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Abstract

We report the results of a survey about the software faults encountered during the testing phases in evolving

a large real-time system. The survey was done in two parts: the first part surveyed all the faults that were

reported and characterized them in terms of general categories of faults; the second part surveyed in depth

the faults found in the design and coding phases. For the first part, we describe the general faults found and

characterize the requirements, design and coding faults by the testing phases in which they were found and

how they were found over time during the testing phases. For the second part, we describe the questionaire

used to survey the design and coding faults, report the faults that occurred, how difficult they were to find

and to fix, what their underlying causes were (that is, what their corresponding errors were), and what

means might have prevented them from occurring; we then characterize the results in terms of interface and

implementation faults.

Keywords: Software fault analysis; large-scale, real-time system case study; design and coding faults;

interface and implementation faults; effort to find/fix faults; underlying causes of faults; means of fault

prevention.



- 1 -

1. Introduction

Far too little attention has been given to the empirical foundations of software engineering. We software

engineers, as a group, try the latest techniques and tools with little attention, either before hand or

afterwards, to their projected or actual effects. We propose research solutions to the building and evolving

of software systems with virtually no empirical basis, with little more than an intuition of what the ‘‘real’’

problems are. We build and evolve systems, but spend little time measuring either the process or the

product. Or if we do measure the process, we make little use of the resulting information. We make even

less use of it as a source of ideas for software engineering research.

It is surprising that so few studies have appeared in the software engineering literature, especially since the

monitoring of the mistakes we make is one of the fundamental tools by which we improve our process and

product. This is particularly true for the development of large systems. In preceding work [13, 14], Perry

and Evangelist reported the prevalence of interface faults as a major factor in the development and

evolution of a large real-time system (68% of the faults). One of the main purposes of this software fault

study was to indicate the importance of tools (such as the Inscape Environment [16]) that manage interfaces

and the dependencies on those interfaces .

Prior to this work, Endress [7], Schneidewind and Hoffman [19], and Glass [8] reported on various fault

analyses of software development, but did not delineate interface faults as a specific category. Thayer,

Lipow and Nelson [20] and Bowen [5] provide extensive categorization of faults, but with a relatively

narrow view of interface faults. Basili and Perricone offer the most comprehensive study of problems

encountered in the development phase of a medium-scale system, reporting data on the fault, the number of

components affected, the type of the fault, and the effort required to correct the fault. Interface faults were

the largest class of faults (39% of the faults).

The purpose of this paper is to three-fold: first, to provide a data point on software (interface and

implementation) faults encountered in the evolution (that is, what is often called the maintenance phase, not

the initial development phase) of a very large real-time system; second, to provide a deeper understanding

of those faults in terms of the effort required to find and fix them, their underlying causes, and their means

of prevention; and third, to gain insight into the kinds of tools and techniques that we need to support an

evolutionary software process [16].

In section 2, we provide the background for the study, describing the system in general terms, the

methodology employed in evolving the system, and the approach we used in conducting the survey.

Section 3 reports the overall Modification Request (MR) survey, providing first a summary of the

questionnaire, then a summary of the results, and finally some conclusions drawn from this part of the

study. Section 4 presents the design and coding fault survey, providing first a summary of the

questionnaire, then a discussion of the statistical analysis, and finally a summary relating the results to

interface faults. Finally, in section 5, we present our summary, conclusions and recommendations.

2. Background

The system discussed in this paper is a very1 large scale, distributed, real-time system written in the C

__________________

1. By ‘‘very large’’, we mean a system of 1,000,000 lines or more [4]. AT&T has a wide variety of such very large systems.
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programming language in a Unix-based, multiple machine, multiple location environment.

The organizational structure is typical with respect to AT&T projects for systems of this size and for the

number of people in each organization. Not surprisingly, different organizations are responsible for various

parts of the system development: requirements specification; architecture, design, coding and capability

testing; system and system stability testing; and alpha testing.

The process of development is also typical with respect to AT&T projects of this size. Systems Engineers

prepare informal and structured documents defining the requirements for the changes to be made to the

system. Designers prepare informal design documents that are subjected to formal reviews by three to

fifteen peers depending on the size of the unit under consideration. The design is then broken into design

units for low level design and coding. The products of this phase are subjected both to formal code reviews

by three to five reviewers and to low level unit testing. As components are available, integration and

system testing is performed until the system is completely integrated.

The release considered here is a ‘‘non-initial’’ release — one that can be viewed as an arbitrary point in the

evolution of this class of systems. Because of the size of the system, the system evolution process consists

of multiple, concurrent releases — that is, while the release dates are sequential, a number of releases

proceed concurrently in differing phases. This concurrency accentuates the inter-release dependencies and

their associated problems. The magnitude of the changes (approximately 15-20% new code for each

release) and the general make-up of the changes (bug-fixes, improvements, and new functionality, etc.) are

generally uniform across releases. It is because of these two facts that we consider this study to provide a

representative sample in the life of the project. This relative uniformity of releases contrasts with Lehman

and Belady [10] where releases alternated between adding new functionality and fixing existing problems.

Faults discovered during testing phases are reported and monitored by a modification request (MR) tracking

system (such as for example, CMS [18]). Access to source files for modification is possible only through

the tracking system. Thus all change activity is automatically tracked by the system. This activity includes

not only repairs but enhancements and new functionality as well. It should be kept in mind, however, that

this fault tracking activity occurs only during the testing and released phases of the project, not during the

architecture, design and coding phases. Problems encountered during these earlier phases are resolved

informally without being tracked by the MR system.

The goal of this study was to gain insight into the current process of system evolution by concentrating on

one release of a particular system. The approach we used is that of surveying, by means of a prepared

questionnaire, those who ‘‘owned’’ the MR at the time it was closed, surveying first the complete set of

faults and then concentrating on the largest set of faults in more depth. This survey was the first of its type,

although there have been some smaller studies using random selections. The survey data was then used in

conjunction with data from the MR tracking system database.

Some caveats should be kept in mind while reviewing our results:

• In both phases, approximately 68% of questionnaires were returned — that is, we have data on about

two-thirds of the MRs in both the overall survey and in the design/coding survey. Given the

circumstances under which the survey was taken, this level of response exceeded our best expectations.

Even so, there is still some room for questions about the representativeness of the responses. We know

of no existent factor (such as reporting only the hard or easy problems, receiving reports from only

junior or senior programmers, etc.) that would skew the results significantly [1].
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• Given the standard development schedule pressures, the survey was mandated to be non-intrusive. The

responses were to be voluntary and anonymous and no manual checks were allowed. Because of this

management mandate, we were unable to validate the results [3] and are unable to assess the accuracy

of the responses. Mitigating the lack of validation are two facts: first, the questionaire was created by

the authors working with a group of developers; second, the questionaire was reviewed by an

independent group of developers.

• While we tried very hard to provide a neutral questionnaire, we have noticed a few things that we could

have done differently. Some of the results may be skewed slightly by the predisposition of the

questionnaires (for example, the ordering of the possible faults where a more general fault earlier in the

list might subsume a more particular fault later in the list).

• The survey was not an integral part of the evolution cycle, but occurred after the release was completed.

Thus, the responses report remembered solutions that may be different from those responses that one

would give if the facts were ‘‘fresh’’ — that is, some information may be inadvertently incorrect

because the survey occurred anywhere from one to nine months after the MRs were fixed.

• Because the facts may not have been ‘‘fresh’’ in the minds of those taking part in the survey and

because there were a limited number of choices, the respondents were, in some cases, forced to make

‘‘judgment calls’’ about their responses — that is, where it was not immediately clear what the correct

choice was, the respondent had to choose what he or she considered to be the most appropriate answer.

• The overall proportions of the faults may be affected by the fact that data is only kept during the testing

phase of evolution. MRs for the entire process from the receipt of the requirements to the release of the

system would, of course, give a much more accurate picture.

• The sample size is large, but due to the proprietary nature of the data we cannot be more specific.

However, we have been as precise as is justifiably possible.

It is with this background that we present our surveys, analyses, and results.

3. Overall Survey

There were three specific purposes in the original, overall survey:

• to determine, generally, what kinds of problems were found (which we report here) as well as,

specifically, what kinds of application problems arose during the preparation of this release (which we

do not report because of their lack of generality);

• to determine how the problem was found (that is, in which testing phase); and

• to determine when the problem was found.

In the discussion that follows, we first present a summary of the questionnaire, summarize our results, and

draw some conclusions.

3.1 Summary of Questionnaire

The survey questionnaire had two main components: the determination of the fault reported in the MR and

the testing phase in which the fault was found. In determining the fault, two aspects were of importance:

first, the development phase in which the fault was introduced, and second, the particular type of the fault.

Since the particular type of fault reported at this stage of the survey tended to be application or
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methodology specific, we have emphasized the phase-origin nature of the fault categorization. The general

fault categories are as follows:

• Previous — residual problems left over from previous releases;

• Requirements — problems originating during the requirements specification phase of development;

• Design — problems originating during the architectural and design phases of development;

• Coding — problems originating during the coding phases of development;

• Testing Environment — problems originating in the construction or provision of the testing

environment (for example, faults in the system configuration, static data, etc);

• Testing — problems in testing (for example, pilot faults, etc);

• Duplicates — problems that have already been reported;

• No problems — problems due to misunderstandings about interfaces, functionality, etc., on the part of

the user;

• Other — various problems that do not fit neatly in the preceding categories such as hardware problems,

etc.

The other main component of the survey concerned the phase of testing that uncovered the fault. The

following are the different testing phases.

• Capability Test (CT) — testing isolated portions of the system to ensure proper capabilities of that

portion.

• System Test (ST) — testing the entire system to ensure proper execution of the system as a whole in the

laboratory environment.

• System Stability Test (SS) — testing with simulated load conditions in the laboratory environment for

extended periods of time.

• Alpha Test (AT) — live use of the release in a friendly user environment.

• Released (RE) — live use. However, in this study, this data refers not to this release, but the previous

release. Our expectation is that this provides a projection of the fault results for this release.

The time interval during which the faults were found (that is, when the MRs were initiated) was retrieved

from the MR tracking system database.

Ideally, the testing phases occur sequentially. In practice, however, due to the size and complexity of the

system, various phases overlap. The overlap is due to several specific factors. First, various parts of the

system are modified in parallel. This means that the various parts of the system are in different states at any

one time. Second, the iterative nature of evolution results in recycling back through previous phases for

various parts of the system. Third, various testing phases are begun as early as possible, even though it is

known that that component may be incomplete. Looked at in one way, testing proceeds in a hierarchical

manner: testing is begun with various pieces, then subsystems and finally integrating those parts into the

complete system. It is a judgment call as to when different parts of the system move from one phase to the

next determined primarily by the percentage of capabilities incorporated and the number of tests executed.

Looked at in a slightly different way, testing proceeds by increasing the size and complexity of the system,



- 5 -

while at the same time increasing its load and stress.

3.2 Summary of Results

We present the summary of each fault category and discuss some of the main issues that stem from these

results. Next we summarize the requirements, design and coding faults first as found by testing phase and

then as found by time interval.

3.2.1 Summary of Responses

Table 1 presents the summary of the MRs by category.

TABLE 1. Summary of Faults_ ______________________________
MR Categories Proportion_ _______________________________ ______________________________

Previous 4.0%

Requirements 4.9%

Design 10.6%

Coding 18.2%

Testing Environment 19.1%

Testing 5.7%

Duplicates 13.9%

No problems 15.9%

Other 7.8%_ ______________________________ ⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

‘‘Previous’’ MRs indicate the level of difficulty in finding some of the faults in a large, real-time system.

These problems may have been impossible to find in the previous releases and have only now been exposed

because of changes in the use of the system.

The MRs representing the earlier part of the development or evolution process (that is, those representing

requirements, design and coding) are the most significant, accounting for approximately 33.7% of the MRs.

Given that the distinction between a design fault and a coding fault was one of those which required a

‘‘judgment call’’ on the part of the respondent, we decided to merge the results of those two categories into

one: design/coding faults account for 28.8% of the MRs. However, in the process structure used in the

project, the distinction between requirements and design/coding is much clearer. Requirements

specifications are produced by systems engineers while the design and coding are done by developers.

The next most significant subset of MRs were those that concern testing (the testing environment and

testing categories ) — 24.8% of the MRs. On the one hand, it is not surprising that a significant number of

problems are encountered in testing a large and complex real-time system where conditions have to be

simulated to represent the ‘‘real-world’’ in a laboratory environment. First, the testing environment itself is

a large and complex system that must be tested. Second, as the real-time system evolves, so must the

laboratory test environment evolve. On the other hand, this general problem is clearly one that needs to be

addressed by further study.

‘‘Duplicate’’ and ‘‘No Problem’’ MRs account for another significant subset of the data — 28.9%.

Historically, these have been considered to be part of the overhead. Certainly the ‘‘duplicate’’ MRs are in

large part due to the inherent concurrency of activities in a large-scale project and, as such, are difficult to

eliminate. The ‘‘no problem’’ MRs, however, are in large part due to the lack of understanding that comes

from informal and out-of-date documentation. Obviously, measures taken to reduce these kinds of

problems will have beneficial effects on other categories as well. In either case, reduction of administrative
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overhead will improve the cost effectiveness of the project.

3.2.2 Requirements, Design and Coding MRs by Testing Phase

We have focused on the early part of the software process because that is where the most MRs occurred

and, accordingly, where closer attention should yield the most results. For this reason, we present the

requirements, design and coding faults distributed by testing phase.

Figure 1. Fault Categories found by Phase

6%

0%

3%

2%

1%

4%

5%

CT ST SS AT RE

. .
. . . . . .

. . . . . . . .
. .

. .
. ........................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Requirements Faults:

Design Faults:

Coding Faults:

. . . . . . . . . . . . . . . .

CT: Capability Test

ST: System Test

SS: System Stability

AT: Alpha Test

RE: Released

For the requirements, design and coding fault categories, Figure 1 shows the percentage of MRs found

during each testing phase. There are two important observations. First, system test (ST) was the source of

most of the MRs in each category; capability testing (CT) was the next largest source. This is not

particularly surprising, since that is when we were looking the hardest for faults. Second, all testing phases

found MRs of each fault category. It is also not surprising that coding faults are found over the entire set of

testing phases. One obvious reason for this phenomena is that changes are continually made to correct the

faults that are found in the various earlier testing phases. Moreover, while it is disturbing to note that both

design and requirements faults continue to be found throughout the entire testing process, we feel that this

is due to the lack of precision and completeness in requirements and design documentation and is a general
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problem in the current state-of-practice rather than a project-specific problem.

3.2.3 Requirements, Design and Coding MRs found over Time

Again, we focus on the early part of the process (requirements, design and coding) in charting the faults

found over time as shown in Figure 2. The time values in Figure 2 are fixed intervals. From the shape of

the data, it is clear that System Testing overlaps interval t4. It is unfortunate that we have only the calendar

data, as a correlation with effort data [11] would be extremely valuable.

Figure 2. Fault Categories found over Time
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For the requirements, design and coding fault categories over time, Figure 2 shows that all fault types

peaked at time t4, and held through time t5, except for the coding faults which decreased.

3.3 Summary

The following general observations may be drawn from this general survey of the problems encountered in

evolving a large-scale, real-time system:

• implementation, testing, and administrative overhead faults occurred in roughly equal proportions;
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• requirements problems, while not overwhelmingly numerous, are still significant (especially since the

majority were found late in the testing process);

• the most faults were found when the level of testing effort was the highest (that is, at system test); and

• the majority of faults were found late in the testing cycle.

These observations are limited by the fact that the tracking of MRs is primarily a testing activity. It would

be extremely useful to observe the kinds and frequencies of faults that exists in the earlier phases of the

project. Moreover, it would be beneficial to incorporate ways of detecting requirements and design faults

into the existing development process.

4. Design/Code Fault Survey

As a result of the general survey, we decided to survey the design and coding MRs in depth. The following

were the goals we wanted to achieve in this part of the study:

• determine the kinds of faults that occurred in design and coding;

• determine the difficulty both in finding or reproducing these faults and in fixing them;

• determine the underlying causes of the faults; and

• determine how the faults might have been prevented.

There were two reasons for choosing this part of the general set of MRs. First, it seemed to be exceedingly

difficult to separate the two kinds of faults. Second, catching these kinds of faults earlier in the process

would provide a significant reduction in overall fault cost — that is, the cost of finding faults before system

integration is significantly less than finding them in the laboratory testing environment. Our internal cost

data is consistent with Boehm’s [4]. Thus, gaining insight into these problems will yield significant and

cost beneficial results.

In the two subsections that follow, we summarize the survey questionnaire, present the results of our

statistical analysis, and summarize our findings with regard to interface and implementation faults.

4.1 Summary of Questionnaire and Response

The questionnaire is presented in summary form in the following subsections. The respondents were asked

to indicate the difficulty of finding and fixing the problem, determine the actual and underlying causes,

indicate the best means of either preventing or avoiding the problem, and give their level of confidence in

their responses.

4.1.1 Ease of finding or reproducing the fault

The MR in question is to be ranked according to how difficult it was to reproduce the failure and locate the

fault.

1. Easy — could produce at will.

2. Moderate — happened some of the time (intermittent).

3. Difficult — needed theories to figure out how to reproduce the error.

4. Very Difficult — exceedingly hard to reproduce.
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4.1.2 Ease of fixing the fault

For each MR, how much time was needed to design and code the fix, document and test it.2

1. Easy — less than one day

2. Moderate — 1 to 5 days

3. Difficult — 6 to 30 days

4. Very difficult — greater than 30 days

4.1.3 Fault Types

For this fault, consider the following 22 possible types and select the one that most closely applies to the

cause of this MR.

1. Language pitfalls — for example, pointer problems, or the use of ‘‘=’’ instead of ‘‘= =’’.

2. Protocol — violated rules about interprocess communication.

3. Low-level logic — for example, loop termination problems, pointer initialization, etc.

4. CMS complexity — for example, due to software change management system complexity.

5. Internal functionality — either inadequate functionality or changes and/or additions were needed to

existing functionality within the module or subsystem.

6. External functionality — either inadequate functionality or changes and/or additions were needed to

existing functionality outside the module or subsystem.

7. Primitives misused — the design or code depended on primitives which were not used correctly.

8. Primitives unsupported — the design or code depended on primitives that were not adequately

developed (that is, the primitives do not work correctly).

9. Change coordination — either did not know about previous changes or depended on concurrent

changes.

10. Interface complexity — interfaces were badly structured or incomprehensible.

11. Design/Code complexity — the implementation was badly structured or incomprehensible.

12. Error handling — incorrect handling of, or recovery from, exceptions.

13. Race conditions — incorrect coordination in the sharing of data.

14. Performance — for example, real-time constraints, resource access, or response time constraints.

15. Resource allocation — incorrect resource allocation and deallocation.

__________________

2. Note that what would be an easy fix in a single programmer system takes considerably more time in a large, multi-person project
with a complex laboratory test environment.
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16. Dynamic data design — incorrect design of dynamic data resources or structures.

17. Dynamic data use — incorrect use of dynamic data structures (for example, initialization,

maintaining constraints, etc.).

18. Static data design — incorrect design of static data structures (for example, their location,

partitioning, redundancy, etc.).

19. Unknown Interactions — unknowingly involved other functionality or parts of the system.

20. Unexpected dependencies — unexpected interactions or dependencies on other parts of the system.

21. Concurrent work — unexpected dependencies on concurrent work in other releases.

22. Other — describe the fault.

4.1.4 Underlying causes

Because the fault may be only a symptom, provide what you regard to be the underlying root cause for each

problem.

1. None given — no underlying causes given.

2. Incomplete/omitted requirements — the source of the fault stemmed from either incomplete or

unstated requirements.

3. Ambiguous requirements — the requirements were (informally) stated, but they were open to more

than one interpretation. The interpretation selected was evidently incorrect.

4. Incomplete/omitted design — the source of the fault stemmed from either incomplete or unstated

design specifications.

5. Ambiguous design — the design was (informally) given, but was open to more than one

interpretation. The interpretation selected was evidently incorrect.

6. Earlier incorrect fix — the fault was induced by an earlier incorrect fix (that is, the fault was not the

result of new development).

7. Lack of knowledge — there was something that I needed to know, but did not know that I needed to

know it.

8. Incorrect modification — I suspected that the solution was incorrect, but could not determine how to

correctly solve the problem.

9. Submitted under duress — the solution was submitted under duress, knowing that it was incorrect

(generally due to schedule pressure, etc).

10. Other — describe the underlying cause.

4.1.5 Means of prevention

For this fault, consider possible ways to prevent or avoid it and select the most useful or appropriate choice

for preventing or avoiding the fault.

1. Formal requirements — use precise, unambiguous requirements (or design) in a formal notation

(which may be either graphical or textual).
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2. Requirements/Design templates — provide more specific requirements (or design) document

templates.

3. Formal interface specifications — use a formal notation for describing the module interfaces.

4. Training — provide discussions, training seminars, and formal courses.

5. Application walk-throughs — determine, informally, the interactions among the various application

specific processes and data objects.

6. Expert person/documentation — provide an ‘‘expert’’ person or clear documentation when needed.

7. Design/code currency — keep design documents up to date with code changes.

8. Guideline enforcement — enforce code inspections guidelines and the use of static analysis tools

such as lint.

9. Better test planning — provide better test planning and/or execution (for example, automatic

regression testing).

10. Others — describe the means of prevention.

4.1.6 Confidence levels

Confidence levels requested of the respondents were: very high, high, moderate, low and very low. We

discarded the small number of responses that had a confidence level of either low or very low.

4.2 Statistical Analysis

68% of the questionnaires were returned. Of those, we dropped the responses that were either low or very

low in confidence (6%). The remainder were then subjected to analysis.

TABLE 2. Chi-Square Analysis Summary_ _______________________________________________
Variables Degrees of Total p

Freedom Chi-Square_ ________________________________________________ _______________________________________________
Find, Fix 6 51.489 .0001

Fault, Find 63 174.269 .0001

Fault, Fix 63 204.252 .0001

Cause, Find 27 94.493 .0001

Cause, Fix 27 55.232 .0011

Fault, Cause 189 403.136 .0001

Prevention, Find 27 41.021 .041

Prevention, Fix 27 97.886 .0001

Fault, Prevention 189 492.826 .0001

Cause, Prevention 81 641.417 .0001_ _______________________________________________ ⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

The results of the survey were cross tabulated and then subjected to chi-square analysis. Table 2 provides a

summary of the chi-square analysis. Note that that in all cases the relationships are clearly statistically

significant, with the relationship between the means of prevention and the ease of finding the fault coming

closest to being independent and the relationship between the means of prevention and the underlying

causes being the most significantly interdependent.
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We first consider the difficulty of finding and fixing the faults. We then discuss the faults and weight them

by the cost of finding and fixing them. Next we consider the underlying causes and the means of

prevention, correlate the faults with underlying causes and means of prevention, and correlate underlying

causes and means of prevention. Finally, we divide the faults into interface and implementation categories

and compare them in terms of difficulty to find and fix, their underlying causes and their means of

prevention.

4.2.1 Finding and Fixing Faults

Table 3 provides a cross-tabulation of the difficulty in finding and fixing the design and coding faults.

TABLE 3. Find versus Fix Comparison_ ____________________________________________
find/fix < 1 1 - 5 6 - 30 > 30_ _____________________________________________ ____________________________________________

easy 23.7% 32.1% 10.0% 1.7%

moderate 4.2% 12.5% 5.6% 1.1%

difficult 1.7% 3.4% 2.1% .5%

very difficult .5% .3% .3% .3%_ ____________________________________________ ⎜
⎜
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78% took less than 5 days to fix. In general, the easier to find faults were easier to fix; the more difficult to

find faults were more difficult to fix as well. There were more faults that were easy to find and took less

than one day to fix than were expected by the chi-square analysis. Interestingly, there were fewer than

expected easy to find faults that took 6 to 30 days to fix.

While the coordinates of the effort to find and fix the faults are non-comparable, we note that the following

relationship is suggestive. Collapsing the above table yields an interesting insight in table 4 that seems

counter to the common wisdom that says ‘‘once you have found the problem, it is easy to fix it’’. There is a

significant number of ‘‘easy/moderate to find’’ faults that require a relatively long time to fix.

TABLE 4. Summary of Find/Fix_______________________________________
Find/Fix effort ≤ 5 days ≥ 6 days______________________________________________________________________________

easy/moderate 72.5% 18.4%

difficult/very difficult 5.9% 3.2%_______________________________________ ⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜

4.2.2 Faults

Table 5 below shows the fault types of the MRs as ordered by their frequency in the survey independent of

any other factors.

The first 5 fault categories account for 60% of the faults. That ‘‘internal functionality’’ is the leading fault

by such a large margin is somewhat surprising; that ‘‘interface complexity’’ is such a significant problem is

not surprising at all. However, that the first five faults are leading faults is consistent with the nature of the

evolution of the system. Adding significant amounts of new functionality to a system easily accounts for

problems with ‘‘internal functionality’’, ‘‘low-level logic’’ and ‘‘external functionality’’.

The fact that the system is a very large, complicated real-time system easily accounts for the fact that there

are problems with ‘‘interface complexity’’, ‘‘unexpected dependencies’’ and design/code complexity’’,

‘‘change coordination’’ and ‘‘concurrent work’’.

C has well-know ‘‘language pitfalls’’ that account for the rank of that fault in the middle of the set.

Similarly, ‘‘race conditions’’ are a reasonably significant problem because of the lack of suitable language
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TABLE 5. Faults ordered by Frequency_ __________________________________________
cause observed % description_ ___________________________________________ __________________________________________

5 25.0% internal functionality

10 11.4% interface complexity

20 8.0% unexpected dependencies

3 7.9% low-level logic

11 7.7% design/code complexity

22 5.8% other

9 4.9% change coordination

21 4.4% concurrent work

13 4.3% race conditions

6 3.6% external functionality

1 3.5% language pitfalls

12 3.3% error handling

7 2.4% primitive’s misuse

17 2.1% dynamic data use

15 1.5% resource allocation

18 1.0% static data design

14 .9% performance

19 .7% unknown interactions

8 .6% primitives unsupported

2 .4% protocol

4 .3% CMS complexity

16 .3% dynamic data design_ __________________________________________ ⎜
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facilities in C.

That ‘‘performance’’ faults are a relatively insignificant is due probably to the fact that this is not an early

release of the system.

4.2.3 Finding and Fixing Faults

There are two interesting relationships to consider in the ordering of the various faults: the affect that the

difficulty in finding the faults have on the ordering and the affect that the difficulty of fixing the faults has

on the ordering.

The following table (table 6) captures the weighted difficulty of finding the various faults. The weighting is

done multiplying the proportion of observed values for each fault with multiplicative weights of 1, 2, 3 and

43 for each find category, respectively, and summing the results. For example, if a fault was easy to find in

66% of the cases, moderate in 23%, difficult in 11%, and very difficult in 0%, the weight is 145 = (66 * 1)

+ (23 * 2) + (11 * 3) + (0 * 4). The following are the faults weighted by difficulty to find from easiest to

__________________

3. Obviously it would have been better to have had some duration assigned to the effort to find faults and the correlated the weighting
with those durations as we do subsequently in weighting by effort to fix faults. The weights used are intended to be suggestive, not
definitive.
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TABLE 6. Determining the Find weighting_ ____________________________________________________
fault find proportion weight change description

e/m/d/vd_ _____________________________________________________ ____________________________________________________
4 100/0/0/0 100 CMS complexity

18 100/0/0/0 100 static data design

7 88/8/4/0 120 primitive’s misuse

2 75/25/0/0 125 protocol

20 78/16/5/1 129 unexpected dependencies

21 70/23/2/4 130 concurrent work

3 73/22/5/0 132 low-level logic

22 82/12/2/5 132 other

5 74/19/6/1 134 internal functionality

6 67/31/3/0 139 external functionality

1 68/26/2/2 141 language pitfalls

10 66/23/11/0 145 interface complexity

9 65/20/12/2 149 change coordination

8 67/17/17/0 152 primitives unsupported

19 88/8/4/0 157 unknown interactions

16 67/0/33/0 157 dynamic data design

17 52/38/10/0 158 dynamic data use

15 47/47/7/0 162 resource allocation

12 55/30/12/3 163 error handling

11 55/29/16/1 165 code complexity

14 56/11/11/22 199 performance

13 12/67/21/0 209 race conditions_ ____________________________________________________ ⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

most difficult.

We do not find the ordering here to conflict with our intuition of how difficult these faults might be to find.

Typically, performance faults and race conditions are very difficult to isolate and reproduce. We would

expect that ‘‘code complexity’’ and ‘‘error handling’’ faults would also be difficult to find and reproduce.

In the chi-square analysis, ‘‘internal functionality’’, ‘‘unexpected dependencies’’ and ‘‘other’’ tended to be

easier to find than expected. ‘‘Code complexity’’ and ‘‘performance’’ tended to be harder to find than

expected. There tended to be more significant deviations where the population was larger.

If we weight the proportions by multiplying the number of occurrences of each fault by its weight from

Table 5 and dividing by the total weighted number of occurrences, we get only a slight change in the

ordering of the faults, with ‘‘internal functionality’’, ‘‘code complexity’’, and ‘‘race conditions’’ (faults 5,

11, and 13) changing slightly more than the rest of the faults.

The following table (table 7) represents the results of weighting the difficulty of fixing the various faults by

factoring in the actual time needed to fix the faults. The multiplicative scheme uses the values 1, 3, 15, and

30 for the four average times in fixing a fault. The calculations are performed as in the example of

weighting the difficulty of finding the faults.

The weighting according to the difficulty in fixing the fault causes some interesting shifts in the ordering of

the faults. ‘‘Language pitfalls’’, ‘‘low-level logic’’, and ‘‘internal functionality’’ (faults 1, 3, and 5) drop
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TABLE 7. Determining the Fix weighting_ __________________________________________________
fault proportion weight brief description

e/m/d/vd_ ___________________________________________________ __________________________________________________
16 67/33/0/0 166 dynamic data design

4 67/33/0/0 166 CMS complexity

8 50/50/0/0 200 primitive’s unsupported

18 50/50/0/0 200 static data design

1 63/31/6/0 244 language pitfalls

3 59/37/3/1 245 low-level logic

2 25/75/0/0 250 protocol

17 38/48/14/0 392 dynamic data use

9 37/49/14/0 394 change coordination

5 27/59/14/0 414 internal functionality

22 40/43/12/5 496 other

7 46/37/8/8 497 primitive’s misuse

10 17/57/26/1 608 interface complexity

21 25/43/30/2 661 concurrent work

6 22/50/22/6 682 external functionality

13 16/56/21/7 709 race conditions

12 21/52/18/9 717 error handling

19 29/43/14/14 785 unknown interactions

20 24/39/33/5 786 unexpected dependencies

11 22/39/27/12 904 design/code complexity

14 11/22/44/22 1397 performance

15 0/47/27/27 1356 resource allocation_ __________________________________________________ ⎜⎜
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significantly in their relative importance. This coincides with one’s intuition about these kinds of faults.

‘‘Design/code complexity’’, ‘‘resource allocation’’, and ‘‘unexpected dependencies’’ (faults 11, 15, and 20)

rise significantly in their relative importance; ‘‘interface complexity’’, ‘‘race conditions’’, and

‘‘performance’’ (faults 10, 13, 14) rise but not significantly so.

Table 8 shows the top weighted faults. According to our weighting scheme, these four faults account for

55.2% of the effort expended to fix all the faultss and 51% of the effort to find them, but represent 52.1% of

the faults by frequency count. Collectively, they are somewhat harder to fix than rest of the faults and

slightly easier to find. We again note that while the two scales are not strictly comparable, the comparison

is an interesting one none-the-less.

TABLE 8. Faults weighted by Fix difficulty_ _________________________________________
fault weighted % description_ __________________________________________ _________________________________________

5 18.7% internal functionality

10 12.6% interface complexity

11 12.6% code complexity

20 11.3% unexpected dependencies_ _________________________________________ ⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
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⎜
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⎜
⎜
⎜
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In the chi-square analysis, ‘‘language pitfalls’’, and ‘‘low-level logic’’ took fewer days to fix than expected.

‘‘Interface complexity’’ and ‘‘internal functionality’’ took 1 to 30 days more often than expected, while

‘‘design/code complexity’’ and ‘‘unexpected dependencies’’ took longer to fix (that is, 6 to over 30 days)

than expected. These deviations reenforce our weighted assessment of the effort to fix the faults.

4.2.4 Underlying Causes

The table below (table 9) shows the underlying causes of the MRs as ordered by their frequency in the

survey independent of any other factors.

TABLE 9. Underlying causes of Faults_ _______________________________________________
fault observed % change_ ________________________________________________ _______________________________________________

4 25.2% incomplete/omitted design

1 20.5% none given

7 17.8% lack of knowledge

5 9.8% ambiguous design

6 7.3% earlier incorrect fix

9 6.8% submitted under duress

2 5.4% incomplete/omitted requirements

10 4.1% other

3 2.0% ambiguous requirements

8 1.1% incorrect modification_ _______________________________________________ ⎜⎜
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Weighting the underlying causes by the effort to find or reproduce the faults for which these are the

underlying causes produces almost no change in either the ordering or in the relative proportion of the

underlying causes.

TABLE 10. Weighting of the Underlying Causes by Find Effort__________________________________________________________________
underlying causes proportion weight brief description____________________________________________________________________________________________________________________________________

8 91/9/0/0 109 incorrect modification

7 74/18/7/1 135 lack of knowledge

3 60/40/0/0 140 ambiguous requirements

5 66/27/7/0 141 ambiguous design

2 70/17/13/0 143 incomplete/omitted requirements

4 68/25/7/1 143 incomplete/omitted design

6 73/12/10/5 147 earlier incorrect fix

10 76/12/0/12 148 other

1 63/25/11/1 150 none given

9 50/46/4/0 158 submitted under duress__________________________________________________________________ ⎜⎜
⎜
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Table 10 above shows the relative difficulty in finding the faults associated with the underlying causes. The

resulting ordering is particularly non-intuitive: the MRs with no underlying cause are the second most

difficult to find; those submitted under duress are the most difficult to find.

In the chi-square analysis of finding underlying causes, faults caused by ‘‘lack of knowledge’’ tended to be

easier to find than expected while faults caused by ‘‘submitted under duress’’ tended to be moderately hard

to find more often than expected.
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Weighting the underlying causes by the effort to fix the faults (table 11) represented by the underlying

causes yields a few shifts in the proportion of effort: ‘‘incomplete/omitted design’’ increased significantly,

‘‘unclear requirements’’ and ‘‘incomplete/omitted requirements’’ increased less significantly; ‘‘none’’

decreased significantly, ‘‘unclear design’’ and ‘‘other’’ decreased less significantly. However, the relative

ordering of the various underlying causes is unchanged.

TABLE 11. Weighting of the Underlying Causes by Fix Effort___________________________________________________________________
underlying causes proportion weight brief description______________________________________________________________________________________________________________________________________

10 37/42/12/10 340 other

1 43/43/12/2 412 none given

5 29/55/14/2 464 ambiguous design

7 30/50/17/3 525 lack of knowledge

6 34/45/17/4 544 earlier incorrect fix

9 18/57/25/0 564 submitted under duress

8 18/55/27/0 588 incorrect modification

4 23/50/22/5 653 incomplete/omitted design

2 26/44/24/6 698 incomplete/omitted requirements

3 25/30/24/6 940 ambiguous requirements___________________________________________________________________ ⎜⎜
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The relative weighting of the effort to fix these kinds of underlying causes seems to coincide with one’s

intuition very nicely.

In the chi-square analysis of fixing underlying causes, faults caused by ‘‘none given’’ tended to take less

time to fix than expected, while faults caused by ‘‘incomplete/omitted design’’ and ‘‘submitted under

duress’’ tended to take more time to fix than expected.

In table 12, we present the cross-tabulation of faults and their underlying causes. Faults are represented by

the rows, underlying causes by the columns. The numbers in the matrix are the percentages of the total

population of faults. Thus, 1.5% of the total faults were fault 1 with the underlying cause 1. The expected

number of faults for fault 1 and underlying cause 1 can be computed by multiplying the total faults for each

of those categories: 20.5% * 3.5% = .7%. In this example, the actual number of faults was higher than

expected.

For the sake of brevity, we consider only the most frequently occurring faults and their major underlying

causes. ‘‘Incomplete/omitted design’’ (cause 4) is the primary underlying cause in all of these major faults.

‘‘Ambiguous design’’ (cause 5), ‘‘lack of knowledge’’ (cause 7), and ‘‘none given’’ (cause 1) were also

significant contributors to the presense of these faults.

• internal functionality (fault 5) — ‘‘incomplete/omitted design’’ (cause 4) was felt to have been the

cause of 31% (that is, 7.7% / 25%) of the occurrences of this fault, a percentage higher than expected;

‘‘lack of knowledge’’ (cause 7) was thought to have caused 21% of the occurrences of this fault, higher

than expected; and ‘‘none given’’ was listed as the third underlying cause representing 13% of the

occurrences.

• interface complexity (fault 10) — again, ‘‘incomplete/omitted design’’ was seen to be the primary cause

in the occurrence of this fault (36%), higher than expected; ‘‘lack of knowledge’’ and ‘‘ambiguous

design’’ were seen as the second and third primary causes of this fault (13% and 12% respectively).
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• unexpected dependencies (fault 20) — not surprisingly, ‘‘incomplete/omitted design’’ was felt to have

been the primary cause of this fault (in 34% of the cases); ‘‘submitted under duress’’ (cause 9)

contributed to 21% of the occurrences, a percentage higher than expected; ‘‘lack of knowledge’’ was

the tertiary cause of this fault, representing 18% of the occurrences.

• design/code complexity (fault 11) — again, ‘‘incomplete/omitted design’’ was felt to have been the

primary cause in 39% of the occurrences of this fault, a percentage higher than expected; ‘‘ambiguous

design’’ was the second most frequent underlying cause of this fault, causing 21% of the faults (also a

higher percentage than expected); ‘‘none given’’ was listed as the third underlying cause representing

17% of the occurrences.

Again, for the sake of brevity, we consider only the most frequently occurring underlying causes and the

faults they were most applicable to. Since ‘‘internal functionality’’ is the most frequently occurring fault,

one is not surprised that it is one of the faults to which these major underlying causes are applicable,

• incomplete/omitted design (cause 4) — as we noted in the preceding paragraph, ‘‘internal

functionality’’, ‘‘interface complexity’’, ‘‘code/design complexity’’, and ‘‘unexpected dependencies’’

were the major applicable faults (31%, 12%, 12% and 11% respectively) with the first three occurring

with higher than expected frequency.

• none given (cause 1) — ‘‘low-level logic’’ (fault 3) was the leading fault, representing 18% of the

occurrences (a percentage higher than expected); ‘‘internal functionality’’ (fault 5) was the second

major fault, representing 16% of the occurrences (a percentage lower than expected); ‘‘interface

complexity’’ (fault 10) was the third leading fault, representing 10% of the occurrences; and ‘‘language

pitfalls’’ was the fourth leading fault, representing 8% of the occurrences (a percentage higher than

expected).

• lack of knowledge (cause 7) — ‘‘internal functionality’’ was the leading fault, representing 29% of the

occurrences (a percentage higher than expected); ‘‘interface complexity’’ was next with 8% of the

occurrences (a percentage lower than expected); ‘‘unexpected dependencies’’ was third with 8% of the

occurrences; and ‘‘other’’ (fault 22) was the fourth with 6%.

• ambiguous design (cause 5) — ‘‘internal functionality’’ represented 29% of the occurrences;

‘‘code/design complexity’’ (fault 11) was second fault, representing 16% of the occurrences (a

percentage higher than expected); ‘‘interface complexity’’ was third with 14%; and ‘‘change

coordination’’ (fault 9) was fourth, representing 10% of the occurrences (a percentage higher than

expected).

The high proportion of ‘‘none given’’ as an underlying cause requires some explanation. One of the

reasons for this is that faults such as ‘‘language pitfalls’’, ‘‘low-level logic’’, ‘‘race conditions’’ and

‘‘change coordination’’ tend to be both the fault and the underlying cause (7.8% — or 33% of the in the

‘‘none given’’ underlying cause category). In addition, one could easily imagine that some of the faults

such as ‘‘interface complexity’’ and ‘‘design/code complexity’’ could also be considered both the fault and

the underlying cause (3.3% — or 16% of the faults in the ‘‘none given’’ underlying cause category). On

the other hand, we were surprised that no cause was given for a substantial part of the ‘‘internal

functionality’’ faults (3.7% — or 18% of the faults in the ‘‘none given’’ category). One would expect there

to be some underlying cause for that particular fault.
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4.2.5 Means of Prevention

The table below (table 13) shows the means of prevention of the MRs as ordered by their occurrence

independent of any other factors. We note that the various means of prevention are by no means

independent or non-overlapping. Moreover, the means selected may well reflect a particular approach of the

responder in selecting one means over another (for example, see the discussion below about formal versus

informal means of prevention).

TABLE 13. Means of Error Prevention_ ______________________________________________
causes observed % brief description_ _______________________________________________ ______________________________________________

5 24.5% application walk-throughs

6 15.7% expert person/documentation

8 13.3% guideline enforcement

2 10.0% requirements/design templates

9 9.9% better test planning

1 8.8% formal requirements

3 7.2% formal interface specifications

10 6.9% other

4 2.2% training

7 1.5% design/code currency_ ______________________________________________ ⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

It is interesting to note that the application-specific means of prevention (‘‘application walk-throughs’’) is

considered the most effective means of prevention. This selection of application walk-throughs as the most

useful means of error prevention appears to confirm the observation of Curtis, Krasner and Iscoe [6] that a

thin spread of application knowledge is the most significant problem in building large systems.

Further it is worth noting that informal means of prevention rank higher than formal ones. On the one

hand, this may reflect the general bias in the United States against formal methods. On the other hand, the

informal means are a non-technical solution to providing the information that may be supplied by the

formal representations (and which provide a more technical solution with perhaps higher attendant adoption

costs).

The level of effort to find the faults for which these are the means of prevention does not change the order

found in the table above, with the exception of ‘‘requirements/design templates’’ which seems to apply to

the easier to find faults and ‘‘guideline enforcement’’ which seems to apply more to the harder to find

faults.

In the chi-square analysis, the relationship between finding faults and preventing them is the most

independent of the relationships reported here with p=.041. ‘‘Application walk-throughs’’ applied to faults

that were marginally easier to find than expected, while ‘‘guideline enforcement’’ applied to faults that

were less easy to find than expected.

The table below is the means of prevention weighted by the effort to fix the associated faultss.
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TABLE 14. Means of Prevention Weighted by Fix Effort_ ___________________________________________________________
prevention proportion weight brief description_ ____________________________________________________________ ___________________________________________________________

8 38/52/7/3 389 guideline enforcement

9 35/52/12/1 401 better test planning

7 40/40/20/0 460 design/code currency

5 33/50/17/1 468 application walk-throughs

10 49/36/6/9 517 other

2 10/52/30/1 654 requirements/design templates

3 26/43/26/4 675 formal interface specifications

6 22/48/24/6 706 expert person/documentation

1 20/50/22/8 740 formal requirements

4 23/36/23/18 1016 training_ ___________________________________________________________ ⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
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⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎜

It is interesting to note that the faults considered to be prevented by training are the hardest to fix. The

formal methods also apply to classes of faults that take a long time to fix.

Weighting the means of prevention by effort to fix their corresponding faults yields a few shifts in

proportion: ‘‘application walk-throughs’’, ‘‘better test planning’’, and ‘‘guideline enforcement’’ decreased

in proportion; ‘‘expert person/documentation’’ and ‘‘formal requirements’’ increased in proportion,

‘‘formal interface specifications’’ and ‘‘other’’ less so. As a result, the ordering changes slightly to 5, 6, 2,

1, 8, 10, 3, 9, 4, 7: ‘‘expert person/documentation’’ and ‘‘ formal requirements’’ (numbers 6 and 1) are

weighted significantly higher; ‘‘requirements/design templates’’, ‘‘formal interface specifications’’,

‘‘training’’, and ‘‘other’’ (numbers 2, 3, 4, and 10) are less significantly higher; ‘‘guideline enforcement’’

and ‘‘better test planning’’ (numbers 8 and 9) are significantly lower.

In the chi-square analysis, faults prevented by ‘‘application walk-throughs’’, ‘‘guideline enforcement’’, and

‘‘other’’ tended to take fewer days to fix than expected, while faults prevented by ‘‘formal requirements’’,

requirements/design templates’’ and ‘‘expert person/documentation’’ took longer to fix than expected.

In the table below (table 15), we present the cross-tabulation of faults and their means of prevention.

Again, the faults are represented by the rows, and the means of prevention are represented by the columns.

The data is analogous to the preceding cross tabulation of faults and underlying causes.

For the sake of brevity, we consider only the most frequently occurring faults and their major means of

prevention. ‘‘Application walk-throughs’’ were felt to be an effective means of preventing these most

significant faults. ‘‘Expert person/documentation’’, ‘‘formal requirements’’ and ‘‘formal interface

specifications’’ were also significant means of preventing these faults.

• internal functionality (fault 5) — ‘‘application walk-throughs’’ (prevention 5) were thought to be the

most effective means of prevention, applicable to 27% of the occurrences of this fault; ‘‘expert

person/documentation’’ (prevention 6) was felt to be the second most effective means, applicable to

18% of the fault occurrences; and ‘‘requirements/design templates’’ were thought to applicable to 14%

of the fault occurrences, a percentage higher than expected.
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• interface complexity (fault 10) — again, ‘‘application walk-throughs’’ were considered to be the most

effective applicable to 26% of the cases; ‘‘formal requirements’’ (prevention 1) and ‘‘formal interface

specifications’’ were felt to be equally effective with each preventing 18% of the fault occurrences (in

both cases, a percentage higher than expected).

• unexpected dependencies (fault 20) — ‘‘application walk-throughs’’ were felt to be the most effective

means of preventing this fault, applicable to 29% of the occurrences; ‘‘requirements/design templates’’

were considered the second most effective and applicable to 28% of the fault occurrences (a percentage

higher than expected); and ‘‘formal interface specifications’’ were considered applicable to 14% of the

fault occurrences, a percentage higher than expected.

• design/code complexity (fault 11) — ‘‘expert person/documentation’’ was felt to be the most effective

means of preventing this fault, applicable to 31% of the cases (higher than expected); ‘‘application

walk-throughs’’ were the second most effective means, applicable to 29% of the occurrences; and

‘‘formal requirements’’ was third, applicable to 10% of the fault occurrences.

Again, for the sake of brevity, we consider only the most frequently occurring means of prevention and the

faults they were most applicable to. Not surprisingly, these means were most applicable to ‘‘internal

functionality’’, and ‘‘interface complexity’’ the most prevalent faults. Counter-intuitively, they are also

strongly recommended as applicable to ‘‘low level logic’’.

• application walk-throughs (prevention 5) — ‘‘internal functionality’’ (fault 5) was considered as the

primary target in 27% of the uses of this means of prevention; ‘‘interface complexity’’ (fault 10) was

felt to be the secondary target, representing 12% of the uses of this means; and ‘‘low-level logic’’ (fault

3) and ‘‘unexpected dependencies’’ (fault 20) were next with 9% each.

• expert person/documentation (prevention 6) — again, ‘‘internal functionality’’ is the dominant target

for this means, representing 29% of the possible applications; ‘‘design/code complexity’’ is the second

most applicable target, representing 15% of the possible applications (a percentage higher than

expected); and ‘‘interface complexity’’ represented 11% of the uses (higher than expected).

• guideline enforcement (prevention 8) — ‘‘internal functionality’’ and ‘‘low-level logic’’ were the

dominant targets for this means of prevention, representing 25% and 24% respectively (the latter being

higher than expected); ‘‘language pitfalls (fault 1) was seens as the third most relevant fault

representing 10% of the possible applications (higher than expected); and ‘‘interface complexity’’ was

the fourth with 9% of the possible applications of this means of prevention.

4.2.6 Underlying Causes and Means of Prevention

In this section on the data, we summarize the relationships between underlying causes and means of

prevention. The underlying causes are listed across the top of the table and represent the columns, and the

means of prevention are listed down the left side and represent the rows of the table.

It is interesting to note (in table 16 below) that in the chi-square analysis there are lots of deviations (that is,

there is a wider variance between the actual values and the expected values in correlating underlying causes

and means of prevention) and that there does not appear to be much statistical structure. This indicates that

there are strong dependencies between the underlying causes and their means of prevention. Intuitively,

this type of relationship is just what we would expect.
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We first summarize the means of prevention associated with the major underlying causes. ‘‘Application

walk-throughs’’, ‘‘expert person/documentation’’, and ‘‘guideline enforcement’’ were considered

important in addressing these major underlying causes.

• incomplete/omitted design (cause 4) — ‘‘application walk-throughs’’ (prevention 5) was thought to be

applicable to 28% of the faults with this underlying cause (a percentage higher than expected);

‘‘requirements/design templates’’ (prevention 2) and ‘‘expert person/documentation’’ (prevention 6)

were next in importance with 14% each (the first being higher than expected); and ‘‘formal

requirements’’ (prevention 1) was felt to be applicable to 12% of the faults with this underlying cause (a

percentage higher than expected)

• none given (cause 1) — again, ‘‘application walk-throughs’’ was thought to be applicable to 37% of the

faults with these underlying causes; ‘‘guideline enforcement’’ (prevention 8), ‘‘better test planning’’

(prevention 9), and ‘‘other’’ (prevention 10) were felt to be applicable to 19%, 14%, and 10% of the

faults, respectively. In all four of these cases, the percentages were higher than expected.

• lack of knowledge (cause 7) — ‘‘expert person/documentation’’ was thought to be applicable to 32% of

the faults with this underlying cause, a percentage higher than expected; ‘‘application walk-throughs’’,

‘‘guideline enforcement’’, and ‘‘formal interface specifications’’ were felt to be applicable to 17%, 14%

and 11% of the faults with this underlying cause, respectively, though ‘‘application walk-throughs’’ had

a lower percentage than expected, while ‘‘formal interface specifications’’ had a higher percentage than

expected.

The following summarizes the major underlying causes addressed by the most frequently considered means

of prevention. ‘‘Lack of knowledge’’, ‘‘none given’’, ‘‘incomplete/omitted design’’, and ‘‘ambiguous

design’’ were the major underlying causes for which these means of prevention were considered important.

It is somewhat non-intuitive that the ‘‘none given’’ underlying cause category is so prominent as an

appropriate target for these primary means of prevention.

• application walk-throughs (prevention 5) — ‘‘none given’’ (cause 1) and ‘‘incomplete/omitted design’’

(cause 4) were thought to be the appropriate for this means of prevention for 31% and 30% of the cases

(higher than expected); ‘‘ambiguous design’’ (cause 5) and ‘‘lack of knowledge’’ (cause 7) were both

felt to apply to 13% of the cases each (though the first was higher than expected and the second lower).

• expert person/documentation (prevention 6) — ‘‘lack of knowledge’’ was considered the major target

for this means of prevention, accounting for 37% of the cases (a higher than expected value);

‘‘incomplete/omitted design’’ and ‘‘ambiguous design’’ were thought to be appropriate in 23% and

11% of the cases, respectively; and ‘‘none given’’ was thought appropriate in 10% of the cases (lower

than expected).

• guideline enforcement (prevention 8) — ‘‘none given’’ and ‘‘incorrect modification’’ were felt to be the

most appropriate for this means of prevention for 30% and 28% of the cases, respectively (both higher

than expected); ‘‘lack of knowledge’’ and ‘‘incorrect earlier fix’’ were appropriate in 19% and 12% of

the cases, respectively (the latter was higher than expected).

4.3 Interface Faults versus Implementation Faults

The definition of an interface fault that we use here is that of Basili and Perricone [2] and Perry and

Evangelist [13, 14]: interface faults are ‘‘those that are associated with structures existing outside the

module’s local environment but which the module used’’. Using this definition, we roughly characterize
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‘‘language pitfalls’’ (1), ‘‘low-level logic’’ (3), ‘‘internal functionality’’ (5), ‘‘design/code complexity’’

(11), ‘‘performance’’ (14), and ‘‘other’’ (22) as implementation faults. The remainder are considered

interface faults. We say ‘‘roughly’’ because there are some cases where the implementation categories may

contain some interface problems — remember that some of the ‘‘design/code complexity’’ faults were

considered preventable by formal interface specifications.

TABLE 17. Interface/Implementation Fault Comparison_ ______________________________________
Interface Implementation_ _______________________________________ ______________________________________

frequency 49% 51%

find weighted 50% 50%

fix weighted 56% 44%_ ______________________________________ ⎜⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜

Interface faults occur with slightly less frequency than implementation faults, but require about the same

effort to find them and more effort to fix them.

The table below compares interface and implementation faults with respect to their underlying causes.

Underlying causes ‘‘other’’, ‘‘ambiguous requirements’’, ‘‘none given’’, ‘‘earlier incorrect fix’’ and

‘‘ambiguous design’’ tended to be the underlying causes more for implementation faults than for interface

faults. Underlying causes ‘‘incomplete/omitted requirements’’, ‘‘incorrect modification’’ and ‘‘submitted

under duress’’ tended to be the causes more for interface faults than for implementation faults.

Note that underlying causes that involved ambiguity tended to result more in implementation faults than in

interface faults, while underlying causes involving incompleteness or omission of information tended to

result more in interface faults than in implementation faults.

TABLE 18. Interface/Implementation Faults and Underlying Causes_ ___________________________________________________________
Interface Implementation

49% 51%_ ____________________________________________________________ ___________________________________________________________
1 none given 45.2% 54.8%

2 incomplete/omitted requirements 79.6% 20.4%

3 ambiguous requirements 44.5% 55.5%

4 incomplete/omitted design 50.8% 49.2%

5 ambiguous design 47.0% 53.0%

6 earlier incorrect fix 45.1% 54.9%

7 lack of knowledge 49.2% 50.8%

8 incorrect modification 54.5% 45.5%

9 submitted under duress 63.1% 36.9%

10 other 39.1% 60.1%_ ___________________________________________________________ ⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

The table below compares interface and implementation faults with respect to the means of prevention. Not

surprisingly means 1 and 3 were more applicable to interface faults than to implementation faults. Means

of prevention 8, 4, and 6 were considered more applicable to implementation faults than to interface faults.
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TABLE 18. Interface/Implementation Faults and Means of Prevention_ _________________________________________________________
Interface Implementation

49% 51%_ __________________________________________________________ _________________________________________________________
1 formal requirements 64.8% 35.2%

2 requirements/design templates 51.5% 48.5%

3 formal interface specifications 73.6% 26.4%

4 training 36.4% 63.6%

5 application walk-troughs 48.0% 52.0%

6 expert person/documentation 44.3% 55.7%

7 design/code currency 46.7% 53.3%

8 guideline enforcement 33.1% 66.9%

9 better test planning 48.0% 52.0%

10 others 49.3% 50.7%_ _________________________________________________________ ⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

5. Summary and Conclusions

We have presented the results of a two-part survey concerning the software faults encountered in evolving a

large-scale, real-time system. We first presented the general results, reporting the phases where the faults

occurred and the testing phases in which they were uncovered. We then discussed in depth the design and

coding faults survey, reporting the frequency of fault occurrence, the effort to find and fix them, their

underlying causes and means of prevention. Finally, we characterized these faults as interface and

implementation faults, the effort to find and fix them, their contributing underlying causes and applicable

means of prevention.

The results of the two studies are summarized as follows:

• Problems with requirements, design and coding accounted for 34% of the total MRs. Requirements

account for about 5% of the total MRs and, while not extremely numerous, are particularly important

because they have been found so late in the development process where they are particularly expensive

to fix.

• Testing large, complex real-time systems often requires elaborate test laboratories that are themselves

large, complex, real-time systems. In the development of this release, testing MRs accounted for 25%

of the total MRs.

• The fact that 16% of the total MRs are ‘‘no problems’’ and the presence of a significant set of design

and coding faults such as ‘‘unexpected dependencies’’, ‘‘interface and design/code complexity’’

indicate that lack of system knowledge is a significant problem in the development of this release.

• 78% of the design and coding faults took five days or less to fix; 22% took 6 or more days to fix. We

note that there is a certain overhead factor that is imposed on the fixing of each fault that includes

getting consensus, building the relevant pieces of the system and using the system test laboratory to

validate the repairs. Unfortunately, we do not have data on those overhead factors.

• Five fault categories account for 60% of the design and coding faults: internal functionality, interface

complexity, unexpected dependencies, low-level logic, and design/code complexity. With the

exception of ‘‘low-level logic’’, this set of faults is what we would expect to be significant in evolving a

large, complex real-time system.
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• Weighting the fault categories by the effort to find and to fix them yielded results that coincide with our

intuition of which faults are easy and hard to find and fix.

• ‘‘Incomplete/omitted design’’, ‘‘lack of knowledge’’, and ‘‘none given’’ (which we conjecture means

that the surface fault is also the underlying cause) account for the underlying causes for 64% of design

and coding faults. The weighting of the effort to fix these underlying causes coincides very nicely with

our intuition: faults caused by requirements problems require the most effort to fix, while faults cause

by ambiguous design and lack of knowledge required among the least effort to fix.

• ‘‘Application walk-throughs’’, ‘‘expert person/documentation’’, ‘‘guideline enforcement’’, and

‘‘requirements/design templates’’ represent 64% of the suggested means of preventing design and

coding faults. As application walk-throughs accounted for 25% of the suggested means of prevention,

we believe that this supports Curtis, Krasner and Iscoe’s claim that lack of application knowledge is a

significant problem.

• While informal means of prevention were preferred over formal means, it was the case that informal

means of prevention tended to be suggested for faults that required less effort to fix and formal means

tended to be suggested for faults that required more effort to fix.

• In Perry and Evangelist [13, 14], interface faults were seen to be a significant portion of the entire set of

faults (68%). However, there was no weighting of these faults versus implementation faults. We found

in this study that interface faults were roughly (see the discussion above) 49% of the entire set of design

and coding faults and that they were harder to fix than the implementation faults. Not surprisingly,

formal requirements and formal interface specifications were suggested as significant means of

preventing interface faults.

The system reported here was developed and evolved using the current ‘‘best practice’’ techniques and

tools with well-qualified practitioners. Because of this fact, we feel that the data point is generalizable to

other large-scale, real-time systems. With this in mind, we offer the following recommendations to improve

the current ‘‘best practice’’.

• Obtain fault data throughout the entire development/evolution cycle (not just in the testing cycle) and

use it monitor the progress of the process.

• Incorporate the non-technological, people-intensive means of prevention into the current process. As

our survey has shown, this will yield benefits for the majority of the faults reported here.

• Introduce tools to increase the precision and completeness of requirements, architecture and design

documents. This will yield benefits for those faults that were generally harder to fix and will help to

detect the requirements, architecture and design problems earlier in the life-cycle.

We are currently incorporating the non-technological solutions into our development process. As we noted

in the introduction, empirical data provides us with insight into the kinds of tools and techniques needed to

support the software engineering of large systems. The data reported here shows clearly the efficacy of

research on requirements specifications (as exemplified by such projects as Watson [9] and Kaleidoscope

[21]), and architectural and design specifications (as exemplified by Perry and Wolf [17] and the Inscape

Environment [15]).



- 29 -

Acknowledgements

David Rosik contributed significantly to the general MR survey; Steve Bruun produced the cross-tabulated

statistical analysis for the design/coding survey and contributed, along with Carolyn Larson, Julie Federico,

H. C. Wei and Tony Lenard, to the analysis of the design/coding survey; and Clive Loader increased our

understanding of the chi-square analysis. We especially thank Marjory P. Yuhas and Lew G. Anderson for

their unflagging support of this work. And finally, we thank all those that participated in the survey.

References

[1] Victor R. Basili and David H. Hutchens, ‘‘An Empirical Study of a Syntactic Complexity Family’’,

IEEE Transactions on Software Engineering, Vol SE-9, No 6 (November 1983), 664-672.

[2] Victor R. Basili and Barry T. Perricone, ‘‘Software Errors and Complexity: an Empirical

Investigation’’, Communications of the ACM, 27:1 (January 1984), 42-52.

[3] Victor R. Basili and DAvid M. Weiss, ‘‘A Methodology for Collecting Valid Software Engineering

Data’’, IEEE Transactions on Software Engineering, Vol. SE-10, No 6 (November 1984), 728-738.

[4] Barry W. Boehm, Software Engineering Economics. Englewood Cliffs: Prentice-Hall, 1981.

[5] John B. Bowen, ‘‘Standard Error Classification to Support Software Reliability Assessment’’,

AFIPS Conference Proceedings, 1980 National Computer Conference, 1980, 697-705.

[6] Bill Curtis, Herb Krasner, and Neil Iscoe, ‘‘A Field Study of the Software Design Process for Large

Systems’’, Communications of the ACM, Vol 31, No 11 (November 1988), 1268-1287.

[7] Albert Endres, ‘‘An Analysis of Errors and Their Causes in System Programs’’, IEEE Transactions

on Software Engineering, Vol. SE-1, No. 2, (June 1975), 140-149.

[8] Robert L. Glass, ‘‘Persistent Software Errors’’ IEEE Transactions on Software Engineering, Vol.

SE-7, No. 2, (March 1981), 162-168.

[9] Van E. Kelly and Uwe Nonnenmann ‘‘Inferring Formal Software Specifications from Episodic

Descriptions’’, Proceedings of AAAI 87. Sixth National Conference on Artificial Intelligence, 13-17

July 1987, Seattle, Washington. 127-132.

[10] M. M. Lehman and L. A. Belady, Program Evolution. Processes of Software Change. London:

Academic Press, 1985.

[11] J. D. Musa, A. Jannino, and K. Okumoto, Software Reliability. New York: McGraw-Hill, 1987.

[12] Thomas J. Ostrand and Elaine J. Weyuker, ‘‘Collecting and Categorizing Software Error Data in an

Industrial Environment’, The Journal of Systems and Software, 4 (1984), 289-300.

[13] Dewayne E. Perry and W. Michael Evangelist. ‘‘An Empirical Study of Software Interface Errors’’,

Proceedings of the International Symposium on New Directions in Computing, IEEE Computer

Society, August 1985, Trondheim, Norway, 32-38.

[14] Dewayne E. Perry and W. Michael Evangelist. ‘‘An Empirical Study of Software Interface Faults

— An Update’’, Proceedings of the Twentieth Annual Hawaii International Conference on Systems

Sciences, January 1987, Volume II, 113-126.



- 30 -

[15] Dewayne E. Perry, ‘‘The Inscape Environment’’, Proceedings of the 11th International Conference

on Software Engineering, 15-18 May 1989, Pittsburgh PA, 2-12.

[16] Dewayne E. Perry, ‘‘Industrial Strength Software Development Environments’’, Proceedings of

IFIPS Congress ’89 — 11th World Computer Congress, August 28 - September 1, 1989, San

Francisco CA.

[17] Dewayne E. Perry and Alexander L. Wolf, ‘‘Software Architecture’’, AT&T Bell Laboratories,

September 1898 (Revised January 1991), submitted for publication.

[18] B. R. Rowland, R. E. Anderson, and P. S. McCabe, ‘‘The 3B20D Processor & DMERT Operating

System: Software Development System’’, The Bell System Technical Journal, 62:1 part 2 (January

1983), 275-290.

[19] N. F. Schneidewind and Heinz-Michael Hoffmann, ‘‘An Experiment in Software Error Data

Collection and Analysis’’, IEEE Transactions on Software Engineering, Vol. SE-5, No. 3, (May

1979), 276-286.

[20] Thomas A. Thayer, Myron Lipow, and Eldred C. Nelson, ‘‘Software Reliability - A Study of Large

Project Reality’’, TRW Series of Software Technology, Volume 2. North-Holland, 1978.

[21] Pamela Zave and Daniel Jackson, ‘‘Practical Specification Techniques for Control-Oriented

Systems’’, Proceedings of IFIPS Congress ’89 — 11th World Computer Congress, August 28 -

September 1, 1989, San Francisco CA.




