Introduction to Software Engineering Supplement - 19

Process Systems

> Process is both a technical and a managerial problem

% Technical importance
> Defined processes enable us to move from a craft to an
engineering discipline
v'From secrets passed from master to apprentice
v'To published processes that can be
- Scrutinized
- Compared
- Evaluated
> 6uide and coordinate very dynamic and complex processes
% Managerial importance
» Well understood practices are easier to manage
»> Common processes across projects

v'Enables reallocation of people as resources
> G6reater predictability and tracking

© 2005-present, Dewayne E Perry 1

Introduction to Software Engineering Supplement - 19

Capability Maturity Model (CMM)

o Level 1 - Chaotic

> Level 2 - Repeatable
Y, Requirements management
% Software project planning
Y, Software project tracking and oversight
% Software subcontract management
% Software quality assurance
& Software configuration management

o Level 3 - Defined

% Organization process focus

% Organization process definition

% Training program

Y Integrated software management
Y Software product engineering

Y Inter-group coordination

Y Peer reviews

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Supplement - 19

Capability Maturity Model (CMM

> Level 4 - Managed
Y Software quality management
% Quantitative process management

> Level 5 - Optimizing
Y Process change management
Y Technology change management
Y Defect prevention

© 2005-present, Dewayne E Perry 3

Introduction to Software Engineering Supplement - 19

Processes are Software Too!
> ICSE 1987 - Keynote Talk

Y Noted the similarities between processes and products
Y Introduced the notion of “process programming”
b Given ICSE Most Influential Paper award at ICSE 1997

> A Software Process System goes through the exact

same processes as a software product
Y The same life cycle
Y The same integral activities

> At detail level:

Y Disagreement about representation of processes themselves
% Different kinds of measurement and evaluation

© 2005-present, Dewayne E Perry 4

Introduction to Software Engineering Supplement - 19

Processes are Software Too!

> Process models or process programs?

Y Models
> Incomplete
> Often weak on semantics, free for interpretation by people
> Lack specifics that can be very important
% Programs
> Precise prescription for coordination of efforts of humans,
computers and software tools
» Executable
> Blurs distinction between process and product

2 Fundamental distinction

Y Who is in charge?
» Human as a subroutine, directed by process support system
» Human enacting process with HELP of process support system
Y People have different/varying process characteristics
» Good at planning, handling exceptions
> “machine language” level varies
% Informal versus formal

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Supplement - 19

Process Capture

> Analogous to requirements elicitation

o Three distinctions about processes
% Process as defined
% Process as done
% Process as ought to be

o Useful mechanism for what is done: events
% Event name
L Time of occurrence
“Who
% Trigger
Y Response

> Best practices
Y, Often based on experience, anecdotal evidence, some theory
Y Very little empirically validated

© 2005-present, Dewayne E Perry 6

Introduction to Software Engineering Supplement - 19

Process Architecture & Design

> Some Principles --- Generic Processes

% Define process fragments
» Combinable components
> In terms of goals
% Use appropriate means of abstraction (or generalization)
> Parameterization
> Primitivation - requires elaboration
» Stratification - layering
Y Align activities with their appropriate processes
> Eg, estimation is a project management activity, not a design activity
%, Separate project structure from process structure
> project milestones and schedules,
> project roles, obligations and permissions, and
> the project's organizational structure.

> Some Principles --- Process Architecture
Y Modularize processes
% Encapsulate domain-related activities
Y, Decompose processes hierarchies or networks as appropriate
% Explicitly define the relationships among processes

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Supplement - 19

Construction

> Implementation of components

% Process programming
> Code the process details
> Step typically the analog of function/procedure
> Explicit instructions and control
% Process modeling
> Incomplete descriptions (ie, models are inherently incomplete)
> Variety of modeling mechanisms
v'Petri-nets
v'Finite state machines (variants: state charts)
v'Data flow diagrams
v'Goal directed models

o Construction
% Typically dynamic execution and support
% Don't know of any static build process

> Two examples: Little-JIL and Interact/Intermediate

© 2005-present, Dewayne E Perry 8

Introduction to Software Engineering Supplement - 19

Osterweil's Little-JIL Features

> 4 kinds of steps
%, Sequential - left to right order
% Parallel - simultaneously
Y Try - left to right, stopping when one competes successfully
% Choice - arbitrarily decides which

o Requisites
% Prerequisite - must complete prior

% Postrequisite - must be completed after
» Somewhat similar to Inscape's obligation

> Exceptions and Handlers
% Provide reactive control
% Unhandled exceptions propagate up the execution tree

> Messages and reactions
% Also reactive control, but no propagation

> Parameters - communication of information
> Resources - required during a step execution

© 2005-present, Dewayne E Perry 9

Introduction to Software Engineering Supplement - 19

Osterweil's Little-JIL Features

Interface Badge
Control Flow Badge l Exception Handler Badge

/ Postrequisite Badge

Contmuanon Badge

‘step Name

Prerequisite Badge

-,
o

Pa rameti:;*: ;f \\ \\ Exception
N . . | Message NG
9 Reaction Badge | O
SubStep HandlerStep

Reaction Step

© 2005-present, Dewayne E Perry 10

Introduction to Software Engineering Supplement - 19

Proactive Control (Steps, Requisites)

PlanTrip

% VAN

PlaneReservation .~ InBudget CarAndHotelReservation

vV VAN

Umte::lR:‘:senath:ln US.-fUJ R eservatio L HotelResenatmn L’uResﬂwtmn
awInuResenﬂt 100 HvattR.eservation AvisReszrvation HemRese v mon

d 4 B §

MNotTightBudget

© 2005-present, Dewayne E Perry 1

Introduction to Software Engineering Supplement - 19

Reactive Control (Exceptions, Messages)

PlanTrip

_qJ NotInBudget

NoPlane: exception MeetingCanceled
MNotInBudget: exception InchideSaturdayStayover

Canceld .‘i'f?'S'i"Ci'ﬂ -
PlaneReservation [nBudget -

A

WV

—= Nolnited ¢grA ndHotelReservation

— NolUSAir LV = AN
NoMoreChoices —== Continue
Nollnited: exception NolUSAir: exception TNDPJHW eos T Thraw
UnitcdRcscr‘r’ﬂtiGﬂ& LISAir Rn‘:Sn‘:ﬂ"ﬂtiUﬂ& _qJ Restart
4 B J omwen

© 2005-present, Dewayne E Perry 12

Introduction to Software Engineering Supplement - 19

Process Data Flow

agent: Traveller
¢ Input
PlanTrip .T, Output

i Input/output

V

TripDates
Budget
. Airline TripDates Hotel
TerTJmV TripTimes Car

Budget
agent: TravelAgent Hees

PlaneReservation CarAndHotel Reservation

A vV A

TripDates
TripTimes B”dg‘?t/ TripDates Ca
Alrline [—[D-tt‘l/‘ TripTimes
agent: Secretary agent: Secretary

vV

TripDates i,

TripTimes
Alirline /

Adrline := United

r

TJ'J'[}DE[[%

Adrline = USAir

UnitedReservation USAir Reservation HotelReservation CarReservation
v - Y- . [
*a e . s

© 2005-present, Dewayne E Perry 13

Introduction to Software Engineering Supplement - 19

Interact/Intermediate

> A goal-directed process modeling language
> Philosophy:

Y To maximize concurrency of process activities
Y To minimize direct control of the human element in the
process

> Emphasis:
Y, Specifying assumptions and goals of various process activities
Y Leaving details of the activities implementation to the
enactor
% Define some details of the enactment structure when desired

> Critical design considerations
% Dynamism - software processes extremely dynamic

Y Reflectivity - activities are dependent on state of
> Artifacts, process, project and organization

© 2005-present, Dewayne E Perry 14

Introduction to Software Engineering Supplement - 19

Interact/Intermediate: Features

> Activity - basic process fragments
L Signature: name and typed parameters
% Assumptions - (ie, pre-conditions)
% Internal structure
> Primitive - determined at enactment time by the enactor

> Sequence <. ..> in specified sequence
> Set {...} in arbitrary order
> Selection (guar'd structure) when guard, structure

L, Set of results, one or more of which may be achieved
» Goals achieved (ie, post-conditions)
> Obligations - goals that must eventually become true

o> Data - basic, enumerated, structured

© 2005-present, Dewayne E Perry

15

Introduction to Software Engineering Supplement - 19

Interact/Intermediate: Features

2 Enactment control

Y Implicit: partial order defined by assumptions and goals
> Goals provide the state that can be used to satisfy assumptions
> Determine an implicit ordering of the activities
> Can only instantiate an activity when its assumptions have been
met
& Explicit: normal enactment control
» Range from primitive (where left up to the enactor)
> To specified, but preferably under specified, structure
» Human enactor elaborates activity using supporting environment
4 Explicit: abnormal enactment control
> When exceptions happen
L Explicit: external constraint on beginning or end of
enactment

© 2005-present, Dewayne E Perry 16

Introduction to Software Engineering Supplement - 19

Interact/Intermediate: Example

activity Integrate ()
preconditions { Release-Approved(Tool-Release-Board) }

1
}

results
<

(postconditions {

approvedset = { tool t | tool-approved(t) },
exportset = exportset + approvedset,
tools-released (exportset) } |

obligations { }
)

(postconditions { rejectset = { tool t | tool-rejected(t) } }
obligations { for each tool t in reject-set: modify-tool(t) }
)

>

© 2005-present, Dewayne E Perry 17

Introduction to Software Engineering Supplement - 19

Interact/Intermediate: Example

for each toolt In {tool t | submitted(t) }
until Current-Time == Deadline:
4(:
Determine-Dependencies(t, dependencies) .
let testset’ = testset + t,
Build(testset’, result) ,

(result == false, tool-rejected(t))
(result == true,
4(:

< for each person P
in {person p | owner[tl] == p & t1 in dependencies }:
bind Evaluate(t, t1) to P
>
Await-Acceptance/Rejection(t)
>
)
>

© 2005-present, Dewayne E Perry 18

Introduction to Software Engineering Supplement - 19

Documentation

> Same lessons as product documentation
% Shared understanding of what to do

> BESS lessons: inappropriate process documentation
Y process description often describe how to write document

S r'odlucT production vs. management tasks are all the same
eve
Y process input-output reflects benchmarks not just I/0
Y process descriptions are too detailed
> they define how?
> as well as what?
Ytoo much text
Y processes too detailed
Y process description vs process prescription

> Important problem
Y Finding the right level for process descriptions
% Including necessary information in the descriptions

© 2005-present, Dewayne E Perry 19

Introduction to Software Engineering Supplement - 19

Other Commonalities with Products

> Deployment and Maintenance
Y Basically the same problems
& But little likelihood of automation
% Too much unformalized (unformalizable?) knowledge

o Version Management
% Identical

2 Teamwork
& Identical

© 2005-present, Dewayne E Perry 20

	Process Systems
	Capability Maturity Model (CMM)
	Capability Maturity Model (CMM
	Processes are Software Too!
	Processes are Software Too!
	Process Capture
	Process Architecture & Design
	Construction
	Osterweil’s Little-JIL Features
	Osterweil’s Little-JIL Features
	Proactive Control (Steps, Requisites)
	Reactive Control (Exceptions, Messages)
	Process Data Flow
	Interact/Intermediate
	Interact/Intermediate: Features
	Interact/Intermediate: Features
	Interact/Intermediate: Example
	Interact/Intermediate: Example
	Documentation
	Other Commonalities with Products

