

Department of Electrical and Computer Engineering
The University of Texas at Austin

ECE 460N/382N.1 Fall 2024
Instructor: Yale N. Patt
TAs: Anna Guo, Nadia Houston, Logan Liberty, Luke Mason, Abhay Mittal, Asher Nederveld,
Edgar Turcotte
Exam 2
November 13, 2024

Name: __

Problem 1 (20 points): _______

Problem 2 (25 points): _______

Problem 3 (25 points): _______

Problem 4 (30 points): _______

Total (100 points): ______________

Note: Please be sure that your answers to all questions (and all supporting work that is required)
are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested:
I have not given nor received any unauthorized help on this exam.

Signature: ___

GOOD LUCK!

Name: ________________________________

Question 1 (20 points): Answer the following questions.​
Note: For each of the four answers, if you leave the box empty, you will receive one point.

Part a (5 points): We have discussed several access methods to load and store values in storage.
One was Content Addressable Memory (CAM). Give an example of storage that uses CAM for
access and how that works, in 15 words or fewer.

Part b (5 points): Process A is running when it encounters an exception. Control goes to the
operating system which executes the relevant exception service routine. At what priority does the
service routine execute:

1.​ The same priority that Process A has been running at.
2.​ A priority higher than what Process A is running at.
3.​ A priority lower than what Process A is running at.

Explain in 15 words or fewer.

Part c (5 points): G-share modified my index to the pattern history tables by XORing each bit of
the n-bit history register with n-bits from somewhere else. What supplied the additional n-bits,
and why did it improve prediction accuracy? …in 15 words, of course!

PROBLEM CONTINUES ON THE NEXT PAGE

2

Name: ________________________________

Part d (5 points): On a context switch, some state associated with the process losing control of
the computer is saved. Which of the following is never saved: PC, condition codes, PBR, PLR,
SBR, SLR. Explain in 15 words or fewer.

3

Name: ________________________________

Question 2 (25 points):
A computer has physical memory with the following characteristics:

●​ The memory is byte-addressable
●​ There is one channel, one rank, two banks, 64 rows, and 16 columns
●​ There is a 32-bit memory data bus
●​ Row buffer hits take 10 cycles to return the desired data
●​ Row buffer misses take 50 cycles to return the desired data
●​ In the case of a bank conflict, the next access starts 1 cycle after the data is returned from

the previous access to that bank
●​ In the case of no bank conflict, the next access starts 1 cycle after the previous access was

started
●​ All row buffers start empty and there are no outstanding memory operations from before

cycle 0
●​ Memory requests are sent in order
●​ Data corresponding to a later memory access can arrive before the data corresponding to

an earlier memory access

Part a (4 points):
Given the above specification, how many bits of the physical address are required to specify each
of the following?

Channel

Rank

Bank

Row

Column

Byte-on-Bus

PROBLEM CONTINUES ON THE NEXT PAGE

4

Name: ________________________________

Part b (21 points):
The table below holds information about 6 memory accesses that are handled in order. Each row
contains the physical address of the access, the cycles during which the access started and ended,
and whether the access had a row buffer hit or bank conflict. Some of the entries have been filled
in for you.

Your job: fill in the missing entries, and the physical address format.

Physical Address Cycle Start Cycle End Row Buffer Hit Bank
Conflict

0000_0010_1000_0100 0 50 N N

0000_1100_0100_1001 1

0000_1100_0101_1000 62

0001_1100_0110_0110 63

0000_0010_1000_0111 64 Y N

0001_0101_0100_0110

Note: Each bit field in the physical address is contiguous (i.e. all the row bits are next to each
other, and all the column bits are next to each other). The byte-on-bus bits are the least
significant bits.

Use Ch for channel, Rk for rank, Bk for bank, R for row, C for column, and BoB for
byte-on-bus. You may not need to use all the provided bits or symbols. If so, place any unused
bits as X at the highest positions of the address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

5

Name: ________________________________

Virtual Memory
Problem 3 (25 points):
This question requires you to solve several problems dealing with virtual memory.
All of them are on the next page. Shown below is all the information you will need to solve them

●​ The machine is the LC-3b that has VAX-like 2-level virtual memory
○​ Byte-addressable, virtual addresses range from x0000 to xFFFF, little-endian

●​ System space ranges from x0000 to x7FFF; user space ranges from x8000 to xFFFF
●​ The computer is augmented to support unaligned accesses
●​ The machine has a 4-entry fully associative TLB with LRU replacement policy
●​ The TLB is initially empty and is not necessarily filled top-to-bottom.
●​ The virtual address is of the following format with a page size you must figure out.

Region VPN Page Offset

●​ The PTE is 2 bytes, and is zero-padded at the lower end.

V 000 PFN 0’s

The machine is running the code shown below:

 .ORIG x8000

 LEA R0, DATA

 LDW R1, R0, #1

 LDW R0, R0, #0

 STW R1, R0, #0

 HALT

 .END

 .ORIG x8080

DATA .FILL xCFFF

 .FILL x____

 .END

PROBLEM CONTINUES ON THE NEXT PAGE

6

Name: ________________________________

Below is the state of the TLB after the program at x8000 halts. Note: the TLB does not map
system pages.

V Region VPN PTE

1 1

1 1 x8580

1 1 x8480

0 1 x26 x8200

Some memory locations after the program halts are shown below:

VA PA Data

——— x07B0 x8040

x5800 x0100 x8600

x8000 x1800 xE03F

x8080 xCFFF

xCFFE x12FE x0066

xD000 x1600 x88EE

Part a (5 points): What is the page size?

Part b (8 points): During the execution of the first instruction, 3 memory accesses were made.
One at physical address 0x07B0, one at physical address 0x0100, and another one at physical
address 0x1800. Given this, what are the PBR and SBR?

Part c (12 points): Fill out the missing entries in the program, the TLB, and memory locations.

7

Page Size

PBR SBR

Name: ________________________________

Question 4 (30 points):
An Aggie has been asked to write a program segment to multiply two 3 by 3 matrices A and B.
However, instead of producing a 3 by 3 matrix where each element C[i, j] is formed by
computing the dot product of row i of matrix A and column j of matrix B, he incorrectly
produces a 3-element vector by computing the dot product of row i of matrix A and row i of
matrix B.

Matrix A, Matrix B, and the result of his incorrect process are shown below.

The Aggie stores Matrices A and B in memory in column-major order and his result vector in
three consecutive memory locations. The base address of matrix A is xD540, the base address of
matrix B is x3D80, and the base address of his result vector is xED10. All other variables are
stored in registers. All three arrays begin at the start of a cache line. His program segment is
shown below:

int A[9] = generate_array(); // Generates an array for A
int B[9] = generate_array(); // Generates an array for B
int results[3] = {0, 0, 0};
clear_cache(); // Function that guarantees the cache is empty

for (int i = 0; i < 3; i++) {

int temp = 0;
for (int j = 0; j < 3; j++) {

int A_val = A[(j * 3) + i]; // Memory Access
int B_val = B[(j * 3) + i]; // Memory Access
temp += A_val * B_val;

}
results[i] = temp; // Memory Access

 }

PROBLEM CONTINUES ON THE NEXT PAGE

8

Name: ________________________________

He executes the program segment on a computer having the following characteristics:
●​ Memory is byte-addressable.
●​ The integer data type is 32 bits.
●​ The computer has a 1KB (1024 bytes) data cache with perfect LRU replacement.

To get the 3-element vector he has to execute the loop body of his code three times. The
following table shows the result (HIT or MISS) of each access to the cache for each iteration of
the loop body.

Iteration 0 (i=0) Iteration 1 (i=1) Iteration 2 (i=2)

MISS
MISS
HIT
HIT

MISS
MISS
MISS

HIT
HIT

MISS
MISS
HIT
HIT

MISS

HIT
HIT

MISS
MISS
MISS
MISS
MISS

Hint: The index and tag bits may not be contiguous (the line offset bits are still contiguous).
The next page contains a table for scratch work.

Part a (2 points): Given the information above, what is the size of a cache line?

Part b (4 points): What is the associativity of the cache?

Part c (4 points): How many sets does the cache have?

Part d (20 points): Indicate which bits of the address are used for tag, index, and offset

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address:

 PROBLEM CONTINUES ON THE NEXT PAGE

9

Name: ________________________________

This page is only meant for scratch work and will not be graded. You should not have to fill
out the entire table to solve this problem

Iteration 0 (i=0) Memory Address (in binary)

MISS
MISS
HIT
HIT

MISS
MISS
MISS

1 1 0 1
0 0 1 1

1 1 1 0

0 1 0 1
1 1 0 1

1 1 0 1

0 1 0 0
1 0 0 0

0 0 0 1

0 0 0 0
0 0 0 0

0 0 0 0

Iteration 1 (i=1) Memory Address (in binary)

HIT
HIT

MISS
MISS
HIT
HIT

MISS

Iteration 2 (i=2) Memory Address (in binary)

HIT
HIT

MISS
MISS
MISS
MISS
MISS

10

