
Department of Electrical and Computer Engineering
The University of Texas at Austin

ECE 460N Spring 2025
Instructor: Yale N. Patt
TAs: Luke Mason, Jenna May, Roy Mor, Rathna Sivakumar, Margaret Lee
Exam 2
April 16th, 2025

Name: ___Solution___

Problem 1 (15 points): _______

Problem 2 (10 points): _______

Problem 3 (20 points): _______

Problem 4 (30 points): _______

Problem 5 (20 points): _______

 Legibility (5 points): _______

Total (100 points): ______________

Note: Please be sure that your answers to all questions (and all supporting work that is required)
are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested:
I have not given nor received any unauthorized help on this exam.

Signature: ___

GOOD LUCK!

1

Name: ______________________________________

Problem 1 (15 pts): Answer the following questions in 20 words or fewer.
For each answer, if you leave the box empty, you will receive one point of the five.

Part a (5 pts): Dr. Patt wants to design a 32KB 4-way set associative physically accessed cache
to support a computer system containing 4MB of physical memory. He wants the cache line size
to be 8 bytes. Furthermore, he wants to be able to access the TLB, Tag Store, and Data Store
concurrently. Are there any constraints on the virtual page size in order to make this possible? If
so, what is the constraint?

32KB = 15 bit address space
2^15 / 4 ways = 2^13 bits for index + offset. Page size >= 2^13

Part b (5 pts): We have discussed two approaches to handling virtual memory: putting the
process page table in physical memory and putting the process page table in System virtual
memory. Putting the process page table in system virtual memory requires much more
complicated handling than putting it in physical memory. Why then would we put it in system
virtual memory?

Process page tables take up much less space in PMEM

Part c (5 pts): A receiver receives 8 bits of data from a sender. Consider two approaches to
dealing with errors:

1. Transmit one parity bit alongside the message, ensuring parity of all 8 bits.
2. Use Hamming codes; i.e. transmit four parity bits, each corresponding to a different

combination of data bits.
What is one benefit of applying Hamming code compared to a single parity bit?

You know exactly which bit is wrong
OR
You can detect 2 bit errors, not just 1

2

Name: ______________________________________

Problem 2 (10 pts): The following diagram shows hardware logic for an implementation of
Booth’s algorithm. If you leave both parts blank, you will receive 1 point.

For an instance of Booth’s Algorithm, bits [13:8] of the multiplier are 011101. These are used in
iterations 5, 6, and 7.

Part a (3 pts): What is the value of C after iteration 5?

Part b (7 pts): In iteration 7, what are the values of the control signals for X, Y, and Z? Circle
the correct options below.

X:

 SHF0 SHF1 SHF2

Y:

 ADD SUB PASSA

Z:

 SHF0 SHF1 SHF2

3

0

Name: ______________________________________

Problem 3 (20 pts): You’ve been asked to optimize the DRAM address mapping of a system
with these parameters for the given address stream:

● Memory has an 8-bit address space, and is byte addressable. The bus size is 1 byte.
● It takes 11 cycles to close an open row, 16 cycles to open a row, and 8 cycles to read

column data from an open row.
● There are 2 channels, 1 rank/channel, 2 banks/rank, 16 rows and 4 cols/bank.
● Requested data may arrive out of order.
● Requests are sent in order.
● All row buffers begin unopened (empty).
● Each channel can send at most one request and receive one byte of data per cycle.

Note: You will need the information in the table below to complete part a and b, but the empty
boxes in the table will not be graded.

Address (Hex) Address (Binary) Dispatch Cycle

0x00 0 0 0 0 0 0 0 0 0

0x40 0 1 0 0 0 0 0 0 0 - Must be different chl

0x03 0 0 0 0 0 0 1 1 Bank bit has best interleaving
to amortize row activation
latency

0x02 0 0 0 0 0 0 1 0

0x46 0 1 0 0 0 1 1 0

0x05 0 0 0 0 0 1 0 1

0x04 0 0 0 0 0 1 0 0

Part a (14 pts): What’s the best address mapping to optimize cycle time for the access sequence
above? Label bits Ch for channel, Bk for bank, R for row, and C for column.

Part b (6 pts): How many row buffer hits are there?

4

7 6 5 4 3 2 1 0

R Ch R R R C C Bk

#Hits:
4

Name: ______________________________________

Problem 4 (30 pts): For this problem, consider the following PTE format:

PFN 0 Padding* V P

V is 1 if the PTE is valid, 0 otherwise. P is 0 if the page requires privilege to access, 1 otherwise.
*The PTEs are 0 padded to the next byte. There may be no 0 padding.

Part a (9 pts): System 1 uses a one-level translation scheme where virtual addresses are 32 bits
and physical addresses are 20 bits, byte addressable. There is one page table containing both
system and user pages, similar to lab 5, so the VA has no region bit. The page table must be
resident in memory with additional space for at least one user page and system page. What is the
smallest page size possible, and what is the corresponding PTE size in this case?

Minimum page size:

2^14 byte

Show work:
PMEM = 2^20 bytes, VPNlen = (32 - offset bits), ptesize = 22bits -
pgoffset bits rounded to byte
page table size = 2^(32 - offbits) * ptesize < PMEM

start with 2^18, because its largest possible page size
2^14 * 1 = 14 (2^18 pg size → 2^14 PT size)
2^17 pg size → 2^15 pt, 2^16 → 2^16, 2^15 → 2^17, 2^14 → 2^18 (this is
the minimum), 2^13 → 2^20 (the PTE grows to 2 bytes now! this is too big
for pmem)

PTE size:

1 byte

Part b (6 pts): System 2 has the same address space and PTE format as System 1. However, it
uses a VAX-like two-level translation scheme. Like before, the entire System page table must be
resident in memory with additional space for at least one user page and one system page. User
space begins at 0x00000000 and system space begins at x80000000. What is the smallest page
size possible, and what is the corresponding PTE size?

Minimum page size:

2^13 byte

Show work:
System space translations in VAX are all one-level - so, half the table
(for sys translations) stays the same size. The other half (process space)
page table shrinks significantly (by a factor of pg size). So page size
can be half as large to achieve 2^19B for system translation part, much
smaller for process. This can be reasoned without the equations, but
here’s the equations:

process spt size = 2^(31-pgsize) * ptesize * ptesize / pgsize
system spt size = 2^(31-pgsize) * ptesize

PTE size:

2 byte

PROBLEM CONTINUES ON NEXT PAGE

5

Name: ______________________________________

The following information and tables correspond to part c, d, and e:
You wish to execute the instruction STW R2, R0, #0 in user mode on the processor.

- You do not know if the instruction is executed using system 1 or system 2.
- The processor is using the LC-3b ISA and is little-endian.
- User mode does not support self-modifying code.

The tables below contain some physical memory locations after the instruction is executed,
including all locations (both data and PTE) accessed during fetch and execution of the
instruction.

Physical Address Content Physical Address Content

0x00000 0x02 0x84006 0x03

0x00001 0x84 0x84007 0xD0

0x10072 0x02 0x90080 0x03

0x10073 0x90 0x90081 0xC0

0x70102 0x01 0xC0194 0x00

0x70103 0xC0 0xC0195 0x74

0x83060 0x03 0xD0174 0x03

0x83061 0xC0 0xD0175 0x11

Part c (5 pts): Is the program run on System 1 or System 2? How do you know?

Circle one:

 System 1 System 2

Explain (30 character limit):
System 1 doesn’t support 2 byte PTEs

Partial given for c-e if you made an incorrect assumption earlier

Part d (5 pts): What is the 16-bit word that was stored?

Part e (5 pts): What is the value of R0, the base register?
Note: registers are large enough to contain a 32-bit VA.

6

x1103

x00006174

Name: ______________________________________

Problem 5: (20 pts): Consider a processor with byte-addressable memory and a single-level data
cache. The processor executes the following C code:

void CopyArray(int[] A, int[] B) {
 for(int i= 0; i< 6; i++) {
 int temp = B[i];
 A[i] = temp;
 }
}

The cache contains four sets. You don’t know the block size, nor the associativity of the cache.
To achieve better distribution of set accesses, this cache uses an interesting indexing scheme. The
8 leftmost bits of the address are used for the tag. However, to generate the 2-bit set index, bits
W and X are XORed with bits Y and Z. So, Set# = (W⊕Y)’(X⊕Z). See the format below:

 W X Y Z

T T T T T T T T Block Offset

You also know the following:

● Only accesses to A and B will access the cache.
● Cache blocks are at least large enough to contain an int data type, i.e. 32 bits.
● Both arrays start at the beginning of a cache block.
● There were 4 cache evictions during code execution.
● The cache is initially empty.
● The cache uses LRU replacement.

You are given the tags stored in way 0 of each set after program execution. The tags 0x3A and
0x75 shown below correspond to the cache blocks containing the fifth element of A and B,
respectively (i.e. when i = 4). Answer the questions on the next page.

Set V Tag stored in way 0 Tag Bits

0 1 0x39 0 0 1 1 1 0 0 1

1 1 0x39 0 0 1 1 1 0 0 1

2 1 0x3A 0 0 1 1 1 0 1 0

3 1 0x75 0 1 1 1 0 1 0 1

PROBLEM CONTINUES ON NEXT PAGE

7

Name: ______________________________________

Part a (5 pts):
Is this cache function valid? In other words, would using this cache avoid correctness problems
for all programs? Explain your answer briefly. If your answer is no, do not solve the rest of this
problem.

Yes, there are no aliasing problems, and no missing addresses. This is ensured because W and
X are also tag bits.

Part b (6 pts):
What is the cache block size? Hint: figure out the Y and Z bits of each cache block.

4B

Part c (4 pts):
What is the starting address of A and B?

A: 0x390

B: 0x748

Part d (5 pts):
Recall that there were 4 cache evictions during the execution of the program. What is the total
size of the cache?

32B

8

