
1

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Testing Objectives
 Informal view:

Testing: a process of executing software with the intent of
finding errors

Good testing: a high probability of finding as-yet-
undiscovered errors

Successful testing: discovers previously unknown errors
 Formal view

Testing is an experiment
Hypothesis: there are no faults
Independent variables: context and input
Dependent variables: output of test
Do the experiment: execute the model (program/system)
Analysis: are the outputs those predicted by the theory

(requirements / logical structure of program)

2

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Basic Definitions
 Test case: specifies

Inputs + pre-test state of the software
Expected results (outputs + new-state)

White-box testing: uses knowledge of the internal
structure of the software
E.g., write tests to “cover” internal paths
Typically used for unit testing

 Black-box testing: ignores the internal logic of the
software, and looks at what happens at the interface
(e.g., given this input, was the produced output
correct?)
Typically used for system testing

3

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Testing Phases
 Unit testing

Initial testing on a developers component
 Integration testing

Testing of incrementally composed components
 System testing

Testing of a fully integrated system
Typically two phases: system and stress testing

 Alpha testing
Small set of friendly users – live context use

 Beta testing
Larger set of not necessarily friendly users – live context

use
 Regression testing

Re-testing at unit, integration and system test levels to
ensure evolution has not broken non-changed parts

4

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Unit Testing
 Scope: one component from the design

Often corresponds to the notion of “compilation unit” from
the programming language

 Responsibility of the developer
Not the job of an independent testing group

 Both white-box and black-box techniques are used
for unit testing

 Maybe necessary to create stubs and drivers:
If related modules are not yet implemented or not yet

tested

5

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Stubs
 It may be difficult to test a method or class that

interacts with other methods or classes
 The replacement of a method that has not yet been

implemented or tested is called a stub
 A stub has the same header as the method it

replaces,
but its body only displays a message indicating that the stub

was called or
it performs some other hard coded action that allows you to

proceed.

6

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Drivers
 A driver program (aka harness)

declares any necessary object instances and variables,
assigns values to any of the method’s inputs,
calls the method, and
displays the values of any outputs returned by the method

 You can put a main method in a class to serve as the
test driver for that class’s methods

7

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Basic Strategy for Unit Testing
 Evaluate the tests using white-box techniques (test

adequacy criteria)
How well did the tests cover statements, branches, paths,

etc.?
Many possible criteria; at the very least need 100% branch

coverage
 Create more tests for the inadequacies: e.g., to

increase coverage of nested loops
 Create black-box tests

Based on the specification of the unit (as determined during
design)

E.g. method interface, + preconditions

8

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Integration Testing – Approach
 Integration testing: scope = set of interacting components

2 general strategies: top-down and bottom-up
Focus: correctness of component interactions
Mixture of black-box and white-box techniques

 Goals
Ensure component expectations are met
Interfaces used match
Interfaces provided

Eliminate unwanted component interactions
Shared variables, race conditions, pointer problems,
etc.

Replace “unit reality” with “integration reality”
Stubs at best “model” reality

 Infuse (change management + integration testing)
Systematic management of multiple developers making changes

to a system
Add in integration testing for the recombination phase

9

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

System Testing
 Goal: find whether the system does what the

customer expects to see
Black-box techniques

 In the spec created during requirements analysis,
there should be validation criteria
How are the developers and the customers going to agree

that the software is good enough?
 Many issues: functionality, performance,

documentation, usability, portability, etc.

10

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

System Testing (cont)
 Initial part of system testing is done by the

software producer
 Eventually, we need testing done by the customers

(or surrogates)
Every time a customer runs the software he/she is testing it
Customers are good at doing unexpected things, which is

great for testing
 If the software is built for a single customer: series

of acceptance tests
Deploy the software in the customer environment and have

end-users run it

11

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

System Testing (cont)
 If the software is produced for multiple customers:

two phases
 Alpha testing: conducted at the vendor’s site by a

few customers
The vendor records any errors and usage problems

 Beta testing: the software is distributed to many
end-users; they run it in their own environment and
report problems
Often done by thousands of users

12

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Stress Testing
 Form of system testing: check the behavior of the

system under very heavy load conditions
 E.g., what if we have data sets that are an order of

magnitude larger than normal?
Will we run out of memory?
Will the OS start writing memory pages to disk (thrashing)?

 E.g., what if our server gets 10 times more client
requests than usual?
Will the system slow to a crawl ? Denial of service attacks ?

13

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Stress Testing (cont)
 Goal: find how well the system can cope with defined

load and overload
 Reason 1: determine failure behavior

If load goes above the intended (which often is a possibility)
how gracefully does the system fail?

 Reason 2: expose bugs that only occur under heavy
loads
Especially for system SW, middleware, servers, etc.
E.g., memory leaks, incorrect resource allocation and

scheduling, race conditions

14

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Regression Testing
 Basic idea: rerun old tests to make sure that nothing

was “broken” by a change
Changes: bug fixes, module integration, maintenance

enhancements, etc.
 To be able to do this regularly and efficiently, we

need test automation tools
Load tests, execute them, check correctness
Everything has to be completely automatic
Test case database is required

 Could happen at any time: during initial development
or after deployment

	Testing Objectives
	Basic Definitions
	Testing Phases
	Unit Testing
	Stubs
	Drivers
	Basic Strategy for Unit Testing
	Integration Testing – Approach
	System Testing
	System Testing (cont)
	System Testing (cont)
	Stress Testing
	Stress Testing (cont)
	Regression Testing

