
1

Collaborative Software Design & Development

© 2005, Dewayne E Perry

Lecture 2

EE 382V – Spring 2008

Collaborative Software Design &
Development

Architecture

Dewayne E Perry
ENS 623A

Office Hours: T/Th

10:00-11:00
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/382V-s08/

2

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Introduction
70s focus: software design
80s focus: integration of design aspects into
programming languages
80s advance: description and analysis advances (eg,
notation and typing) enable us to reason more
effectively
90s: the decade of software architecture
00s: the decade of product line architectures,
frameworks, COTS

3

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Developing an Intuition
Hardware Architecture

Multi-processor, pipe-lined, RISC
Interesting architectural points

Relatively small number of pieces
Scale: replication of components

BUT in software architecture
Exceedingly large number of components
Scale: not by replication but by addition of distinct pieces

Similarities, but fundamental differences
Network Architecture

Star, ring, manhattan street networks
Interesting architectural points:

2 components: nodes and interconnections
Small number of topologies

BUT in software architecture
Can abstract to this level
Large variety of topologies
Few named topologies

Do talk of distributed/message-passing architectures

4

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Developing an Intuition
Building architecture: interesting architectural points:

Multiple views
Elevation, floor plans
Scale models, structural, etc

Architectural styles
Specify constraints on design elements
Specify constraints on formal relationships

Relationship between architectural style and engineering principles
You don’t get perpendicular style from romanesque engineering

Relationship between architectural style and building materials
You don’t get skyscrapers from wooden post and beam construction

Insights
Multiple views for insight and understanding
Styles as a cogent form of codification
Engineering principles are basic
Material properties are basic

5

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Context: Where Does Architecture Fit?
Requirements:

Information and processing
Characteristics of information/processing

Architecture:
Elements and interactions
Constraints on elements/interfaces (properties, relationships)

Design:
Modularization and interfaces
Algorithms/procedures and types

Implementation:
Algorithm/procedure representations
Type representations

Caveats
Different evaluations at different levels
More of a continuum of refinement
Requirements not so pure in practice; often contain

Architectural constraints
Design constraints
Implementation constraints

6

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Motivation
Cost factors in software architecture

Evolution
Customization

Two architectural problems due to evolution
Architectural erosion: violation of architecture
Architectural drift: insensitivity to architecture

Uses of SW Architecture
Prescribe constraints to desired level

Indicate restrictiveness/permissiveness
Define necessity and luxury
Pin-point relativeness and absoluteness
Ie, support principle of least constraints

Separate aesthetics from engineering
Express different aspects in appropriate manner
Perform dependency and consistency analysis

7

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Standard Definitions & Our Model
“the art or science of building: especially designing
and building habital structures”
“A unifying or coherent form or structure”

Software Architecture =
{
Elements,
Form,
Rationale

}

8

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Our Model
Three kinds of elements:

Processing elements supply transformations on data elements
Data elements contain the information that is used and
transformed
Connecting elements are the “glue” that holds the various
elements together – define the interactions

[now often referred to as “components and connectors”]
A logical separation of processing/data and interaction

Form: Consists of weighted properties and
relationships

Weighting indicates load-bearing vs decoration
Indicates importance
Indicates alternatives

Properties constrain the choice of elements
What is not constrained is allowed

Relationships constrain the “placement”
Ηow elements interact
Ηow elements are organized

9

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Our Model
Rationale:

Justification of various aspects of the architecture
Economic considerations
Performance considerations
Reliability considerations
Functionality considerations

Makes explicit connections between aspects of the
architecture and considerations
Make explicit interconnections with various aspects of
requirements
The basis for performance analysis and simulation with
respect to the various aspects of requirements

10

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Architectural Style
Abstracts elements and formal aspects

Possibly less complete
Possibly less constrained

Eg, multi-process style, object oriented style

A continuum – one’s architecture may be another’s
style
Importance of style

Encapsulates important decisions
Emphasizes important constraints
Coordinates multiple architects
Help prevent drift and erosion

Styles may be global, regional, or local

11

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Element Interdependence
Important insight: multiple views
Note the following observations:

A process view emphasizes data flow
A data view emphasizes process flow
A connector view emphasizes how various data and processing
elements interconnect and interact

All three views important and interdependent
Properties differentiate data states
Properties result from process transformations
Connectors must preserve or satisfy certain properties

Want to move freely between the views

12

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Example: Compiler Architecture
Multi-phase Architectural Style
Sequential Architecture
Parallel Process, Shared Data Structure Architecture

Multi-phase Architectural Style
Processing elements:

Lexer, Parser, Semantor, Optimizer, Code Generator
Data Elements:

Characters, Tokens, Phrases, Correlated Phrases, Annotated Phrases,
Object Code

Connecting Elements:
(none specified)

Some Data Element Relationships
Characters

_ _
Tokens

|_____| |_________| |__| |_____| |_____| |__| |_____| |__|
Phrases

|_____| |_____________| |____________| |__| |_________|
Correlated Phrases

|_____________________________|
|_______________________________|

13

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Character/Token Relationship
Processing view: Lexer: C -> T, where T preserves C
Data View: Let C={c1, c2, …, cm} be a sequence of characters
representing a source text, Cij I<=j be a subsequence of C
whose elements are all the elements in C between ci and cj
inclusive, T={t1, t2, …, tn} be a sequence of tokens, and
indicate the correspondence between a token in T and a
subsequence of C. T is said to preserve C if there exists an I,
j, k, q, r and s such that 1<I<j<=m, 1<k<n, 1<q<=r<m , and
for all t in T there exists a Cxy such that:

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≅

≅

≤≤+
−≤≤

∃=

=

=

≅

+
+

−−

1
1

11

1
1

1
11

,

r
vk

u
qk

k
q
r

n
j

m

i

Ct

Ct
mvr

qu

vuwherettifC

ttifC

ttifC

t

14

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Lexer/Parser Relationship: Connector View
Connectors must ensure that the tokens produced by
the lexer are preserved for the parser, such that
the order remains intact and that there are no
losses, duplicates, or spurious additions

Sequential Compiler Architecture
Connectors:

Procedure call and Parameters
Refine:

Identifier tokens Name Table (NT)
Phrases Abstract Syntax Tree (AST)
Correlated phrases Abstract Syntax Graph (ASG)
Annotated phrases Annotated ASG

15

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Partial Processing View

Lexer

Parser

Semantor

Optimizer

Code
Generator

Tokens(NT)
P

hrases
(N

T + A
ST)

Correlated Phrases
(NT + AST)

Corre
lated Phrases

(NT + ASG)

Annotated Cor. Phrases

(NT + AASG)

Characters

Object Code

16

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Application-Oriented Properties
Describe data-structure states of interest to processing
elements
Examples:

Controlling processing order
Help define the effects of processing
Help define abstract operations needed by processing elements

Partial Data View
has-all-tokens:

a state produced as a result of lexically analyzing the program text,
necessary for the parser to begin processing

has-all-phrases:
a state produced by the parser, necessary for the semantor to begin
processing

has-all-correlated-phrases:
a state produced by the semantor, necessary for the optimizer and code
generator to begin processing

has-all-optimization-annotations:
a state produced by the optimizer, preferred for the code generator to
begin processing

17

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Partial Data View

has-all-tokes

has all
phrases

has-all-
correlated-

phrases

has-all-
optim iz.-
annota.

Lexer
Parser

CodeGenerator
Semantor

Optim izer

CodeGenerator

18

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Sequential Compiler Architecture: Summary
The form descriptions must include the relationships
and constraints among the elements, including
relative weightings and preferences
Current type-based schemes for characterization
elements are insufficient
There is a natural interdependence between the
processing and data views that can provide
complementary descriptions of an architecture

Parallel Process, Shared Data Structure Architecture
Connecting Elements:

Shared Representation
Parallel Execution with Eager Evaluation

19

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Partial Processing View

Lexer

Parser

Semantor

Tokens

Characters

Internal
Representation

Tokens

Phrases

Phrases

Correlated Phrases

20

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Application-Oriented Properties

>1 processing elements affecting state of
representation
Concurrent access to data structure
Need coordination and synchronization

no-tokens

no-phrases

no-correlated-phrases
has-token

has-phrase

have-correlated-phrases
will-be-no-more-tokens

will-be-no-more-phrases

all-phrases-correlated

21

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Connector/Data View
Parallel Path Expressions for each data element
(no-tokens, has-token+)*, will-be-no-more-tokens, has-token*, no-tokens
(no-phrases, has-phrase+)*, will-be-no-more-phrases, has-phrase*, no-phrases
no-correlated-phrases, (have-correlated-phrases)*, all-phrases-correlated

Parallel Path Expressions relating data elements
will-be-no-more-tokens, will be-no-more-phrases, all-phrases-correlated
has-token+, has-phrase
has-phrase+, has-correlated-phrase

Processing View
Parallel Path Expressions for each processing element
lexer:

(no-tokens, has-token+)*, will-be-no-more-tokens
parser:

no-phrases, (has-token+, has-phrase)*,

will-be-no-more-tokens, (has-token+,

has-phrases)*, no-tokens, will-be-no-more-phrases

semantor:

no-correlated-phrases, (has-phrase+,

has-correlated-phrases)*, will be-no-more-phrases,

(has-phrase+, has-correlated-phrases)*,

no-phrases, all-phrases-correlated

22

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Relating Architectures

Sequential Arch

Parallel Arch
has-all tokens

will-be-no-more-tokens
has-all phrases

will-be-no-more-phrases
Has-all-correlated-phrases

all-phrases-correlated

23

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Parallel Process, Shared Data Structure
Compiler Architecture: Summary

The processing elements are much the same as in the
previous architecture, but with different “locus of
control” properties
The form of this architecture is more complex than
that of the previous one --- there are more
application-oriented properties and those properties
require a richer notion to express them and their
interrelationships
We still benefit for the processing/data/connector
view interdependence, albeit with more complexity
Application-oriented properties are useful in relating
similar architectures

24

Collaborative Software Design & Development Lecture 2

© 2005, Dewayne E Perry EE 382V – Spring 2008

Summary
Separates out useful level of concern

problem domain meets implementation domain
Defines important constraints on the system
Basic structure of the system
Means of capitalizing on assets
Moves us from integral to compositional
Integrates composition with generation

Perhaps the reason for such slow progress is that we
have trained carpenters and contractors but no
architects

	Collaborative Software Design & Development��**Architecture**
	Introduction
	Developing an Intuition
	Developing an Intuition
	Context: Where Does Architecture Fit?
	Motivation
	Standard Definitions & Our Model
	Our Model
	Our Model
	Architectural Style
	Element Interdependence
	Example: Compiler Architecture
	Character/Token Relationship
	Lexer/Parser Relationship: Connector View
	Partial Processing View
	Application-Oriented Properties
	Partial Data View
	Sequential Compiler Architecture: Summary
	Partial Processing View
	Application-Oriented Properties
	Connector/Data View
	Relating Architectures
	Parallel Process, Shared Data Structure �Compiler Architecture: Summary
	Summary

