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Abstract. Graphical User Interfaces (GUIs) are composed of virtual objects, 

widgets, which respond to events triggered by user actions. Therefore, test 

inputs for GUIs are event sequences that mimic user interaction. The nature of 

these sequences and the values for certain widgets, such as textboxes, causes a 

two-dimensional combinatorial explosion. In this paper we present Barad, a 

GUI testing framework that uniformly addresses event-flow and data-flow in 

GUI applications generating tests in the form of event sequences and data 

inputs. Barad tackles the two-dimensional combinatorial explosion by pruning 

regions of the event and data input space. For event sequence generation we 

consider only events with registered event listeners, thus pruning regions of the 

event input space. We introduce symbolic widgets which allow us to obtain an 

executable symbolic version of the GUI. By symbolically executing the chain 

of listeners registered for the events in a generated event sequence we obtain 

data inputs, thus pruning regions in the data input space. Barad generates fewer 

tests and improves branch and statement coverage compared to traditional GUI 

testing techniques.  
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1   Introduction 

A Graphical User Interface (GUI) provides a convenient way to interact with the 

computer. GUIs consist of virtual objects (widgets) that are intuitive to use, for 

example, buttons, edit boxes, etc. In contrast to console applications where there is 

only one point of interaction (the command line), GUIs provide multiple points (the 

GUI widgets) each of which can have different states. 

A classic challenge in GUI testing is how to select a feasible number of event 

sequences, given the combinatorial explosion due to arbitrary event interleavings. 

Consider testing a GUI with five buttons, where any sequence of button clicks is a 

valid input. Exhaustive testing without repetition requires trying all 120 combinations 

since triggering one event before another may cause execution of different code paths. 

An orthogonal challenge is how to select values for data widgets, i.e., GUI 

widgets that accept user input, such as textboxes, edit-boxes and combo-boxes, and 

can have an extremely large space of possible inputs. Consider testing a GUI with one 

text-box that takes a ten character string as an input. Exhaustive testing requires 10
26

 

possible input strings (we limit each character to be alphabetical in lower-case). 

Automation of GUI testing has traditionally focused on minimizing event 

sequences [9] [10] [12] [18] [21]. Data widgets have either been abstracted away by 



not considering GUI behaviors dependent on data values, generated at random, or 

selected from a small manually constructed set of values. As a consequence, data 

dependent behaviors are inadequately tested. Consider generating a string value that is 

necessary for satisfying an if-condition. Random selection is unlikely to generate the 

desired value. Manual selection requires tedious code inspection. A specification-

based (black-box) approach may find this ―special‖ value, however it would require 

detailed specifications, which often are not provided. 

In this paper we present Barad, a novel GUI testing framework for checking GUI 

applications written in Java with the Standard Widget Toolkit (SWT) [20]. Barad 

generates event sequences and data inputs providing a systematic approach that 

uniformly addresses event-flow and data-flow for white-box testing of GUI 

applications. We detect event listeners – instances that register for and respond to 

events in the GUI. This allows us to consider only events with registered listeners 

during event sequence generation, thus pruning regions of the event input space. We 

symbolically execute the chain of listeners registered for the events in a generated 

event sequence. This allows us to obtain data inputs for the fields of GUI widgets, 

thus pruning regions in the data input space. Barad is fully automatic, performing 

bytecode instrumentation, test generation, symbolic execution, and test execution. 

While our current implementation handles only GUIs written with the SWT library, 

our approach is generic and can be successfully applied to other Java GUI libraries. 

To scale symbolic execution [7] [8] [15] [16] [17] for GUI applications, we 

introduce symbolic widgets which allow us to perform symbolic manipulation of 

standard GUI widgets and obtain an executable symbolic version of the GUI. Widget 

implementations have three concerns: (1) functionality; (2) visualization; and (3) 

performance. Symbolic widgets focus on functionality, abstracting away the other two 

concerns. The benefit of this approach is that it enables (1) efficient and systematic 

dynamic analysis of GUI applications, and (2) generation of inputs for data widgets. 

In our previous publication [5] we introduced symbolic analysis of GUI event 

listeners in isolation for obtaining data inputs without considering event sequence 

generation and analysis of event listeners in the context of the GUI application (i.e. 

interactions between event listeners). In this paper we present a novel approach for 

event sequence generation and symbolic analysis of the GUI application. 

We make the following contributions: 

 Symbolic analysis of GUI applications. We introduce the abstraction of 

symbolic widgets that enables efficient and systematic dynamic analysis of 

GUI applications. 

 Event sequence generation. We present a novel test generation approach 

and consider only events with registered event listeners, thus pruning regions 

of the event input space. 

 Data input generation. By symbolically executing the chain of listeners 

registered for the events in a generated event sequence we obtain data inputs, 

thus pruning regions in the data input space. 

 Implementation. Barad is fully automatic, performing Java bytecode 

instrumentation, test generation, symbolic execution, and test execution. 

 Evaluation. We evaluate our approach on non-trivial GUI subjects and 

compare it to traditional GUI testing techniques. Barad generates fewer tests 

and achieves higher statement and branch coverage. 



2   Example 

In this section we provide an example how our approach uniformly handles event-

flow and data-flow in GUI applications and compare it to conventional GUI testing 

techniques. 

2.1   Fare Calculator 

The GUI presented in Figure 1 is an application (313 lines of code) that we 

developed. It calculates the amount due for a train ticket. A user must provide a 

passenger class, name, ID, passenger group, and begin and end points. Passenger 

groups are Senior, Adult, Student, and Child. 

 

 

Fig. 1. Screenshot of the Fare Calculator. 

Each passenger class has its own coefficient that is used during the calculation. 

Each group has a different base price depending on the distance to be traveled, which 

is the difference between From mile and To mile. This application has three event 

listeners registered for the click events in buttons Close, Calculate, and Clear, 

respectively. The calculation logic has 22 branches with conditional statements nested 

three levels deep. The execution of a particular branch depends on the user input both 

in the form of data and event sequence. 

2.2   Input space 

The Fare Calculator consists of two radio buttons, five textboxes, three buttons, 

and one combo–a total of eleven GUI widgets. Therefore, the number of event 

sequences with only one event per widget and one value per data widget is slightly 

less than 4,000,000 (11!). Furthermore, just the input for the ID field of the Fare 

Calculator, a sequence of ten numeric characters, causes a factor of 10,000,000,000 

(10
10

) increase in the test suite size. Hence, due to the two-dimensional combinatorial 

explosion in GUI inputs, exhaustive testing of even as simple GUI as the Fare 

Calculator is unrealistic.  Clearly, a systematic approach that prunes regions of the 

event and data input space is required.   



2.3   Test results 

We tested the Fare Calculator with Barad. The process was completed fully 

automatically. Our results are shown in Table 1. 

Table 1. Test results with enabled symbolic analysis. 

Tests Branch coverage, % Statement coverage, % Time, sec 

69 100 100 13.02 

 

The first column presents the total number of tests. The second and the third 

columns present the branch and statement coverage, respectively. Column four 

contains the execution time which includes instrumentation, test generation, symbolic 

execution, and test execution. Barad uses Emma [4] to determine code coverage. 

Branch coverage was obtained by manual inspection of the code coverage report. 

We interpret our results as follows. The application has three event listeners 

registered for the events of clicking each of the buttons. Hence, during event sequence 

generation we consider only these three events resulting in six tests with length three 

without repetition. Each test case was executed on the symbolic version of the GUI 

and for some tests sets of input values were obtained. Test cases, symbolic execution 

of which generated sets of input values, were prefixed with events to populate each 

set of values, thus producing a new test case for each input set. The full branch and 

statement coverage is due to data values obtained by systematic exploration of all 

feasible paths during symbolic execution. 

Conventional GUI testing techniques [9] [10] [12] [18] [22] exhaustively generate 

event sequences up to a given bound and adopt a specification based approach to 

populate inputs—selecting from a predefined set of values. We disabled the symbolic 

and event listener analysis in Barad to simulate conventional GUI testing. We limited 

the length of event sequences to be equal to the length of sequences generated by our 

approach before prefixing with events for data input population. The input values for 

data widgets were chosen in a widget specific manner as follows:  for the textboxes a 

choice from the set {-1, 0, 1, Test, ThisIsAVeryLongStringValue, the empty string} 

was made; for the combo a choice from the set of possible values, namely {Senior, 

Adult, Student, Child} was made. Results of this analysis are presented in Table 2. 

The first column presents the total number of tests. The second and the third columns 

present the branch and statement coverage, respectively. Column four contains the 

execution time which includes test generation and test execution. 

Table 2. Test results with disabled symbolic analysis. 

Tests Branch coverage, % Statement coverage, % Time, sec 

1152 23 87 142.45 



2.4   Comparison 

Results show that for the Fare Calculator our approach generated more than an 

order of magnitude fewer tests compared to a traditional approach, while achieving 

significantly higher branch coverage. The longest event sequence generated by our 

technique has length eight and consists of the following events:  (1) selecting a 

Passenger class; (2) populating the Name field; (3) populating the ID field; (4) 

populating the From mile field; (5) populating the To mile field; (6) selecting the 

Calculate button; (7) selecting the Clear button; (8) selecting the Close button; Note 

that our approach generated the minimal set of event sequences with length eight to 

achieve full path coverage. In contrast, to generate a test case with this length and 

achieve the same coverage results the traditional approach requires generation of all 

event sequences with length eight without repetition. Considering the very limited 

input specifications, this results in 7.6 x 10
13

 test cases. 

3   Background 

This section provides the reader with some background about the technique of 

symbolic execution. It also presents the traditional GUI testing approaches and the 

GUI model we adopt. 

3.1   Symbolic Execution 

The main idea behind symbolic execution is to use symbolic values, instead of 

actual data, as input values, and to represent the values of program variables as 

symbolic expressions. As a result, the output values computed by a program are 

expressed as a function of the input symbolic values. 

The state of a symbolically executed program includes the (symbolic) values of 

program variables, a path condition (PC), and a program counter. The path condition 

is a (quantifier-free) Boolean formula over the symbolic inputs; it accumulates 

constraints which the inputs must satisfy in order for an execution to follow the 

particular associated path. The program counter defines the next statement to be 

executed. A symbolic execution tree characterizes the execution paths followed during 

the symbolic execution of a program. The nodes represent program states and the arcs 

represent transitions between states. 

Consider the code fragment in Figure 2, which swaps the values of integer 

variables x and y, when x is greater than y. The figure also shows the corresponding 

symbolic execution tree. Initially, PC is true and x and y have symbolic values X and 

Y, respectively. At each branch point, PC is updated with assumptions about the 

inputs, in order to choose between alternative paths. For example, after the execution 

of the first statement, both then and else alternatives of the if-statement are possible, 

and PC is updated accordingly. 



 
Fig. 2. Code that swaps two integers and its symbolic execution tree where transitions are 

labeled with program control points. 

 

If the path condition becomes false, i.e., there is no set of inputs that satisfy it, this 

means that the symbolic state is not reachable, and symbolic execution does not 

continue for that path. For example, statement (7) is unreachable. 

3.2   GUI testing approaches 

Since contemporary software extensively uses GUIs to interact with users, 

verifying GUI’s reliability becomes important. There are two approaches to building 

GUIs and these two approaches affect how testing can be performed.  

The first approach is to keep the GUI light weight and move computation into the 

background. In such cases the GUI could be considered as a ―skin‖ for the software. 

Since the main portion of the application code is not in the GUI, it may be tested 

using conventional software testing techniques. However, such an approach places 

architectural limitations on system designers.  

The second approach is to merge the GUI and its computations.  The most 

common way of testing such GUIs is by using tools that record and replay event 

sequences. This is laborious and time consuming. Another technique for checking 

GUI’s correctness is by using tools for automatic test generation, execution, and 

assessment as the one presented in this paper or the ones described in [9] [12] .  

1 int x, y; 

2 if (x > y) { 

3   x = x + y; 

4   y = x - y; 

5   x = x - y; 

6   if (x - y > 0)     

7    assert(false); 

8  } 

9 } 

5 

4 

2 2 

 x:X+Y, y:X 

 PC: X>Y 

 x:Y, y:X 

 PC: X>Y 

 x:Y, y:X 

 PC: X>Y&Y-X >0 

 FALSE! 

 x:Y, y:X 

 PC: X>Y&Y-X<=0 

 x:X+Y, y:Y 

 PC: X>Y 

 x:X, y:Y 

 PC: X>Y 

 x:X, y:Y 

 PC: X<=Y 

 x:X, y:Y 

 PC: true 

3 



3.3   GUI model 

We take a standard view of a GUI. Let },...,{ 21 nwwwW   be the set of GUI 

widgets. Examples of widgets are Button, Combo, Label, etc.  Each widget has a set 

of properties. Let },...,{ 21 mpppP  be the set of widget properties. Examples of 

properties are enabled, text, visible, selection, etc. Each property has a set of values. 

Let },...,{ 21 pvvvV  be the set of property values. Examples of values are true, false, 

etc. A GUI is a triple ),,( W that consists of a set of widgets, a mapping PW 2:   

from widgets to properties, and a mapping VP 2:  from properties to values. 

Let E  be the set of all events accepted by the GUI. Each GUI widget w accepts 

as input a set of user events wE triggered by user actions which is a subset of E . 

Examples of events are clicks, mouse moves, etc. 

),(:| ww EwacceptEEWw 
                                        (1)

 

Let L  be the set of all event listeners in the GUI. Each GUI widget w  has zero or 

more event listeners wL  registered for events performed on the widget which is a 

subset of L . Each listener l is registered for a set of events lE which is a subset of all 

events wE  accepted by the widget. Examples of listeners are selection listener, 

modification listener, etc.  

  

),(||| elregisteredEeEELlLLWw lwlww           (2) 

Since a user interacts with the GUI through events, a GUI test case t from the set T  

of GUI test cases is an event sequence. 

 peeetTt ,...,,: 21                                              (3) 

4   Barad 

This section presents Barad, our GUI testing framework. We present the 

techniques for addressing event-flow and data-flow in GUI applications and our 

approaches for pruning regions in the event and data input space. We also provide 

details about the adopted abstractions. 

The process of GUI testing performed by Barad is shown on Figure 3. To enable 

symbolic execution, Barad instruments the bytecode of the tested GUI application 

replacing concrete entities (widgets, strings, primitives, library classes) with their 

corresponding symbolic equivalents (symbolic widgets, symbolic strings, symbolic 

integers etc.) provided by Barad’s symbolic library. The bytecode instrumentation is 

implemented with the ASM library [1]. As a result of the instrumentation phase an 

executable symbolic version of the GUI is generated. Next, a symbolic analysis of the 

instrumented version is performed.  

 



 

Fig. 3. GUI testing process in Barad. 

During this process event listeners are detected, tests in the form of sequences of 

events with registered listeners are generated, and then symbolically executed—all 

paths are systematically explored and their feasibility evaluated by constraint solving. 

As a result of this process a log file and a test suite are generated. The test suite 

consists of event sequences and concrete inputs. Finally, the test suite is executed on 

the concrete version of the application and a coverage report is generated. 

4.1   Event-flow 

To address event-flow in GUI applications we adopt a strategy of pruning regions 

in the event input space by not considering events for which there is no registered 

event listener. Since an event listener contains computational logic performed upon a 

certain event, the lack of a listener for an event renders the event to have no effect on 

the GUI. 

However, such an approach might prevent the execution of a given program path. 

Consider a simple GUI with one textbox, one button, and a single event listener for 

the event of pressing the button. Now assume the event listener code has a conditional 

statement which depends on the value of the textbox. 
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Since there is no listener for the event of populating the text box and we consider only 

events with registered listeners, an event for populating the textbox will not be 

included in any test case. This leads to inadequate testing because of a failure to cover 

all program paths in the listener. Hence, adopting a strategy for considering only 

events with registered listeners requires a mechanism for detecting if the code in the 

event listener in our example depends on the value of the textbox. To determine such 

a dependency we perform symbolic analysis of the event listener code and generate 

values for the textbox that would ideally achieve full path coverage of the event 

listener. Let us assume that we have identified two values ―A‖ and ―B‖ for the textbox 

which would force the execution to follow different paths at the conditional statement 

in the listener. In such a case if we generate two tests one including the event for 

populating ―A‖ in the textbox followed by pressing the button and the other including 

the event for populating ―B‖ in the textbox followed by pressing the button we will 

achieve full path coverage of the event listener. Therefore, employing symbolic 

execution for identifying such dependencies allows us to safely consider only events 

with registered event listeners. We generate events that populate data widgets, for 

which no listener exists only in case we have identified values that would force 

visiting unexplored program paths. More details about our test generation approach 

are presented in Section 4.4. 

    To illustrate the reduction in the event input space by considering only events with 

registered event listeners consider the Fare Calculator from Section 2. The GUI 

consists of eleven widgets and three event listeners. Considering only one event per 

widget (some widgets accept more than one event) results in 165 event sequences 

with length three while considering only events with registered listeners results in 

only six events sequences with length three. 

4.2   Data-flow 

To address data-flow in GUI applications we utilize symbolic execution to obtain 

inputs for data widgets. We execute symbolically the chain of event listeners 

registered for the events in a test case. This is achieved by executing each test case on 

a symbolic version of the application. 

In order to obtain a symbolic version of the application, thus enabling symbolic 

execution of GUIs, we introduce the abstraction of symbolic widgets. Each GUI 

widget has a symbolic counterpart that has the same fields and provides the same 

methods, which however represent and operate on symbolic data, respectively. For 

example, org.eclipse.swt.widgets.Text is mapped to a 

barad.symboliclibrary.ui.widgets.SymbolicText and the string field text of the former 

is implemented as a symbolic string in the latter. The corresponding getter and setter 

methods, for the text field of the SymbolicText widget, return as a result and receive as 

a parameter symbolic strings. To enable the integration of symbolic widgets in our 

framework, we introduce symbolic events and symbolic event listeners. Similarly to 

symbolic widgets, these entities are structurally equivalent to their concrete 

counterparts and operate with symbolic data. 

Symbolic widgets could be envisioned as wrappers that relate sets of variables, 

representing symbolic primitives and strings, to particular instances in the GUI widget 



hierarchy. Therefore, constraints and operations on symbolic widgets are constraints 

and operations on symbolic primitives and strings.  

However, symbolic widgets have richer semantics than the set of variables they 

encapsulate, performing specific to the symbolic and event listener analysis functions: 

(1) Symbolic widgets wrap the variables related to concrete GUI widgets, allowing us 

to maintain a mapping from symbolic variables to concrete GUI widgets. This 

mapping identifies which concrete widgets to be populated with values obtained after 

concretization of symbolic variables; (2) Symbolic widgets are mapped one-to-one 

with concrete widgets. This guarantees that the symbolic widget hierarchy is 

isomorphic to the concrete widget hierarchy and tests generated for the symbolic 

version of the GUI are applicable to its concrete version; (3) Symbolic widgets detect 

event listeners at run time. Detecting of event listeners is required by our test 

generation algorithm; (4) Symbolic widgets implement methods which execute 

registered event listeners, passing as a parameter a symbolic event. These methods are 

used for execution of the generated tests; (5) Symbolic widgets, similarly to their 

concrete counterparts, are referenced by the events passed as parameters to the event 

listeners. This provides a mechanism of accessing properties of symbolic widgets 

through events instances. 

Symbolic widgets abstract away the visualization layer of their concrete replicas. 

Such an approach has several advantages. (1) We avoid symbolic execution of the 

GUI library implementation and focus our analysis on the application logic. Our 

objective is verifying application correctness, rather than proper behavior of the GUI 

library. (2) We avoid the native calls made by a GUI widget to the operating system 

to generate a visual representation of the widget. Our focus, during symbolic 

execution, is on data-flows in GUI applications and the visual representation of these 

GUIs is irrelevant to our analysis. Hence, we abstract away unnecessary 

computations. 

Currently Barad supports the symbolic widgets, events, and event listeners 

required for testing the GUI applications presented in this paper. Our framework is an 

experimental prototype used to evaluate the applicability of our approach. We did not 

encounter any widget specific issues, which make defining a symbolic widget 

challenging. We believe that full support for the SWT library as well as other Java 

GUI libraries is feasible. 

4.3   Symbolic GUI model 

     Our view of the symbolic version of a GUI follows the GUI model we have 

presented in Section 3.3. 

Let },...,{ 21 snsss wwwW   be the set of symbolic widgets. Each symbolic widget has 

a set of properties which are symbolic variables },...,{ 21 smsss pppP  . Each symbolic 

property has a set of values it can take during its concretization },...,{ 21 pssss vvvV  . A 

symbolic GUI is a triple ),,( sW that consists of a set of symbolic widgets, a 

mapping sP
sW 2:   from symbolic widgets to symbolic properties, and a mapping 

sV
sP 2:  from symbolic properties to concrete values. 



Let sE  be the set of symbolic events. Each symbolic widget sw  accepts as input a 

set of symbolic events wsE . 

),(:| wssswsss EwacceptEEWw 
                             (1)

 

Let sL be the set of event listeners. Each symbolic widget sw has zero or more 

event listeners wsL . Each listener sl is registered for a set of symbolic events lsE .  

),(||| ssslswslswssswsss elregisteredEeEELlLLWw 
   (2)

 

4.4   Test generation algorithm 

Taking advantage of the symbolic widgets we developed our test generation 

algorithm shown in Figure 4. 

 

Fig. 4. Test generation algorithm. 

We represent the GUI events with registered event listeners as an Events with 

Listeners Graph (ELG)—a directed graph with nodes representing events with 

registered listeners and edges. The existence of an edge from event e1 to event e2 

means an execution of event e2 can be performed immediately after the execution of 

event e1. For example, if event e1 opens a new form (GUI window) every event in 

that form strictly succeeds e1. Every time a new event with registered listener is 

identified a new node is added to the graph. 

Since events with registered listeners are detected at runtime by symbolic widgets 

(intercepting event listener registration calls) and these events can open other forms, 

all events with registered listeners should be executed at least once (line 1) to build a 

complete ELG. Such an approach enables handling of multiple GUI windows. Once 

an ELG has been created we generate test cases performing graph traversals. Our test 

generation algorithm generates exhaustively test cases in the form of event sequences 

up to a given bound without repetition (line 2). 

We obtain data inputs by symbolically executing the sequence of listeners 

registered for the events in a test case (line 3-6). Doing so, we capture data 

dependencies between the event listeners and potentially identify sets of input values 

for the data widgets in the GUI (line 4).  For each such set (if such sets exist) a test 

case is created by concatenating events for populating data widgets with the values 

from the set and the events of the test case (line 5). 

To illustrate our test generation algorithm, recall the Fare Calculator from   

Section 2. The algorithm proceeds as follows. Once the symbolic version of the GUI 

is launched the ELG is constructed by executing every event with registered listener 

in the GUI (line 1). As a result from this step all three events with registered listeners 

1. SymbolicModel.executeEventsWithListeners(); 

2. eventSequences = TestGenerator.generateTests(); 

3. for (EventSequence s: eventSequences){ 

4.   in = SymbolicModel.excecuteListenerSequence(s.listeners()); 

5.   test.addAll(TestGenerator.appendInputs(in, s); 

6. } 

 



(for clicking the three buttons) e1, e2, and e3 are identified and used for construction 

of six event sequences (line 2). The listeners corresponding to these events are 

symbolically executed (line 4). Without loss of generality, consider the event 

sequence (e1, e2, e3) symbolically executing the listeners of which generated twenty 

two sets S of five inputs values v1 – v5 each: 
 

  }},..,{},....,,..,{},,..,{{,, 5122512511321 vvSvvSvvSeee                     (1) 
 

Each input set transitions the GUI to such a state that executing the sequence (e1, 

e2, and e3) will force visiting of a different program path. Our algorithm constructs a 

separate test case for each set of values by concatenating the event sequence required 

to populate these values with the test event sequence (line 5). The generated test 

cases, where e(x, y) is the event required for populating the value x from value set y, 

look as follows: 

 

;e ,e ,e ),S ,e(v,… ),S ,e(v ),S ,e(v 321151211                                  (2) 
                                                                  … 

;e ,e ,e ),S ,e(v,… ),S ,e(v ),S ,e(v 321225222221                                  (3) 

4.5   Symbolic widget example 

    To provide the reader with a better intuition about symbolic widgets we present 

as an example a partial implementation of the symbolic combo widget. Figure 5 

shows the source code. Symbolic combo extends the symbolic widget (line 1) and 

defines a concrete SWT class it represents (line 2).  

 

Fig. 5. Symbolic combo snippet. 

1. public class SymbCombo extends SymbWidget { 

2.   String SWT_CLASS_NAME = "org.eclipse.swt.widgets.Combo"; 

3.   private List<SymbSelectionListener> mSelectionListeners; 

4.   private SymbString mText; 

5.   . . . 

6.   public SymbCombo(SymbComposite parent, SymbInteger style) { 

7.     super(parent, style, "SymbCombo"); 

8.     . . . 

9. mText = new SymbString(20, this, “text”); 

10.  } 

11.  public String getSWTClassName() {return SWT_CLASS_NAME;} 

12.  public void fireSelectionEvent() { 

13. SymbSelectionEvent event = new SymbSelectionEvent(this); 

14. for (SymbSelectionListener l: mSelectionListeners) { 

15.   l.widgetSelected(event); 

16. } 

17.  } 

18.  public void addSelectionListener(SymbSelectionListener l) { 

19.    TestGenerator.addELGVertex(this, EventType.SELECTION); 

20. mSelectionListeners.add(l); 

21.  } 

22.  public StringInterface getText() { 

23.    Path.addInputVariable(text); 

24.    return text; 

25.  } 



The widget has a list of symbolic listeners (line 3) and a set of symbolic members 

representing its properties (line 4).  In the constructor (lines 6-10) symbolic variables 

are assigned to the combo’s properties (line 9). The symbolic variable receives the 

combo and the property it represents as parameters to associates itself with that 

property. The combo exposes the SWT class it represents (line 11) and defines a 

method for firing a selection event (lines 12-17). Client code can register event 

listeners (lines 18-21). Upon detection of an event listener a vertex is added to the 

ELG (line 19). Properties of the symbolic combo are exposed via getter/setter (setter 

not shown) pairs (lines 22-25). Each symbolic variable representing a widget property 

is added to the path (multiple additions has no effect) as an input variable (line 23), 

informing the constraint solver to generate an input value for this variable during the 

concretization phase. 

5   Implementation 

This section presents the components of Barad. We discuss the symbolic and 

concrete agents and provide an overview of the GUI testing mechanism. 

5.1   Symbolic primitives, strings, and constraint solving 

Barad supports symbolic operations on all primitive types (integer, float, Boolean, 

and character). Supported symbolic operations on integers and floats are: and, or, 

addition, difference, multiplication, division, less than, greater than, greater than or 

equal, and less than or equal. (Booleans are represented as integers). For solving 

numeric constraints Barad has a custom solver implemented via the Choco [2] library. 

Supported operations on symbolic strings are: substring, concat, charAt, and trim. 

For symbolic string representation and constraint solving we use the work presented 

in [19], where finite state automata are employed to model the set of possible values 

for a string variable. 

5.2   Barad agents 

Barad consists of two collaborating agents operating on a symbolic and a concrete 

version of the application, respectively. They perform separate steps in the GUI 

testing process and can operate as stand-alone testing tools. The Symbolic Agent 

performs our algorithm for symbolic analysis and generates a test suite. The Concrete 

Agent generates and executes tests on the concrete version of the application as well 

as provides reports for code coverage and detected errors. While these agents operate 

in a collaborative fashion, test cases are generated by the Symbolic Agent and 

executed by the Concrete Agent. The agents run in the same Java Virtual Machine 

(JVM) and communicate asynchronously via publish-subscribe paradigm. 

5.2.1. Symbolic agent. The Symbolic Agent instruments the GUI bytecode, 

performs symbolic execution of the instrumented version, and generates test cases as 

event sequences and data inputs. It is a Java agent that registers in the JVM for class 



loading events. It intercepts the loading of the main class of the AUT, instruments it, 

and executes it symbolically in a separate thread. Subsequently loaded classes are also 

instrumented at loading time. 

5.2.2. Concrete agent. The Concrete Agent generates tests adopting a traditional 

test generation approach and executes tests on the application. In contrast with 

conventional GUI testing frameworks, which restart the GUI after executing a test 

case, the agent performs reinitialization. The agent is a JVM Tool Interface and can 

detect defects via uncaught exceptions thrown by the GUI at runtime.  

6   Evaluation 

This section presents two case studies and evaluates the applicability of our GUI 

testing approach. The first case study is a notepad application which does not exploit 

data dependent behaviors. The second case study is a workout generator program the 

behavior of which depends on data inputs. We compare our approach to traditional 

GUI testing strategies. 

6.1   JNotepad 

JNotepad is a Java implementation of the popular Notepad text editor. JNotepad 

provides basic functionalities such as creating, editing, and saving text files; cut, 

copy, paste, undo, redo operations etc. We analyze version 2.0 of the application. 

Table 3 presents a summary of JNotepad and Figure 6 shows a screenshot of the GUI.   

Table 3. JNotepad application. 

Windows Widgets LOC Classes Methods Branches 

8 30 849 9 51 90 

 

 

Fig. 6. Screenshot from JNotepad. 



For testing JNotepad we configured Barad to ignore all widgets in the Open, Save, 

and SaveAs dialogs except the text field for specifying a file name and the OK and 

Cancel buttons. The file chooser class, used for implementing these dialogs, is 

provided by the GUI library, testing of which we want to avoid.  

First, we tested JNotepad adopting our approach with enabled symbolic and event 

listener analysis. To limit the number of generated test cases, we configured the 

maximal length of event sequences before appending data populating events to three. 

Obtained results are presented in Table 4. 

Table 4. Test results with enabled symbolic analysis. 

Tests Branch coverage, % Statement coverage, % Time, sec 

24 058 92 97 1 495 

The first column presents the total number of executed tests. The second and third 

columns present the branch and statement coverage, respectively. The fourth column 

presents the test generation and execution time (including symbolic analysis). Code 

coverage was reported by Barad and branch coverage was obtained by manual 

inspection of the code coverage report. 

We next disabled the symbolic and event listener analysis simulating a traditional 

GUI testing approach. Values for the text boxes were selected from the set {-1, 0, 1, 

Test, ThisIsAVeryLongStringValue, and the empty string}. Table 5 shows the results. 

 

Table 5. Test results with disabled symbolic analysis. 

Tests Branch coverage, % Statement coverage, % Time, sec 

51 694 84 91 29,46 

Experimental results show that our approach generated approximately half the 

number of test as opposed to the traditional technique.  The reason for the moderate 

decrease in the number of test cases generated by Barad is twofold: (1) JNotepad has 

few data widgets (one textbox in the main, find, and save/open windows, 

respectively) and does not have much data dependent behavior; (2) JNotepad contains 

primarily buttons, which accept a single event for which corresponding event listeners 

exist. Hence, for most of the events accepted by the GUI corresponding listeners 

exist. Despite the structure of JNotepad, which is not ideal for our technique, we still 

achieve significant reduction in the number of tests. 

6.2   Workout Generator 

The Workout Generator is a program the first author developed in his previous 

experience. The GUI takes as input user’s biometric characteristics and generates a 

weekly workout program. Table 6 summarizes the characteristics of the Workout 

Generator and Figure 7 shows a screenshot of the GUI.  



 

Fig. 7. Screenshot of the Workout Generator. 

Table 6. Workout Generator application. 

Windows Widgets LOC Classes Methods Branches 

1 9 651 3 15 121 

The combo boxes could take one of the following values: for Gender - Male, 

Female; for Metabolism - Slow, Normal, and Fast; and for Experience - Beginner, 

Intermediate, and Advanced. 

First, we tested the Workout Generator adopting our approach with enabled 

symbolic and listener analysis. We configured an upper bound of three for the length 

of event sequences. The results are presented in Table 7. 

Table 7. Test results with enabled symbolic analysis. 

Tests Branch coverage, % Statement coverage, % Time, sec 

48 100 100 4.3 

We next disabled the symbolic and event listener analysis simulating a traditional 

GUI testing approach. The values for data widgets were chosen as follows: for text-

boxes a value from the set {-1, 0, 1, Test, ThisIsAVeryLongStringValue, and the 

empty string}; for combo-boxes, a value from the set of possible values. We set the 

maximal length of generated event sequences to three. The results are presented in 

Table 8. 

Table 8. Test results with disabled symbolic analysis. 

Tests Branch coverage, % Statement coverage, % Time, sec 

5 984 76 97 285 



Experimental results show that for the Workout Generator our approach generates 

significantly fewer test compared to the traditional technique. The reason for that is 

twofold: (1) Workout Generator has a fair amount of data widgets and exploits data 

dependent behaviors; (2) Workout Generator has fewer listeners. The structure of the 

Workout Generator is opportune for our technique and we achieve in order of two 

magnitudes decrease in the number of test. 

7   Discussion 

The experimental results show that our approach generates fewer tests and 

achieves higher branch and statement coverage compared to traditional GUI testing 

techniques. Further, our approach addressed data-flows in GUI applications by 

generating inputs for data widgets, which force the execution of different program 

paths. Our technique is especially effective for testing data intensive GUI 

applications, with data dependent behavior. 

Since we perform symbolic analysis, our technique inherits the limitations of 

symbolic execution with regard to native calls.  While our implementation does not 

handle native calls we can adopt the approach for approximation symbolic execution 

presented in [16]. Another issue that arises during symbolic execution is handling of 

loops. We take a standard approach and perform loop unwinding up to a given bound. 

Such an approximation inevitably introduces errors. Further, symbolic execution 

requires solving of path constraints, which in the general case, are undecidable. 

The current implementation of Barad supports a subset of the SWT GUI library 

which prevents us to apply our approach to the written with Swing TerpOffice, an 

application suite used by Memon et al. in his extensive work in GUI testing. 

We currently detect bugs as runtime exceptions. However, specification based 

oracles that check richer properties would enable more thorough testing of GUIs. We 

do not report detected bugs since we adopt the same fault detection strategy as the 

conventional GUI testing performed by Memon et al. Our focus is on reducing test 

suite size and improving statement and branch coverage.  

8   Related work 

To the best of our knowledge, in his Ph.D. dissertation [9] Memon presents the 

first framework for GUI testing that generates, runs, and assesses GUI tests. The 

framework focuses on the event-flow of GUI applications. For emulating user input a 

specification based approach is adopted—using values from a prefilled database. The 

components of the framework and its extensions are presented in several papers [9], 

[11], [13], [14], [22]. This framework considers all events accepted by the GUI while 

we focus on events with event listeners. The framework does not provide a 

mechanism for obtaining inputs for data widgets. By providing such a mechanism our 

work is complementary in this respect. 



Memon, Banarjee and Nagarajan present a framework for regression testing of 

nightly/daily builds of GUI applications [12]. This tool addresses rapidly evolving 

GUI applications executing a small enough test suite that the test process could be 

accomplished in less than a day/night. This framework is based on the one presented 

in Memon’s PhD dissertation [9] and uses the same test generation algorithm and 

specification based approach to simulate user inputs. We employ a different test 

generation algorithm and present a technique for obtaining data inputs.  

Another approach is representing the GUI as a Variable Finite State Machine from 

which after a transformation to an FSM, tests are obtained [18]. This black-box 

testing technique does not consider user input while focusing on the event-flow. Our 

approach is white-box with dynamic analysis focusing on event listeners and 

generates data inputs. 

A technique for testing a GUI is transforming the GUI into a FSM and using 

different techniques to reduce the states of that FSM to avoid state space explosion 

[21]. In approach the focus is on collaborating selections and user sequences over 

different objects in the GUI. This is a white-box event centric approach that abstracts 

away user inputs. We adopt an event listener centric technique and generate data 

values. 

Verification of GUI specifications has been performed via model checking [3]. 

The authors introduce domain specific abstractions to reduce the state space to be 

explored. The GUI and its behavior are represented as a Computation Tree Logic in 

the input language of the SMV model checker via a manual process. In contrast, our 

approach is fully automatic and aims at test generation rather than at model checking. 

We see this work as complementary to our approach. 

A technique for updating test scripts for evolving GUI applications has been 

proposed [6]. This enables reuse of existing scripts via detecting script errors due to 

changes in the GUI. Our work focuses on test generation and is complementary. 

A system that automatically extracts a program interface, generates a test driver 

and a random test suite after completion of which symbolic execution is used to guide 

the generation of additional tests has been presented [15]. Similarly, we employ 

symbolic execution to generate tests which maximize coverage by exploring different 

program paths. We introduce the abstraction of symbolic widgets which allows 

scaling symbolic execution for GUIs. 

Symbolic execution and concrete execution have been combined for test 

generation [16]. This approach uses approximate symbolic execution for testing code 

with dynamic data structures. In contrast, we generate inputs in the form of string and 

numeric data and do not perform concrete execution. We take advantage of the 

systematic approach for path exploration and scale symbolic execution for GUIs. 

Symbolic execution has been used for test data generation [23]. The program is 

represented as a deterministic FSM and using symbolic execution generates test data. 

This work deals exclusively with numeric constraints. Barad performs symbolic 

execution over GUI components (widgets) and strings (in addition to primitives).  



9   Conclusion 

We presented Barad, a novel GUI testing framework that addresses event-flow as 

well as data-flow for white-box testing of GUI applications. Barad is fully automatic, 

performing instrumentation, symbolic execution, test generation, and test execution. 

We introduce the abstraction of symbolic widgets. This abstraction enables 

symbolic analysis to reason about the control flow in GUI applications without 

analyzing the GUI library implementation. We generate test cases as sequences of 

events with registered listeners, pruning significant regions of the event input space. 

We execute symbolically the sequence of listeners registered for the events in a test 

case enabling a systematic approach to obtain inputs for data widgets.   

We evaluate our framework on non trivial GUI subjects. Compared to traditional 

GUI testing techniques Barad achieves higher statement and branch coverage while 

generating significantly fewer tests. 
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