

The University of Texas at Austin

Department of Electrical and Computer Engineering

Instructor: Yale N. Patt (<https://users.ece.utexas.edu/~patt>)

Office: EER 5-802

Phone: 512-471-4085

Email Address: patt@ece.utexas.edu

Office Hours: MW 6:30pm to 7:30pm, and by appointment

Class Schedule: Lecture, MW 5 to 6:30 in Room ECJ 1.204

Discussion section: TBD

Course Title: Microarchitecture.

January 12, 2026

Course Descriptor and Syllabus

Objectives of the course -- ECE 382N.19 is intended to provide a serious introduction to microarchitecture at the graduate level.

At one time, I thought ECE 382N was only for the serious graduate student who is interested either in PhD research in microarchitecture or in an industrial position on a leading edge microarchitecture project. However, I have consulted on enough application-specific chips over the past several years that I now believe this course can be useful to the serious student of embedded processors, VLSI circuit design, and hardware/software codesign, to name a few disciplines that are not microarchitecture-centric, but do require more than a casual acquaintance with microarchitecture. In fact, most people are coming around to the notion that the microprocessor of the future will have lots of accelerators -- the specification of those accelerators will benefit from the collaboration of the microarchitect and someone specifically knowledgeable about the task to be accelerated.

ECE382N.19 is known for being a lot of work, so you should check with your research advisor to make sure it is right for you, and check with graduate students who have previously taken the course to be sure you are aware of the amount of work involved.

As in everything else I teach, the emphasis in ECE 382N.19 is on deep understanding of fundamental principles, so that students will be better prepared to carry on original research or take their places on design teams charged with pushing the frontiers of what one can do in (or with) a microprocessor. We expect to accomplish this objective in two ways:

(1) Each student will participate as a member of a design team to complete a substantial design of a CPU for a subset of a commercially available modern microprocessor. We will use a

subset of Intel's x86 ISA. In the prerequisite course, ECE 460N (formerly EE 360N), students complete the implementation of a simple microprocessor, the LC-3b. But, in that project, the baseline datapath, state machine, and control signal definitions were all provided. This time you get to start with a clean sheet of paper and design the data path, microsequencer, microprogrammed or hardwired control, microcode or logic (as you deem appropriate) from scratch. You will also design an interface to memory & I/O, and select and interconnect all the parts to implement all of the above. The design will be done at the logic gate level in structural-level Verilog where the design will be concerned with timing issues (propagation delay, cycle time). You will do all this as a member of a small design team. The design may be an aggressive pipeline, or a more conservative microarchitecture; that is up to you! Our expectation is that each student will come out of this experience more fully appreciating the problems that come up in designing the microarchitecture for a general-purpose ISA.

(2) Lectures, in addition to dealing with design issues relevant to the project, will discuss in depth many of the important current hot topics in high-performance microarchitecture, and an awareness and appreciation of the field of computer architecture, particularly alternative design styles and implementation tradeoffs. For example, although we will certainly discuss the key current hot topics that make up the latest superscalar microprocessors, we will also give some time to other microarchitecture ideas that make sense when superscalar is not the right answer. One instance of this is the GPU, which lately is being heralded as "the answer," ...and for certain applications it is. We will discuss why that is the case. Another example is spatial computing, where the microprocessor resembles a systolic array -- again the right answer for **some** applications. Some of the topics we may deal with involve instruction supply, data supply, and instruction processing, compile-time/run-time tradeoffs, very aggressive branch prediction, wide-issue processors, in-order vs. out-of-order execution, and instruction retirement. Now that just about all chips are multi-core, we may examine various different approaches as to what a multicore chip should look like. For example, SUN Microsystems, before it became part of Oracle, introduced Niagara which looked nothing like IBM's Cell processor, and even less like even the early Core Duo or Quad core from Intel, back in the day when most designers were advocating identical cores on a many-core chip. Fortunately, we have outgrown that nonsense, and most people are finally convinced that the microprocessor should be made up of heterogeneous cores, not identical cores. We will discuss various design points, in particular the notion that energy consumption is a first-class constraint, mollifying what we are allowed to aspire to in the way of performance. We will

study the challenges presented by the end of Dennard Scaling which has already happened, and the end of Moore's law which is soon to follow, although not before a chip contains fifty billion transistors operating at a clock frequency of 10 GHz.

Relevance of ECE 382N.19 to careers in microarchitecture -- This course provides a fundamental body of knowledge useful to graduate students who plan to do PhD research in microarchitecture or plan to seek employment in the microprocessor industry upon completion of their degree.

With respect to PhD research, several major IEEE and ACM conferences deal specifically with research results from this field, including ISCA, MICRO, HPCA, ASPLOS, PACT, and ICS. Several prestigious journals publish research based on the foundation material taught in this course. To get research ideas in the hands of the research community, IEEE introduced Computer Architecture Letters, charged with rapid publication of short articles on breakthrough advances in the field. Notwithstanding some ill-advised pronouncements by some who should know better that computer architecture is dead, there does not appear to be any lessening of interest in this material in the research community.

With respect to the microprocessor industry, companies seek graduates who have the insights acquired from this course. Many major employers of our graduates (Intel, ARM, Apple, Nvidia, IBM, AMD, and Oracle, for example) have an increasing need for graduates who have these insights.

Where I am coming from -- Here is a list of topics I would like to discuss this semester:

1. Introduction and Focus
2. ISA tradeoffs
3. uarch tradeoffs
4. System tradeoffs
5. Run-time optimizations
6. Compile-time optimizations
7. Branch Prediction
8. Single thread parallelism
9. Multiple thread parallelism
10. GPUs (Combining SMT, Predication, and SIMD)
11. Spatial Computing (FPGA-centric)
12. Accelerator-centric microarchitectures
13. Integer Arithmetic.
14. Floating Point Arithmetic.
15. Cache Coherency
16. Memory consistency
17. Measurement methodology and abuses

18. RISC: A retrospective
19. Multi-core, Mega-Nonsense
20. The microprocessor of the year 2036
21. My sense as to the critical requirements for the future
22. Guest lectures from local industry
23. Last class meeting. The free for all

We will undoubtedly not get to all of the topics for several reasons: (1) there is too much to cover in one semester. (2) Simply "covering" the material is not something I particularly aspire to. Furthermore, we will probably not even cover the topics in the order I have shown, regardless how much I plan to do so today.

My objective in our class meetings is to explore ideas that will be useful to your future research and/or your future work in industry. My view of research is that if you know the outcome before you start the project, then I am not interested in the work as "research." Maybe "product development" which is also a legitimate undertaking, but not research. I want you to think critically about what you read, and explore creatively what might be possible. If that causes us to spend three times as much time on a topic as we might otherwise if we covered the topic from my notes, it will not make me unhappy. If we get the material from my notes to yours without going through the brains of either of us, that will make me very unhappy.

Lest anyone think this is intended to encourage wild-eyed departures from fundamental knowledge and reasoning, let me assure you that the one thing we always try to do is tie everything we discuss to the fundamentals. My hope is to encourage you to combine grounding in the mastery of the fundamentals, with critical reading and analysis, and creative thinking.

CAD Tools -- For the project, we will be using a modern set of CAD design tools, provided by Synopsys, which use the Verilog design language. We will provide sufficient introductory material and examples to help you get started with these tools. Mastery of the tools is not an end in itself; on the contrary, the tools are expected to be a means to enhance your productivity in completing the project. **You are encouraged to help each other master the tools**, so that we can all get on with the business of carrying out our designs.

I should add that I get a lot of unhappy grief from some students and a few colleagues who bemoan what they perceive as tedium in dealing with structural-level Verilog. We will attempt to address that problem early this semester with some tools which in the long run should greatly reduce the amount of perceived

tedium. Some have suggested getting rid of structural-level Verilog altogether, which indeed would save us time. But that would eliminate serious consideration of timing and cycle time, which I consider too important to deprive you of. I get arguments all the time that we could use the time saved to enhance our base design with some interesting additions, like one or more serious accelerators, a serious branch predictor, etc. My response is that those additions, if done without considering timing, would be superficial, which I am not interested in encouraging.

Finally, an important caveat -- My experience from teaching this course has been that the design project requires a much larger amount of time to complete than most students expect to be the case at the beginning of the semester. If this semester goes as the ones before it, you will be pleased with what you have accomplished after the semester is over. But during the semester, sometimes after a few consecutive sleepless nights, you may wonder what lapse in sanity caused you to sign up. Please consider this as you organize your workload for the semester.

Meeting Info: The course consists of three hours of lecture plus one 1 1/2 hour discussion session each week. Lectures will be MW from 5 to 6:30pm in ECJ 1.204. In addition, our TAs will hold weekly discussion sessions, starting the first week of class. I will let you know the room assignment for the discussion sessions as soon as I have it. If you have trouble attending discussion sessions, please let me know.

You will find that the discussion sessions are very important to your successful completion of the course. My TAs have all taken ECE 382N.19. You will find them a valuable resource, and I encourage you to take advantage of them. If you plan on taking this course, it is important that you avail yourself of the help they can provide. Although it is always the case that all class meetings, both lecture and discussion sessions, are optional (we never take attendance), you are advised that it is probably not a good idea to sign up for this course unless you do plan to attend both lectures and discussion sessions.

TAs: Orhan Unuvar, email: orhan.unuvar@utexas.edu
Asher Nederveld, email: asher nederveld@utexas.edu
Edgar Turcotte, email: eturcotte@utexas.edu

Course Home Page: <https://users.ece.utexas.edu/~patt/26s.382N>

Textbook: There is no required text. References from the research literature will be suggested where appropriate, depending on the topic. I expect to provide handouts on additional material when I feel it is useful. Also, some of the lectures will use transparencies. In those cases, you will be provided with copies of the transparencies. From time to time, relevant material will

be available for downloading on the course home page.

Prerequisites: Satisfactory completion of courses covering the material of ECE 316 and 460N (or 360N) with a grade of A, or consent of the instructor. If you are concerned about whether you are prepared to take 382N, please do not hesitate to meet with me privately.

Homework policy: Homework consists of three types: (1) problem sets, scheduled at the beginning of the semester to get students ready for the major term project of the course, (2) individual problems assigned in class from time to time as I feel appropriate to test your comprehension of a point or to get you to take the point we are discussing to the next level, and (3) the major design project.

Quizzes and Exams: There will be two exams, a written exam in class, and an oral exam during the week before Spring break. There will be no final exam. Also, I do not expect to give a make-up exam except in rare and well-documented circumstances.

The written exam will be closed-book, with two exceptions: (1) Students may bring into the exam three sheets of paper on which they have written anything they wish. The intent is to make memorization unnecessary. All three sheets must be original sheets (not printed nor xeroxed) in the student's own handwriting. (2) The student may also bring into the exam any handouts that have been expressly permitted by the instructor prior to the exam.

The oral exam will be an individual exam in my office, EER 5-802, at a time suitable to fit each student's schedule. It will be 30 minutes in length. Students will be free to bring whatever reference material they wish to the oral exam.

Grading mechanics: Three major items will contribute to your grade in this course: the major design project, scores on the two mid-term exams, and homework and problem sets. You will note below that I have allocated 8% of your grade to "other" to give the TAs and me some flexibility to include in our subjective evaluation of your performance in the course.

The items will be weighted, approximately as follows:

exams, 28%
major design project, 57%
homework, problem sets, etc., 7%
other, 8%

Final Exam: There will be no final exam in this course. In lieu of a final exam, there will be a final design review of the design project, and a final design project report. The final design project report will be due in EER 5-802 on May 3, 2026, the date reserved for final exams in courses meeting Monday/Wednesday at 5pm.

Cheating: Students are encouraged to work together BEFORE both exams to study for the exams. However, in the case of the oral exam, students are NOT permitted to discuss anything about the oral exam with ANYONE once the oral exam period has started (March 9-13) until the last student has taken the oral

exam. In the case of the written exam, no aid may be given or received during the exam. In the case of the individual design assignments (Problem sets 1, 2, 3, and 4), students may not receive help from anyone other than the instructor or TAs. In the case of the design project, students are encouraged to work together with other students in the class to learn/understand the design tools, but to work only with the members of their design project group on the group project.

Any violation of the above paragraph constitutes academic dishonesty and will be directed to the Dean of Students for Disciplinary Action. If you are not clear as to what is permissible and what is not, please ask the instructor or one of the TAs. Failure to ask ahead of time, and later invoking the statement, "I thought it was ok to do" does not constitute an acceptable excuse. If you need help on any aspect of the course, you are welcome to contact the Instructor or one of the TAs.

Course evaluation: The MEC Common Evaluation form will be used to evaluate the instructor and TA in this course.

Additional details:

I am asked to remind you to consult the University policy on the deadlines for adding/dropping courses. If you need help with this, please check with me or the TAs.

I have included a list of dates that may be of use to you in this course:

January 12: First class of 382N.19
January 15: Last day for a grad student to add a course
January 19: Martin Luther King, Jr. Day; no class
January 20: Last day for an undergrad to add a course
January 21: Problem set 1a due before class
January 26: Problem set 1b and the Student Information Sheet due before class
January 28: (12th class day) Last day to drop a class without permission
February 2: Problem set 2 due before class.
February 9: Problem set 3 due before class.
February 16: Problem set 4 due before class.
February 17: Groups can start working together.
February 26-27: First design review
March 2: No class
March 4: Written exam.
March 9-13: Oral exam in my office, EER 5-802
March 16-21: Spring break
April 13: Last day a grad student can change to/from CR/NC
April 15: Last day an undergrad can Q-drop or change to/from Pass/Fail
April 27: Last class day (free for all)
April 27: Final design review
April 27: Last day an undergrad with approvals can request a non-academic Q-drop
April 27: Last day a grad student may with approvals drop a class
April 30, May 1,2,4: Final exams. No final exam in ECE 382N.19
May 3: Final project report due in EER 5-802, 10pm (Note: There will be no final exam in this course.)

Allegations of Scholastic Dishonesty will be dealt with according to the procedures outlined in Appendix C, Chapter 11, of the General Information Bulletin, <https://catalog.utexas.edu/general-information/>.

The University of Texas at Austin provides, upon request, appropriate academic adjustments for qualified students with disabilities. For more information, contact the Office of the Dean of Students at 471-6259, 471-4241 TDD, or the College of Engineering Director of Students with Disabilities, 471-4321.

Finally, for those of you who decide to continue in this course, Good Luck. I hope you find the experience an important part of your computer engineering education. I also hope you have a good time doing it.