
1

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Process Systems
 Process is both a technical and a managerial problem

Technical importance
Defined processes enable us to move from a craft to an

engineering discipline
From secrets passed from master to apprentice
To published processes that can be

• Scrutinized
• Compared
• Evaluated

 Guide and coordinate very dynamic and complex processes
Managerial importance

Well understood practices are easier to manage
 Common processes across projects

Enables reallocation of people as resources
 Greater predictability and tracking

2

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Capability Maturity Model (CMM)
 Level 1 – Chaotic
 Level 2 – Repeatable

Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

 Level 3 – Defined
Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Inter-group coordination
Peer reviews

3

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Capability Maturity Model (CMM
 Level 4 – Managed

Software quality management
Quantitative process management

 Level 5 – Optimizing
Process change management
Technology change management
Defect prevention

4

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Processes are Software Too!
 ICSE 1987 – Keynote Talk

Noted the similarities between processes and products
Introduced the notion of “process programming”
Given ICSE Most Influential Paper award at ICSE 1997

 A Software Process System goes through the exact
same processes as a software product
The same life cycle
The same integral activities

 At detail level:
Disagreement about representation of processes themselves
Different kinds of measurement and evaluation

5

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Processes are Software Too!
 Process models or process programs?

Models
 Incomplete
Often weak on semantics, free for interpretation by people
 Lack specifics that can be very important

Programs
 Precise prescription for coordination of efforts of humans,

computers and software tools
 Executable
 Blurs distinction between process and product

 Fundamental distinction
Who is in charge?

Human as a subroutine, directed by process support system
Human enacting process with HELP of process support system

People have different/varying process characteristics
 Good at planning, handling exceptions
 “machine language” level varies

Informal versus formal

6

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Process Capture
 Analogous to requirements elicitation
 Three distinctions about processes

Process as defined
Process as done
Process as ought to be

 Useful mechanism for what is done: events
Event name
Time of occurrence
Who
Trigger
Response

 Best practices
Often based on experience, anecdotal evidence, some theory
Very little empirically validated

7

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Process Architecture & Design
 Some Principles --- Generic Processes

Define process fragments
 Combinable components
 In terms of goals

Use appropriate means of abstraction (or generalization)
 Parameterization
 Primitivation – requires elaboration
 Stratification - layering

Align activities with their appropriate processes
 Eg, estimation is a project management activity, not a design activity

Separate project structure from process structure
 project milestones and schedules,
 project roles, obligations and permissions, and
 the project's organizational structure.

 Some Principles --- Process Architecture
Modularize processes
Encapsulate domain-related activities
Decompose processes hierarchies or networks as appropriate
Explicitly define the relationships among processes

8

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Construction
 Implementation of components

Process programming
 Code the process details
Step typically the analog of function/procedure
 Explicit instructions and control

Process modeling
 Incomplete descriptions (ie, models are inherently incomplete)
 Variety of modeling mechanisms

Petri-nets
Finite state machines (variants: state charts)
Data flow diagrams
Goal directed models

 Construction
Typically dynamic execution and support
Don’t know of any static build process

 Two examples: Little-JIL and Interact/Intermediate

9

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Osterweil’s Little-JIL Features
 4 kinds of steps

Sequential – left to right order
Parallel - simultaneously
Try – left to right, stopping when one competes successfully
Choice – arbitrarily decides which

 Requisites
Prerequisite – must complete prior
Postrequisite – must be completed after

 Somewhat similar to Inscape’s obligation

 Exceptions and Handlers
Provide reactive control
Unhandled exceptions propagate up the execution tree

 Messages and reactions
Also reactive control, but no propagation

 Parameters – communication of information
 Resources – required during a step execution

10

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Osterweil’s Little-JIL Features

11

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Proactive Control (Steps, Requisites)

12

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Reactive Control (Exceptions, Messages)

13

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Process Data Flow

14

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Interact/Intermediate
 A goal-directed process modeling language
 Philosophy:

To maximize concurrency of process activities
To minimize direct control of the human element in the

process
 Emphasis:

Specifying assumptions and goals of various process activities
Leaving details of the activities implementation to the

enactor
Define some details of the enactment structure when desired

 Critical design considerations
Dynamism – software processes extremely dynamic
Reflectivity – activities are dependent on state of

Artifacts, process, project and organization

15

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Interact/Intermediate: Features
 Activity – basic process fragments

Signature: name and typed parameters
Assumptions – (ie, pre-conditions)
Internal structure

 Primitive – determined at enactment time by the enactor
Sequence < . . . > in specified sequence
Set { . . . } in arbitrary order
Selection (guard, structure) when guard, structure

Set of results, one or more of which may be achieved
 Goals achieved (ie, post-conditions)
Obligations - goals that must eventually become true

 Data – basic, enumerated, structured

16

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Interact/Intermediate: Features
 Enactment control

Implicit: partial order defined by assumptions and goals
 Goals provide the state that can be used to satisfy assumptions
Determine an implicit ordering of the activities
 Can only instantiate an activity when its assumptions have been

met
Explicit: normal enactment control

 Range from primitive (where left up to the enactor)
To specified, but preferably under specified, structure
Human enactor elaborates activity using supporting environment

Explicit: abnormal enactment control
When exceptions happen

Explicit: external constraint on beginning or end of
enactment

17

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Interact/Intermediate: Example

18

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Interact/Intermediate: Example

19

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Documentation
 Same lessons as product documentation

Shared understanding of what to do
 5ESS lessons: inappropriate process documentation

process description often describe how to write document
product production vs. management tasks are all the same

level
process input-output reflects benchmarks not just I/O
process descriptions are too detailed

 they define how?
 as well as what?

too much text
processes too detailed
process description vs process prescription

 Important problem
Finding the right level for process descriptions
Including necessary information in the descriptions

20

Introduction to Software Engineering Supplement - 19

© 2005-present, Dewayne E Perry

Other Commonalities with Products
 Deployment and Maintenance

Basically the same problems
But little likelihood of automation
Too much unformalized (unformalizable?) knowledge

 Version Management
Identical

 Teamwork
Identical

	Process Systems
	Capability Maturity Model (CMM)
	Capability Maturity Model (CMM
	Processes are Software Too!
	Processes are Software Too!
	Process Capture
	Process Architecture & Design
	Construction
	Osterweil’s Little-JIL Features
	Osterweil’s Little-JIL Features
	Proactive Control (Steps, Requisites)
	Reactive Control (Exceptions, Messages)
	Process Data Flow
	Interact/Intermediate
	Interact/Intermediate: Features
	Interact/Intermediate: Features
	Interact/Intermediate: Example
	Interact/Intermediate: Example
	Documentation
	Other Commonalities with Products

