
1 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Process Systems 
 Process is both a technical and a managerial problem 

Technical importance 
Defined processes enable us to move from a craft to an 

engineering discipline 
From secrets passed from master to apprentice 
To published processes that can be 

• Scrutinized 
• Compared  
• Evaluated 

 Guide and coordinate very dynamic and complex processes 
Managerial importance 

Well understood practices are easier to manage 
 Common processes across projects 

Enables reallocation of people as resources 
 Greater predictability and tracking 



2 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Capability Maturity Model (CMM) 
 Level 1 – Chaotic 
 Level 2 – Repeatable 

Requirements management 
Software project planning 
Software project tracking and oversight 
Software subcontract management 
Software quality assurance 
Software configuration management 

 Level 3 – Defined 
Organization process focus 
Organization process definition 
Training program 
Integrated software management 
Software product engineering 
Inter-group coordination 
Peer reviews 



3 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Capability Maturity Model (CMM 
 Level 4 – Managed 

Software quality management 
Quantitative process management 

 Level 5 – Optimizing 
Process change management 
Technology change management 
Defect prevention 



4 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Processes are Software Too! 
 ICSE 1987 – Keynote Talk 

Noted the similarities between processes and products 
Introduced the notion of “process programming” 
Given ICSE Most Influential Paper award at ICSE 1997 

 A Software Process System goes through the exact 
same processes as a software product 
The same life cycle 
The same integral activities 

 At detail level:  
Disagreement about representation of processes themselves 
Different kinds of measurement and evaluation 

 
 



5 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Processes are Software Too! 
 Process models or process programs? 

Models 
 Incomplete 
Often weak on semantics, free for interpretation by people 
 Lack specifics that can be very important 

Programs 
 Precise prescription for coordination of efforts of humans, 

computers and software tools 
 Executable 
 Blurs distinction between process and product 

 Fundamental distinction 
Who is in charge? 

Human as a subroutine, directed by process support system 
Human enacting process with HELP of process support system 

People have different/varying process characteristics 
 Good at planning, handling exceptions 
 “machine language” level varies 

Informal versus formal 



6 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Process Capture 
 Analogous to requirements elicitation 
 Three distinctions about processes 

Process as defined 
Process as done 
Process as ought to be 

 Useful mechanism for what is done: events 
Event name 
Time of occurrence 
Who 
Trigger 
Response 

 Best practices 
Often based on experience, anecdotal evidence, some theory 
Very little empirically validated 

 



7 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Process Architecture & Design 
 Some Principles --- Generic Processes 

Define process fragments 
 Combinable components 
 In terms of goals 

Use appropriate means of abstraction (or generalization) 
 Parameterization 
 Primitivation – requires elaboration 
 Stratification - layering 

Align activities with their appropriate processes 
 Eg, estimation is a project management activity, not a design activity 

Separate project structure from process structure 
 project milestones and schedules, 
 project roles, obligations and permissions, and 
 the project's organizational structure. 

 Some Principles --- Process Architecture 
Modularize processes 
Encapsulate domain-related activities 
Decompose processes hierarchies or networks as appropriate 
Explicitly define the relationships among processes 



8 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Construction 
 Implementation of components 

Process programming 
 Code the process details 
Step typically the analog of function/procedure 
 Explicit instructions and control 

Process modeling 
 Incomplete descriptions (ie, models are inherently incomplete) 
 Variety of modeling mechanisms 

Petri-nets 
Finite state machines (variants: state charts) 
Data flow diagrams 
Goal directed models 

 Construction 
Typically dynamic execution and support 
Don’t know of any static build process 

 Two examples: Little-JIL and Interact/Intermediate 



9 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Osterweil’s Little-JIL Features 
 4 kinds of steps 

Sequential – left to right order 
Parallel - simultaneously 
Try – left to right, stopping when one competes successfully 
Choice – arbitrarily decides which 

 Requisites 
Prerequisite – must complete prior  
Postrequisite – must be completed after 

 Somewhat similar to Inscape’s obligation 

 Exceptions and Handlers 
Provide reactive control 
Unhandled exceptions propagate up the execution tree 

 Messages and reactions 
Also reactive control, but no propagation 

 Parameters – communication of information 
 Resources – required during a step execution 



10 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Osterweil’s Little-JIL Features 



11 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Proactive Control (Steps, Requisites) 



12 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Reactive Control (Exceptions, Messages) 



13 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Process Data Flow 



14 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Interact/Intermediate 
 A goal-directed process modeling language 
 Philosophy:  

To maximize concurrency of process activities 
To minimize direct control of the human element in the 

process 
 Emphasis: 

Specifying assumptions and goals of various process activities 
Leaving details of the activities implementation to the 

enactor 
Define some details of the enactment structure when desired 

 Critical design considerations 
Dynamism – software processes extremely dynamic 
Reflectivity – activities are dependent on state of 

Artifacts, process, project and organization 
 



15 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Interact/Intermediate: Features 
 Activity – basic process fragments 

Signature: name and typed parameters 
Assumptions – (ie, pre-conditions) 
Internal structure 

 Primitive – determined at enactment time by the enactor 
Sequence  < . . . > in specified sequence 
Set  { . . . }  in arbitrary order 
Selection ( guard, structure ) when guard, structure 

Set of results, one or more of which may be achieved 
 Goals achieved (ie, post-conditions) 
Obligations - goals that must eventually become true 

 Data – basic, enumerated, structured 



16 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Interact/Intermediate: Features 
 Enactment control 

Implicit: partial order defined by assumptions and goals 
 Goals provide the state that can be used to satisfy assumptions 
Determine an implicit ordering of the activities 
 Can only instantiate an activity when its assumptions have been 

met 
Explicit: normal enactment control 

 Range from primitive (where left up to the enactor) 
To specified, but preferably under specified, structure 
Human enactor elaborates activity using supporting environment 

Explicit: abnormal enactment control 
When exceptions happen 

Explicit: external constraint on beginning or end of 
enactment 



17 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Interact/Intermediate: Example 



18 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Interact/Intermediate: Example 



19 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Documentation 
 Same lessons as product documentation 

Shared understanding of what to do 
 5ESS lessons: inappropriate process documentation 

process description often describe how to write document 
product production vs. management tasks are all the same 

level 
process input-output reflects benchmarks not just I/O 
process descriptions are too detailed 

 they define how?  
 as well as what? 

too much text 
processes too detailed 
process description vs process prescription 

 Important problem 
Finding the right level for process descriptions 
Including necessary information in the descriptions 



20 

Introduction to Software Engineering Supplement - 19 

© 2005-present, Dewayne E Perry 

Other Commonalities with Products 
 Deployment and Maintenance 

Basically the same problems 
But little likelihood of automation 
Too much unformalized (unformalizable?) knowledge 

 Version Management 
Identical 

 Teamwork 
Identical 


	Process Systems
	Capability Maturity Model (CMM)
	Capability Maturity Model (CMM
	Processes are Software Too!
	Processes are Software Too!
	Process Capture
	Process Architecture & Design
	Construction
	Osterweil’s Little-JIL Features
	Osterweil’s Little-JIL Features
	Proactive Control (Steps, Requisites)
	Reactive Control (Exceptions, Messages)
	Process Data Flow
	Interact/Intermediate
	Interact/Intermediate: Features
	Interact/Intermediate: Features
	Interact/Intermediate: Example
	Interact/Intermediate: Example
	Documentation
	Other Commonalities with Products

