Introduction to Software Engineering Lecture 1

Introduction to Software Engineering

Dewayne E Perry
Office: ACE 5.124 - Hours MW 11-12:00
Phone: +1.512.471.2050
perry @ ece.utexas.edu
www.ece.utexas.edu/~perry/education/SE-Intro/

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Lecture 1

You Just Made the Wrong Choice ©

LETS ST FoR A BIT HAMLET...

© 2005-present, Dewayne E Perry 2

Introduction to Software Engineering Lecture
Sometimes ©
g
WJE CAN'T WIN =
PREPARE A 2 EQ{UIL&E&]EH_&%’?IF?& THIS BUSINESS. El | TusT sAY WE
PROPOSAL g - AND WJE DONT HAVE THE 5| | DO. WELL FIGURE
FOR THIS 2 - RIGHT PRODUCTS OR | |3 IT OUT LATER.
CUSTOMER. % y EXPERTISE. g \J
. \{ F
§ 4
i 3
o g
| j o L]

AND WED STILL BE THE
MOST EXPENSIVE
BI0OLER.

\
Ni

MAKE IT UP WJITH
CHANGE ORDERS AND
UNEXPECTED ESSENTIAL

\ UPGRADES.

BEEN RANDOMLY
ASSIGNED TO CREATE
LIES FOR A PROPOSAL

LJE CANT LJIN FOR
A SERVICE LJE CANT

4 PERFORM,

r,

/

www, dilbert.com

T

YOU MAKE
COMPETING
SOUND BAD.

%ﬂ

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Lecture

Course Information

> www.ece.utexas.edu/~perry/education/SE-Intro
% Syllabus -

> Lists papers to be read in preparation for each lecture
> Online: at www.ece.utexas.edu/perry/education/
> All pcyqers are there to be downloaded

S ai

% Class is discussion!
> Prerara'rion: read the papers
> Will provide study/thought questions to consider while reading
> In class excercises
Y 6rades: weekly (possibly more) quizzes; 2 exams (no final exam)
> At the beginning of class for that day's readings
» NO make-up quizzes - will drop lowest two scores
> NO make-up exams except under dire circumstances
> 90%, 80%, 70%, 60%, 50% grade structure
> 6rad students - project with incremental schedule
Y Concepts and principles are the point in this course
> Details are there to help understand the concepts and principles -
will not hold you to remembering all the details
> See the handout on how to read papers

L, Sample test there to give you an idea for quizzes & exams
% Standard ECE and UT no cheating policies

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Lecture 1

Other Matters

2 Class attendance
Y Do not take attendance - BUT will call on you to answer
questions
% BUT weekly (or more) quizzes and two (1s' half; 2" half)
exams
Y Generally, no PPT slides - class will be devoted to discussion

> Missing quizzes and exams
“You are expected to be here for tests
“IF you are going to miss, get to me first
> Has to be a significant reason
» There are phones with answer machines (office: 471-2050)
> There is email (perry @ ece.utexas.edu)
> And there is personal contact (I am usually around mornings)
Y The only excuse for not getting to me ahead of time is a
death in the family - yours!
Y Interviews for jobs are not sufficient excuses. Your class
comes firstl!

> You will get out of this as much as you put into it!

© 2005-present, Dewayne E Perry 5

Introduction to Software Engineering Lecture 1

To Help You Do Well

> Improve comprehension

LWSJ: report on studies for improving comprehension

U Look at ART -
> 6o visit the Blanton Museum
> Take an art class

Y Stimulates the part of the brain related to comprehension

© Improve retention
LWSJ: report on study for improving retention

Y Writing longhand notes versus typing (eg on you laptop)
» Writing longhand exercises that part of the brain associated
with retention
> Typing does not.

o If all else fails, eat dark chocolate
L, See proof on next slide

© 2005-present, Dewayne E Perry 6

Introduction to Software Engineering Lecture 1
Proof of Dark Chocolate
HERE'S SOME DARK WHY ARE YOU IJUsT
CHOCOLATE. STUDIES SUDDENLY DOING ATE THREE
Sl e EE%?&-?—I 'lr:n;ég SJAEEE POUNDS OF WJOW. IT
. : CHOCOLATE. LJORKS
TRINK BETTER INSTEAD OF YOUR FAST.

Dilbericom DilbertCaroonist@gmail .com

USUAL MAGICAL
THINKING?

/

L1314 ©2004 Soott Adarms, e, Dt by Unvensl Ucks

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Lecture 1

Reading Assignments

> Classic and seminal papers
% The underlying concepts and principles are criticall
Y You will be thankful when you go to interview for a software
position - your interviewers will like what you can say about
engineering software systems

> I am going to be a CE/EE - why is SE relevant?
Y Software is invading every aspect of our lives
“For CE (and even EE) you will build software systems

Y The concepts and principles are just as relevant for CE/EE
> All engineering is about design, measurement and evaluation etc

> Building software systems is Fun!

%Orae of the most creative and intellectually challenging fields
today
% The papers provide examples and lessons

© 2005-present, Dewayne E Perry 8

Introduction to Software Engineering Lecture 1

The Joys and Sorrows

2 Joys

L Sheer joy of making things

% Delight in working in a hackable medium
» Thought stuff
> Limits: imagination, logic and complexity

% Fashioning complex puzzle-like objects

% Creativity - grand concepts

% Always learning new things

Y Making things useful for/to other people

> Sorrows
Y Other people often set the objectives and boundaries
Y Has to work perfectly
» Finding bugs is hard work
> Debugging has linear convergence, or worse
> Make progress by finding our silly and not so silly mistakes

Y What we build may be obsolete before completed

© 2005-present, Dewayne E Perry 9

Introduction to Software Engineering Lecture 1

The Gospel according to BC ©

OH,GEEAT GURU. T
HAVE CUESTIONS, AND
1 NEgD ANSWERS |

CAX YOURBLPMET

> We are here to learn about software engineering
> We have a book and papers for basic understanding

> There are libraries, internet sites, colleagues, and
me to supplement your basic knowledge

© 2005-present, Dewayne E Perry 10

Introduction to Software Engineering Lecture 1

Overview of Course

> Overview of Software Engineering

> Life-Cycle Phases - 3 semesster
% Requirements
Y Architecture & design
% Construction
Y, Deployment & Maintenance

> Integral Activities - & semester
% Documentation
L Measurement & evaluation
Y, Management of objects
L Teamwork
% Evolution

> Process Life-Cycle & Integral activities - & semester
> Project Management - week before 2" exam

© 2005-present, Dewayne E Perry 1

Introduction to Software Engineering

Lecture 1

SE Life-Cycle

Product

\

Requirements

Architecture & Design

Construction

Deployment & Maintenance

=
nggﬁ
O S a2a | d | m
cC m o o o
S C| ® o
o = 3 cC
388 9Q/35 |2
S B85 |23
— S p .
o 3—4-9‘_
= wn

Phases

Integral to all phases

© 2005-present, Dewayne E Perry

12

Introduction to Software Engineering Lecture

Software Engineering (SE)

> Software Engineering is about building, maintaining and evolving

software systems
% Fundamentally, SE is a set of problem solving skills, methods,
techniques and technology applied in a variety of domains to create
& evolve useful software systems that solve practical problems
% Programming is just one of these basic problem solving skills

> Brooks: "Software entities are more complex for their size than
perhaps any other human construct”

> Wulf & Shaw: “Large programs, even not so large programs, are
among the most complex creations of the human mind”

> Why?
Y, Need more memory? Add more memory cards - replicate
% In SE, add new distinct components, generally little replication.

> Basic Job of a Software Engineer
% Discover, create, build and evolve
> abstractions, behaviors and representations
& Effectively evaluate and decide among alternative solutions

© 2005-present, Dewayne E Perry

13

Introduction to Software Engineering Lecture 1

SE and Other Engineering Disciplines

2 Two major components in engineering systems
% Design
Y Manufacture

> Engineering is applied to both design and manufacture
L Significant part of an engineering discipline is the
manufacturing process

> Have mathematics, for example, for optimization of processes
> Engineer manufacturing and fabrication equipment

> SE: engineering is applied to both as well, BUT

Y, Manufacture is
> Trivial (by comparison - sometimes complex and time-consuming)
» Mundane
» Automated
Y Much larger emphasis on engineering applied to DESIGN
> Building a software product is a DESIGN process
> General design approaches/principles applied to diverse domains

© 2005-present, Dewayne E Perry 14

Introduction to Software Engineering Lecture 1

Essential Characteristics of Software Systems

> Main Message of Brooks' No Silver Bullet paper:

. no single development, in either technology or
management technique, that by itself promises even an order
of magnitude improvement in productivity, reliability or
simplicity !

> Brooks distinguishes between
& Essential characteristics
& Accidental characteristics

> Basic fact (and first important lesson):
Building software systems is just plain hard

> Essence of software systems
Y A construct of interlocking constructs: data sets, relations
between/among data, algorithms and invocations
Y Abstract

© 2005-present, Dewayne E Perry 15

Introduction to Software Engineering Lecture 1

Essential Characteristics of Software Systems

> Essential characteristics
& Complexity
L Conformity
Y Changeability
% Invisible
& Implicit
%, Evolution

> Accidental Characteristics
Y Inadequate modes/means of expressions
Y Inadequate abstractions
Y Inadequate support
% Resource limitations

© 2005-present, Dewayne E Perry 16

Introduction to Software Engineering

Lecture 1

Dilbert & Brooks

EVERYTHING YOU IF YOU DON'T MIND, OKAY,
SAID IS RIGHT, BUT I™ GOING TO MAKE A BUT
I HAVE A REFLEXIVE RIDICULOUS COUNTER— DON'T BE
URGE TO DISAGREE POINT JUST TO GET 1T CREEPY
WITH YOU. OUT OF MY SYSTEM. ABOUT
IT.

SOFTWARE
CANT BE
CHANGED.

I

AHHH...
THATS

GOOD.
S

Dilbertcom DilberCartoonisti@gmail .com

E.-'-I' I &2000 Scott Adams, INc. Tist. by Unkesrsal Lizkck

© 2005-present, Dewayne E Perry

17

Introduction to Software Engineering Lecture 1

Essential Characteristics of Software Systems

> Complexity

% Basic issues
> No two parts alike - ie, all parts distinct
> Scale up by addition, not replication
> Very large number of states - hard to conceive, understand
2 kinds of complexity
» Intricacy
v'Particularly true of algorithms

v'Like a Bach 4 voice fugue
* Horizontal and vertical relationships
* Hard to change one note without severe repercussions

> Wealth of detail
v'"Nothing very deep, just masses of details

v'Like a Strauss tone poem, or Mahler symphony
* Massive number of notes on a page - provide texture
* Missing one would hardly be noticed

v'Makes very hard to comprehend the entire system (eg, 10M lines)

© 2005-present, Dewayne E Perry 18

Lecture 1

i

Intricacy (Bach)

19

Td g

[&]

ra

T
2

7}

b

oY
I

<

2N
T
[~

1

Complexity

Introduction to Software Engineering

)
T]IJ'J

LY)

Y=

(%)

Td

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Lecture 1

Complexity: Wealth of Detail (Strauss)

S SR T s P T s N s T s 20

rLegrF1 = §S = = — .? =
- s 2E L 3~ =] = X =
rpf e p leeus e slreedr ¢ et e W TS
a:«r'ﬁll- L . i T # 1 3 %—u‘ '! " T i X ' . X f
1.2.0b.

Engih.

1.2, K.
a

1.2 . Fag.

K=: Fag.

1L2.H.
! %

oS4 H-
=)

Th.

Phk.

Hfe.

© 2005-present, Dewayne E Perry 20

Introduction to Software Engineering

Lecture 1

Essential Characteristics of Software Systems

> Conformity

Y There are complex objects in physics
» BUT they have uniformity

% Not so in software systems - eg, interfaces
» Often arbitrary complexity

> Changeability
Y Thought stuff > infinitely malleable
Y Hence, soft

> Invisible
“Not inherently embedded in space
% No inherent geometric representation
% Multi-dimensional relationships

© 2005-present, Dewayne E Perry

21

Introduction to Software Engineering Lecture 1

Essential Characteristics of Software Systems

> Implicit
% Explicit part
> Code - a desiccated relic of a long intellectual process
Y Very large design space
» Narrow to code thru large number of design decisions
> Various architectural, design and implementation decisions
» Numerous and various trade-offs

L, Syntax represents gross and obvious dependencies
% BUT, not the logical or semantic dependencies

> Evolution
Y Not a matter of “getting it right the first time"”
» Though sometimes that needs to be done
% Changes in the world forces evolution
> Context
> Use
> Technology

© 2005-present, Dewayne E Perry 22

Introduction to Software Engineering Lecture 1

Accidental Characteristics of Software Systems

> Inadequate modes/means of expression

Y Languages are important:
> Wittgenstein: "the limits of my language are the limits of my
world"”
» Johnson: “language is the dress of thought”

% High Level Languages

> Frees us from accidental complexity

> Provides useful abstractions that can be automatically checked
% Eg, Ada

» Modularity, abstraction, concurrency

» BUT, still just an incremental improvement
% Eg, OO

> Abstract data types + hierarchical types with inheritance

> Reduces syntactic stuff with no information content

» BUT, type underbrush is not 9/10ths of the work we do

© 2005-present, Dewayne E Perry 23

Introduction to Software Engineering Lecture 1

Accidental Characteristics of Software Systems

> Inadequate abstractions
% AL heuristics
> rules of thumbs
> But much doesn’t apply
Y 6raphical programming - not convincing
> An exception: Kramer & Magee's state simplification work
v'Helps to find faults and reduces accidental complexity
Y Automatic programming: higher level language + generator
> Need well understood domain
> Relatively few parameters
» Known methods for alternatives
» Explicit rules for selecting solution techniques
Y Program verification: verify instead of test
» No magic - hard work
» Programming hard, Specifications harder, proofs harder yet
v'Very hard to debug the specifications
v'Virtually all published proofs of programs have bugs

© 2005-present, Dewayne E Perry 24

Introduction to Software Engineering

Lecture 1

Accidental Characteristics of Software Systems

> Inadequate support
% Programming environments
> Libraries, structures, standard formats
% Eg, language oriented editors
> Never did make it
» Useful: integrated data base for impact details

o Resource limitations
% Time-sharing systems
» Immediacy, availability, continuity
Y Workstations
> Think time still dominant

% Cloud - just servers on steroids
> Expands availability
> But still possible connection problems

© 2005-present, Dewayne E Perry

25

Introduction to Software Engineering Lecture 1

Brooks' Recommendations

> Buy not build

L Will see later there are “flaws in the ointment”
> Requirements, refinement, prototypes

> Incremental development
Y 6row, don't build, software systems

> Use great designers
Y Good design practices - good designs
» Can be taught

L 6reat designs > need great designers
> Creative (the difference between Salieri and Mozart)
> Achieve conceptual integrity

v'The right mix of simplicity and functionality

© 2005-present, Dewayne E Perry 26

	Introduction to Software Engineering
	You Just Made the Wrong Choice 
	Sometimes 
	Course Information
	Other Matters
	To Help You Do Well
	Proof of Dark Chocolate
	Reading Assignments
	The Joys and Sorrows
	The Gospel according to BC 
	Overview of Course
	SE Life-Cycle
	Software Engineering (SE)
	SE and Other Engineering Disciplines
	Essential Characteristics of Software Systems
	Essential Characteristics of Software Systems
	Dilbert & Brooks
	Essential Characteristics of Software Systems
	Complexity: Intricacy (Bach)
	Complexity: Wealth of Detail (Strauss)
	Essential Characteristics of Software Systems
	Essential Characteristics of Software Systems
	Accidental Characteristics of Software Systems
	Accidental Characteristics of Software Systems
	Accidental Characteristics of Software Systems
	Brooks’ Recommendations

