
1

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Testing Objectives
 Informal view:

Testing: a process of executing software with the intent of
finding errors

Good testing: a high probability of finding as-yet-
undiscovered errors

Successful testing: discovers previously unknown errors
 Formal view

Testing is an experiment
Hypothesis: there are no faults
Independent variables: context and input
Dependent variables: output of test
Do the experiment: execute the model (program/system)
Analysis: are the outputs those predicted by the theory

(requirements / logical structure of program)

2

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Basic Definitions
 Test case: specifies

Inputs + pre-test state of the software
Expected results (outputs + new-state)

White-box testing: uses knowledge of the internal
structure of the software
E.g., write tests to “cover” internal paths
Typically used for unit testing

 Black-box testing: ignores the internal logic of the
software, and looks at what happens at the interface
(e.g., given this input, was the produced output
correct?)
Typically used for system testing

3

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Testing Phases
 Unit testing

Initial testing on a developers component
 Integration testing

Testing of incrementally composed components
 System testing

Testing of a fully integrated system
Typically two phases: system and stress testing

 Alpha testing
Small set of friendly users – live context use

 Beta testing
Larger set of not necessarily friendly users – live context

use
 Regression testing

Re-testing at unit, integration and system test levels to
ensure evolution has not broken non-changed parts

4

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Unit Testing
 Scope: one component from the design

Often corresponds to the notion of “compilation unit” from
the programming language

 Responsibility of the developer
Not the job of an independent testing group

 Both white-box and black-box techniques are used
for unit testing

 Maybe necessary to create stubs and drivers:
If related modules are not yet implemented or not yet

tested

5

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Stubs
 It may be difficult to test a method or class that

interacts with other methods or classes
 The replacement of a method that has not yet been

implemented or tested is called a stub
 A stub has the same header as the method it

replaces,
but its body only displays a message indicating that the stub

was called or
it performs some other hard coded action that allows you to

proceed.

6

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Drivers
 A driver program (aka harness)

declares any necessary object instances and variables,
assigns values to any of the method’s inputs,
calls the method, and
displays the values of any outputs returned by the method

 You can put a main method in a class to serve as the
test driver for that class’s methods

7

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Basic Strategy for Unit Testing
 Evaluate the tests using white-box techniques (test

adequacy criteria)
How well did the tests cover statements, branches, paths,

etc.?
Many possible criteria; at the very least need 100% branch

coverage
 Create more tests for the inadequacies: e.g., to

increase coverage of nested loops
 Create black-box tests

Based on the specification of the unit (as determined during
design)

E.g. method interface, + preconditions

8

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Integration Testing – Approach
 Integration testing: scope = set of interacting components

2 general strategies: top-down and bottom-up
Focus: correctness of component interactions
Mixture of black-box and white-box techniques

 Goals
Ensure component expectations are met
Interfaces used match
Interfaces provided

Eliminate unwanted component interactions
Shared variables, race conditions, pointer problems,
etc.

Replace “unit reality” with “integration reality”
Stubs at best “model” reality

 Infuse (change management + integration testing)
Systematic management of multiple developers making changes

to a system
Add in integration testing for the recombination phase

9

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

System Testing
 Goal: find whether the system does what the

customer expects to see
Black-box techniques

 In the spec created during requirements analysis,
there should be validation criteria
How are the developers and the customers going to agree

that the software is good enough?
 Many issues: functionality, performance,

documentation, usability, portability, etc.

10

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

System Testing (cont)
 Initial part of system testing is done by the

software producer
 Eventually, we need testing done by the customers

(or surrogates)
Every time a customer runs the software he/she is testing it
Customers are good at doing unexpected things, which is

great for testing
 If the software is built for a single customer: series

of acceptance tests
Deploy the software in the customer environment and have

end-users run it

11

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

System Testing (cont)
 If the software is produced for multiple customers:

two phases
 Alpha testing: conducted at the vendor’s site by a

few customers
The vendor records any errors and usage problems

 Beta testing: the software is distributed to many
end-users; they run it in their own environment and
report problems
Often done by thousands of users

12

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Stress Testing
 Form of system testing: check the behavior of the

system under very heavy load conditions
 E.g., what if we have data sets that are an order of

magnitude larger than normal?
Will we run out of memory?
Will the OS start writing memory pages to disk (thrashing)?

 E.g., what if our server gets 10 times more client
requests than usual?
Will the system slow to a crawl ? Denial of service attacks ?

13

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Stress Testing (cont)
 Goal: find how well the system can cope with defined

load and overload
 Reason 1: determine failure behavior

If load goes above the intended (which often is a possibility)
how gracefully does the system fail?

 Reason 2: expose bugs that only occur under heavy
loads
Especially for system SW, middleware, servers, etc.
E.g., memory leaks, incorrect resource allocation and

scheduling, race conditions

14

Introduction to Software Engineering Supplement - 14

© 2005-preseny, Dewayne E Perry

Regression Testing
 Basic idea: rerun old tests to make sure that nothing

was “broken” by a change
Changes: bug fixes, module integration, maintenance

enhancements, etc.
 To be able to do this regularly and efficiently, we

need test automation tools
Load tests, execute them, check correctness
Everything has to be completely automatic
Test case database is required

 Could happen at any time: during initial development
or after deployment

	Testing Objectives
	Basic Definitions
	Testing Phases
	Unit Testing
	Stubs
	Drivers
	Basic Strategy for Unit Testing
	Integration Testing – Approach
	System Testing
	System Testing (cont)
	System Testing (cont)
	Stress Testing
	Stress Testing (cont)
	Regression Testing

