
1

Architecture Styles

EE 382-V
Siddharth Balwani and Khalid Ghori

Overview

Brief Introduction
Classification of Architectural Styles
Style Examples
Architectural Styles from Component
Specifications
Implementation
Architecture Style Determination
Conclusion

Brief Introduction

What is :
Software Architecture

Components
Connectors
Constraints

Architectural Style
Why?

Improve Design Cycle time
Quality of Software System
Evolution of the System

How ?

Classification of Architectural Styles

Classification categories:
Constituent Parts: i.e. components and connectors
Control issues
Data issues
Control/Data Interaction
Type of Reasoning

2

Components and Connectors

Component: A unit of software that performs
a function at run time: e.g. programs, objects,
processes and filters
Connectors: Mechanism that mediates
communication, cooperation or coordination
among components. eg: shared
representations, remote procedure calls,
transaction streams
Not Enough to Define a whole Architectural
Style

Control Issues

Topology:
Geometric form of control flow of system:

Pipeline has a linear topology
Server Systems have a Star topology (hub and spoke)
Sequential processes have arbitrary topology

Synchronicity:
Individual components dependence on another’s
control state. eg: SIMD algorithms on parallel
machines.
Types: Synchronous, Asynchronous,
Opportunistic

Control Issues (continued)

Binding Time:
When is identity of collaborating component in
transfer-of-control-operation established?
Three possibilities: program Write time, Compile
Time, Invocation time (when OS initializes process),
Run Time

Data Issues

Topology:
Geometric Shape of Systems data flow graph. Same
possibilities as Control flow.

Continuity: 2 dimensions:
Continuous, Sporadic
High Volume (data intensive), Low Volume (compute)

Mode: How data is made available throughout the
system

Shared
Broadcast, Multicast
Passed around

3

Data Issues (continued)

Binding Time:
Analogous to issue in Control Flow .

i.e. When is identity of collaborating component in
transfer-of-control-operation established?

Control/Data Interaction Issues

Shape:
Isomorphism in Control/Data topologies

Directionality:
Control flow in:

same direction (pipe and filter)
or opposite (client-server)

Type of Reasoning

Type of analysis used:
Eg:

Non deterministic state machine theory (for
asynchronous systems)
Function composition (for system executes as fixed
sequence of steps)

Choice of Architecture may be influenced by kind
of analysis required.

Architectural Styles

1. Dataflow Styles (Styles dominated by motion of
data through system)

Dataflow network
Component:
Connectors:
Control Topology:
Control Synchronicity:
Binding time:
Data Topology:
Data Continuity:
Data Mode:
Data binding time:
Control/Data Interaction:
Flow Direction:
Type of Reasoning:

4

Architectural Styles

1. Dataflow Styles (Styles dominated by motion of
data through system)

Dataflow network
Component: Transducer
Connectors: Data stream
Control Topology: Arbitrary
Control Synchronicity: Asynch
Binding time: Run time
Data Topology: Arbitrary
Data Continuity: Continuous, low or high vol
Data Mode: Passed
Data binding time: Run time
Control/Data Interaction: isomorphic shape
Flow Direction: Same
Type of Reasoning: Functional composition

Architectural Styles

2. Call and Return Style (Dominated by order of
computation, Single thread of control)

Main program/subroutine
Component:
Connectors:
Control Topology:
Control Synchronicity:
Binding time:
Data Topology:
Data Continuity:
Data Mode:
Data binding time:
Control/Data Interaction:
Flow Direction:
Type of Reasoning:

Architectural Styles

2. Call and Return Style (Dominated by order of
computation, Single thread of control)

Main program/subroutine
Component: procedures, data
Connectors: procedure calls
Control Topology: Hierarchical
Control Synchronicity: Sequential
Binding time: Write/Compile time
Data Topology: Arbitrary
Data Continuity: Sporadic, low volume
Data Mode: Passed and shared
Data binding time: Run time
Control/Data Interaction: not isomorphic
Flow Direction: N/A
Type of Reasoning: Hierarchy

Architectural Styles

3. Interacting Process Style (Dominated by Communication
patterns among independent processes)

Client-Server
Component:
Connectors:
Control Topology:
Control Synchronicity:
Binding time:
Data Topology:
Data Continuity:
Data Mode:
Data binding time:
Control/Data Interaction:
Flow Direction:
Type of Reasoning:

5

Architectural Styles

3. Interacting Process Style (Dominated by Communication
patterns among independent processes)

Client-Server
Component: Processes
Connectors: Request/Reply message
Control Topology: Star
Control Synchronicity: Synchronous
Binding time: Write/Compile/Run time
Data Topology: Star
Data Continuity: Sporadic, low volume
Data Mode: Passed
Data binding time: Write/Compile/Run time
Control/Data Interaction: Isomorphic
Flow Direction: Opposite
Type of Reasoning: Non Determinism

Architectural Styles

4. Data-centered Repository Style
Transactional Database

Component:
Connectors:
Control Topology:
Control Synchronicity:
Binding time:
Data Topology:
Data Continuity:
Data Mode:
Data binding time:
Control/Data Interaction:
Flow Direction:
Type of Reasoning:

Architectural Styles

4. Data-centered Repository Style
Transactional Database

Component: memory, computation
Connectors: Queries
Control Topology: Star
Control Synchronicity: Asynchronous, Opportunistic
Binding time: Write time
Data Topology: Star
Data Continuity: Sporadic, Low volume
Data Mode: shared, passed
Data binding time: Write time
Control/Data Interaction: Isomorphic shape
Flow Direction: Opposite
Type of Reasoning: ACID (Atomicity, Consistency, Isolation,
Durability)

Architectural Styles

5. Data sharing Styles
Hypertext

Component:
Connectors:
Control Topology:
Control Synchronicity:
Binding time:
Data Topology:
Data Continuity:
Data Mode:
Data binding time:
Control/Data Interaction:
Flow Direction:
Type of Reasoning:

6

Architectural Styles

5. Data sharing Styles
Hypertext

Component: Documents
Connectors: Hyperlinks
Control Topology: n/a
Control Synchronicity: n/a
Binding time: n/a
Data Topology: Arbitrary
Data Continuity: Continuous
Data Mode: Shared
Data binding time: Write/Compile/Run time
Control/Data Interaction: n/a
Flow Direction: n/a
Type of Reasoning: Representation

Architectural Styles
6. Hierarchical Style (Dominated by reduced coupling, with
resulting partition of a system into subsystems with limited
interaction)

Virtual Machine
Component:
Connectors:
Control Topology:
Control Synchronicity:
Binding time:
Data Topology:
Data Continuity:
Data Mode:
Data binding time:
Control/Data Interaction:
Flow Direction:
Type of Reasoning:

Architectural Styles
6. Hierarchical Style (Dominated by reduced coupling, with
resulting partition of a system into subsystems with limited
interaction)

Virtual Machine
Component: Memory, State machine
Connectors: Direct Data Access
Control Topology: Hierarchy
Control Synchronicity: Synch
Binding time: Write/Compile time
Data Topology: Hierarchy
Data Continuity: Continuous
Data Mode: Shared
Data binding time: Write/Compile time
Control/Data Interaction: No isomorphic shape
Flow Direction: n/a
Type of Reasoning: Levels of Service

Design Guidance

Choose appropriate style to fit the requirements
(mapping)
Some simple rules of thumb

Problem: Sequential stages decomposition of problem
Solution: batch sequential or pipeline architecture
Problem: Understanding long lived data, its management &
representation. Solution: Data Repository
Problem: Computation designed, but no machine to
execute it. Solution: Interpreter
Problem: Embedded system controlling continued action.
Solution: Closed loop Architecture
Problem: High Degree of flexibility & with loose coupling.
Solution: Interacting Processes

7

Predicting Architectural Styles from
Component Specification

Idea: Why not use component specifications
to determine architectural style

Different architectural styles support different
quality attributes
Quality attributes of a system are determined by
system requirements
Ability to predict architectural style of a system will
helps us determine whether desired quality
attributes will be satisfied

Predicting Architectural Styles from
Component Specification

Query a component repository with detailed
architectural specifications
Determine whether components returned by
the repository conform to any specific
architectural style
Identify a set of these that conform to a
desired architectural style and hence meet
desired quality attributes

Implementation

System Integrator identifies list of services
that is to be implemented using pre-built
components
Components have been specified using asset
specification model. Brief overview of
architectural and asset specification models
follows.

Specification model

Architectural element specification :
Enables Functional Partitioning and object orientation.

8

Arch Functionality Specification Arch Non-functionality Specification

Specification models

Asset component specification
Asset Specification same as architectural specification

except that it has a certification specification
describing dependability.

Determining Architectural Style

Components, Connectors: Returned by database.
Does not by itself uniquely identify style.
Control Factors:

Topology:
1. Select service from scenario list
2. If last service go to 8
3. Pick component from repository that is registered to service

and has highest value service complaint metric
4. Add component to control flow (CF) list
5. For all input events for this components identify components

that generates corresponding output events
6. For all its output events identify the components that

consumes them
7. Goto step 1

9

Control Factors, Topology

Analysis

8. If all component occur only once in the CF then topology linear
9. If component follow hub-and spoke pattern then control

topology is Star
10. If component follow tree like pattern then hierarchical
11. If first element is different from the last in CF then Acyclic
12. Else, Arbitrary

Control Factors, Synchronicity

Use control flow list (CFL) developed during
topology to determine synchronicity

1. In CFL, if output events of one component are same as
input events of next component , this its synchronicity is
sequential

2. In CFL, if list of output events of all preceding components
exactly match the input events of next component then
synchronous

3. In CFL, if input events of all components corresponds to
output events of same component then synchronicity is
opportunistic

4. In CFL, if synchronicity not determined in steps 1-3 then it
is asynchronous

Control Factors, Binding time

Can not be used for classification

Data Factors

Topology :
Almost same process as Control Factors
Topology.
In control factors, we identify all components that
generate input events and all those that consume
output events. This is NOT TRUE in data
topology. Consumption of all generated data
needn’t be analyzed.

10

Data Factors

Continuity
If component requires input data to execute
service and generates output data after executing
the service, system of components is continuous
Else it is sporadic

Binding time, Mode
Do not use for style distinction

Control/Data interaction

Shape:
If control and data topologies are seen to be the
same then shape of control data interaction is
isomorphic, else non isomorphic

Directionality
Not considered for distinction

Architectural Style Determination

1. System integrator specify scenario or which
a software config needs to be built from the
services specified in the Architecture
Functionality Specs

2. For each service identify the component
that is the best fit.

3. Make a note of the type of most common
component in Base Component List.

4. Make a note of the type of most common
connectors in Base Component List.

Architecture Style Determination

5. Determine Control Topology, develop CFL
6. Determine Control Synchronicity
7. Determine Data Topology, develop DFL
8. Determine Data Continuity
9. Determine Shape of control/data interaction
10. Reference Table to determine which

architecture is to be used.

11

Architecture Style Table Conclusion

Described Division of Architectural Styles.
How to identify a style, what it consists of .

Reasoned about architectural styles using
component specifications obtained from a list
of components, using system requirements.

Questions?

