Answer: It is a science of tradeoffs,
balancing what functionality we will deliver, at what performance and at what
cost.



18 CHAPTER 1. INTRODUCTION, FOCUS, OVERVIEW

Question 3: How do we compute faster than the speed of light? Answer: We
do things concurrently.

Question 4: Should we add a feature if it slows the clock by 10%? Answer:
Normally no, unless the benefit of the feature taking a single cycle outweighs
the fact that everything else takes 10% more time.

Question 5: Is computer architecture dead? Answer: Computer Architecture
will always be alive and healthy as long as people can dream. The dreamers are
usually not the architects, they are those who want to use machines in new and
interesting ways. Computer Architecture is about the interface between what
technology can provide and what the market demands.




