
Event Listener Analysis and Symbolic Execution for

Testing GUI Applications

Svetoslav Ganov, Chip Killmar, Sarfraz Khurshid, Dewayne E. Perry
The University of Texas at Austin

Austin TX, USA

{svetoslavganov}@mail.utexas.edu, {khurshid, perry}@ece.utexas.edu

Abstract. Graphical User Interfaces (GUIs) are composed of virtual objects,

widgets, which respond to events triggered by user actions. Therefore, test

inputs for GUIs are event sequences that mimic user interaction. The nature of

these sequences and the values for certain widgets, such as textboxes, causes a

two-dimensional combinatorial explosion. In this paper we present Barad, a

GUI testing framework that uniformly addresses event-flow and data-flow in

GUI applications generating tests in the form of event sequences and data

inputs. Barad tackles the two-dimensional combinatorial explosion by pruning

regions of the event and data input space. For event sequence generation we

consider only events with registered event listeners, thus pruning regions of the

event input space. We introduce symbolic widgets which allow us to obtain an

executable symbolic version of the GUI. By symbolically executing the chain

of listeners registered for the events in a generated event sequence we obtain

data inputs, thus pruning regions in the data input space. Barad generates fewer

tests and improves branch and statement coverage compared to traditional GUI

testing techniques.

Keywords: GUI testing, symbolic execution, test input generation

1 Introduction

A Graphical User Interface (GUI) provides a convenient way to interact with the

computer. GUIs consist of virtual objects (widgets) that are intuitive to use, for

example, buttons, edit boxes, etc. In contrast to console applications where there is

only one point of interaction (the command line), GUIs provide multiple points (the

GUI widgets) each of which can have different states.

A classic challenge in GUI testing is how to select a feasible number of event

sequences, given the combinatorial explosion due to arbitrary event interleavings.

Consider testing a GUI with five buttons, where any sequence of button clicks is a

valid input. Exhaustive testing without repetition requires trying all 120 combinations

since triggering one event before another may cause execution of different code paths.

An orthogonal challenge is how to select values for data widgets, i.e., GUI

widgets that accept user input, such as textboxes, edit-boxes and combo-boxes, and

can have an extremely large space of possible inputs. Consider testing a GUI with one

text-box that takes a ten character string as an input. Exhaustive testing requires 10
26

possible input strings (we limit each character to be alphabetical in lower-case).

Automation of GUI testing has traditionally focused on minimizing event

sequences [9] [10] [12] [18] [21]. Data widgets have either been abstracted away by

not considering GUI behaviors dependent on data values, generated at random, or

selected from a small manually constructed set of values. As a consequence, data

dependent behaviors are inadequately tested. Consider generating a string value that is

necessary for satisfying an if-condition. Random selection is unlikely to generate the

desired value. Manual selection requires tedious code inspection. A specification-

based (black-box) approach may find this ―special‖ value, however it would require

detailed specifications, which often are not provided.

In this paper we present Barad, a novel GUI testing framework for checking GUI

applications written in Java with the Standard Widget Toolkit (SWT) [20]. Barad

generates event sequences and data inputs providing a systematic approach that

uniformly addresses event-flow and data-flow for white-box testing of GUI

applications. We detect event listeners – instances that register for and respond to

events in the GUI. This allows us to consider only events with registered listeners

during event sequence generation, thus pruning regions of the event input space. We

symbolically execute the chain of listeners registered for the events in a generated

event sequence. This allows us to obtain data inputs for the fields of GUI widgets,

thus pruning regions in the data input space. Barad is fully automatic, performing

bytecode instrumentation, test generation, symbolic execution, and test execution.

While our current implementation handles only GUIs written with the SWT library,

our approach is generic and can be successfully applied to other Java GUI libraries.

To scale symbolic execution [7] [8] [15] [16] [17] for GUI applications, we

introduce symbolic widgets which allow us to perform symbolic manipulation of

standard GUI widgets and obtain an executable symbolic version of the GUI. Widget

implementations have three concerns: (1) functionality; (2) visualization; and (3)

performance. Symbolic widgets focus on functionality, abstracting away the other two

concerns. The benefit of this approach is that it enables (1) efficient and systematic

dynamic analysis of GUI applications, and (2) generation of inputs for data widgets.

In our previous publication [5] we introduced symbolic analysis of GUI event

listeners in isolation for obtaining data inputs without considering event sequence

generation and analysis of event listeners in the context of the GUI application (i.e.

interactions between event listeners). In this paper we present a novel approach for

event sequence generation and symbolic analysis of the GUI application.

We make the following contributions:

 Symbolic analysis of GUI applications. We introduce the abstraction of

symbolic widgets that enables efficient and systematic dynamic analysis of

GUI applications.

 Event sequence generation. We present a novel test generation approach

and consider only events with registered event listeners, thus pruning regions

of the event input space.

 Data input generation. By symbolically executing the chain of listeners

registered for the events in a generated event sequence we obtain data inputs,

thus pruning regions in the data input space.

 Implementation. Barad is fully automatic, performing Java bytecode

instrumentation, test generation, symbolic execution, and test execution.

 Evaluation. We evaluate our approach on non-trivial GUI subjects and

compare it to traditional GUI testing techniques. Barad generates fewer tests

and achieves higher statement and branch coverage.

2 Example

In this section we provide an example how our approach uniformly handles event-

flow and data-flow in GUI applications and compare it to conventional GUI testing

techniques.

2.1 Fare Calculator

The GUI presented in Figure 1 is an application (313 lines of code) that we

developed. It calculates the amount due for a train ticket. A user must provide a

passenger class, name, ID, passenger group, and begin and end points. Passenger

groups are Senior, Adult, Student, and Child.

Fig. 1. Screenshot of the Fare Calculator.

Each passenger class has its own coefficient that is used during the calculation.

Each group has a different base price depending on the distance to be traveled, which

is the difference between From mile and To mile. This application has three event

listeners registered for the click events in buttons Close, Calculate, and Clear,

respectively. The calculation logic has 22 branches with conditional statements nested

three levels deep. The execution of a particular branch depends on the user input both

in the form of data and event sequence.

2.2 Input space

The Fare Calculator consists of two radio buttons, five textboxes, three buttons,

and one combo–a total of eleven GUI widgets. Therefore, the number of event

sequences with only one event per widget and one value per data widget is slightly

less than 4,000,000 (11!). Furthermore, just the input for the ID field of the Fare

Calculator, a sequence of ten numeric characters, causes a factor of 10,000,000,000

(10
10

) increase in the test suite size. Hence, due to the two-dimensional combinatorial

explosion in GUI inputs, exhaustive testing of even as simple GUI as the Fare

Calculator is unrealistic. Clearly, a systematic approach that prunes regions of the

event and data input space is required.

2.3 Test results

We tested the Fare Calculator with Barad. The process was completed fully

automatically. Our results are shown in Table 1.

Table 1. Test results with enabled symbolic analysis.

Tests Branch coverage, % Statement coverage, % Time, sec

69 100 100 13.02

The first column presents the total number of tests. The second and the third

columns present the branch and statement coverage, respectively. Column four

contains the execution time which includes instrumentation, test generation, symbolic

execution, and test execution. Barad uses Emma [4] to determine code coverage.

Branch coverage was obtained by manual inspection of the code coverage report.

We interpret our results as follows. The application has three event listeners

registered for the events of clicking each of the buttons. Hence, during event sequence

generation we consider only these three events resulting in six tests with length three

without repetition. Each test case was executed on the symbolic version of the GUI

and for some tests sets of input values were obtained. Test cases, symbolic execution

of which generated sets of input values, were prefixed with events to populate each

set of values, thus producing a new test case for each input set. The full branch and

statement coverage is due to data values obtained by systematic exploration of all

feasible paths during symbolic execution.

Conventional GUI testing techniques [9] [10] [12] [18] [22] exhaustively generate

event sequences up to a given bound and adopt a specification based approach to

populate inputs—selecting from a predefined set of values. We disabled the symbolic

and event listener analysis in Barad to simulate conventional GUI testing. We limited

the length of event sequences to be equal to the length of sequences generated by our

approach before prefixing with events for data input population. The input values for

data widgets were chosen in a widget specific manner as follows: for the textboxes a

choice from the set {-1, 0, 1, Test, ThisIsAVeryLongStringValue, the empty string}

was made; for the combo a choice from the set of possible values, namely {Senior,

Adult, Student, Child} was made. Results of this analysis are presented in Table 2.

The first column presents the total number of tests. The second and the third columns

present the branch and statement coverage, respectively. Column four contains the

execution time which includes test generation and test execution.

Table 2. Test results with disabled symbolic analysis.

Tests Branch coverage, % Statement coverage, % Time, sec

1152 23 87 142.45

2.4 Comparison

Results show that for the Fare Calculator our approach generated more than an

order of magnitude fewer tests compared to a traditional approach, while achieving

significantly higher branch coverage. The longest event sequence generated by our

technique has length eight and consists of the following events: (1) selecting a

Passenger class; (2) populating the Name field; (3) populating the ID field; (4)

populating the From mile field; (5) populating the To mile field; (6) selecting the

Calculate button; (7) selecting the Clear button; (8) selecting the Close button; Note

that our approach generated the minimal set of event sequences with length eight to

achieve full path coverage. In contrast, to generate a test case with this length and

achieve the same coverage results the traditional approach requires generation of all

event sequences with length eight without repetition. Considering the very limited

input specifications, this results in 7.6 x 10
13

 test cases.

3 Background

This section provides the reader with some background about the technique of

symbolic execution. It also presents the traditional GUI testing approaches and the

GUI model we adopt.

3.1 Symbolic Execution

The main idea behind symbolic execution is to use symbolic values, instead of

actual data, as input values, and to represent the values of program variables as

symbolic expressions. As a result, the output values computed by a program are

expressed as a function of the input symbolic values.

The state of a symbolically executed program includes the (symbolic) values of

program variables, a path condition (PC), and a program counter. The path condition

is a (quantifier-free) Boolean formula over the symbolic inputs; it accumulates

constraints which the inputs must satisfy in order for an execution to follow the

particular associated path. The program counter defines the next statement to be

executed. A symbolic execution tree characterizes the execution paths followed during

the symbolic execution of a program. The nodes represent program states and the arcs

represent transitions between states.

Consider the code fragment in Figure 2, which swaps the values of integer

variables x and y, when x is greater than y. The figure also shows the corresponding

symbolic execution tree. Initially, PC is true and x and y have symbolic values X and

Y, respectively. At each branch point, PC is updated with assumptions about the

inputs, in order to choose between alternative paths. For example, after the execution

of the first statement, both then and else alternatives of the if-statement are possible,

and PC is updated accordingly.

Fig. 2. Code that swaps two integers and its symbolic execution tree where transitions are

labeled with program control points.

If the path condition becomes false, i.e., there is no set of inputs that satisfy it, this

means that the symbolic state is not reachable, and symbolic execution does not

continue for that path. For example, statement (7) is unreachable.

3.2 GUI testing approaches

Since contemporary software extensively uses GUIs to interact with users,

verifying GUI’s reliability becomes important. There are two approaches to building

GUIs and these two approaches affect how testing can be performed.

The first approach is to keep the GUI light weight and move computation into the

background. In such cases the GUI could be considered as a ―skin‖ for the software.

Since the main portion of the application code is not in the GUI, it may be tested

using conventional software testing techniques. However, such an approach places

architectural limitations on system designers.

The second approach is to merge the GUI and its computations. The most

common way of testing such GUIs is by using tools that record and replay event

sequences. This is laborious and time consuming. Another technique for checking

GUI’s correctness is by using tools for automatic test generation, execution, and

assessment as the one presented in this paper or the ones described in [9] [12] .

1 int x, y;

2 if (x > y) {

3 x = x + y;

4 y = x - y;

5 x = x - y;

6 if (x - y > 0)

7 assert(false);

8 }

9 }

5

4

2 2

 x:X+Y, y:X

 PC: X>Y

 x:Y, y:X

 PC: X>Y

 x:Y, y:X

 PC: X>Y&Y-X >0

 FALSE!

 x:Y, y:X

 PC: X>Y&Y-X<=0

 x:X+Y, y:Y

 PC: X>Y

 x:X, y:Y

 PC: X>Y

 x:X, y:Y

 PC: X<=Y

 x:X, y:Y

 PC: true

3

3.3 GUI model

We take a standard view of a GUI. Let },...,{ 21 nwwwW  be the set of GUI

widgets. Examples of widgets are Button, Combo, Label, etc. Each widget has a set

of properties. Let },...,{ 21 mpppP  be the set of widget properties. Examples of

properties are enabled, text, visible, selection, etc. Each property has a set of values.

Let },...,{ 21 pvvvV  be the set of property values. Examples of values are true, false,

etc. A GUI is a triple),,(W that consists of a set of widgets, a mapping PW 2: 

from widgets to properties, and a mapping VP 2:  from properties to values.

Let E be the set of all events accepted by the GUI. Each GUI widget w accepts

as input a set of user events wE triggered by user actions which is a subset of E .

Examples of events are clicks, mouse moves, etc.

),(:| ww EwacceptEEWw 
 (1)

Let L be the set of all event listeners in the GUI. Each GUI widget w has zero or

more event listeners wL registered for events performed on the widget which is a

subset of L . Each listener l is registered for a set of events lE which is a subset of all

events wE accepted by the widget. Examples of listeners are selection listener,

modification listener, etc.

),(||| elregisteredEeEELlLLWw lwlww  (2)

Since a user interacts with the GUI through events, a GUI test case t from the set T

of GUI test cases is an event sequence.

 peeetTt ,...,,: 21 (3)

4 Barad

This section presents Barad, our GUI testing framework. We present the

techniques for addressing event-flow and data-flow in GUI applications and our

approaches for pruning regions in the event and data input space. We also provide

details about the adopted abstractions.

The process of GUI testing performed by Barad is shown on Figure 3. To enable

symbolic execution, Barad instruments the bytecode of the tested GUI application

replacing concrete entities (widgets, strings, primitives, library classes) with their

corresponding symbolic equivalents (symbolic widgets, symbolic strings, symbolic

integers etc.) provided by Barad’s symbolic library. The bytecode instrumentation is

implemented with the ASM library [1]. As a result of the instrumentation phase an

executable symbolic version of the GUI is generated. Next, a symbolic analysis of the

instrumented version is performed.

Fig. 3. GUI testing process in Barad.

During this process event listeners are detected, tests in the form of sequences of

events with registered listeners are generated, and then symbolically executed—all

paths are systematically explored and their feasibility evaluated by constraint solving.

As a result of this process a log file and a test suite are generated. The test suite

consists of event sequences and concrete inputs. Finally, the test suite is executed on

the concrete version of the application and a coverage report is generated.

4.1 Event-flow

To address event-flow in GUI applications we adopt a strategy of pruning regions

in the event input space by not considering events for which there is no registered

event listener. Since an event listener contains computational logic performed upon a

certain event, the lack of a listener for an event renders the event to have no effect on

the GUI.

However, such an approach might prevent the execution of a given program path.

Consider a simple GUI with one textbox, one button, and a single event listener for

the event of pressing the button. Now assume the event listener code has a conditional

statement which depends on the value of the textbox.

C
o

n
cr

et
e

A
g

en
t

Symbolic analysis Constraint solving

Concrete execution

Barad library

GUI under test

Symbolic GUI

Test suite Log file

Instrumentation

Result reporting

S
y

m
b

o
li

c
A

g
en

t

Since there is no listener for the event of populating the text box and we consider only

events with registered listeners, an event for populating the textbox will not be

included in any test case. This leads to inadequate testing because of a failure to cover

all program paths in the listener. Hence, adopting a strategy for considering only

events with registered listeners requires a mechanism for detecting if the code in the

event listener in our example depends on the value of the textbox. To determine such

a dependency we perform symbolic analysis of the event listener code and generate

values for the textbox that would ideally achieve full path coverage of the event

listener. Let us assume that we have identified two values ―A‖ and ―B‖ for the textbox

which would force the execution to follow different paths at the conditional statement

in the listener. In such a case if we generate two tests one including the event for

populating ―A‖ in the textbox followed by pressing the button and the other including

the event for populating ―B‖ in the textbox followed by pressing the button we will

achieve full path coverage of the event listener. Therefore, employing symbolic

execution for identifying such dependencies allows us to safely consider only events

with registered event listeners. We generate events that populate data widgets, for

which no listener exists only in case we have identified values that would force

visiting unexplored program paths. More details about our test generation approach

are presented in Section 4.4.

 To illustrate the reduction in the event input space by considering only events with

registered event listeners consider the Fare Calculator from Section 2. The GUI

consists of eleven widgets and three event listeners. Considering only one event per

widget (some widgets accept more than one event) results in 165 event sequences

with length three while considering only events with registered listeners results in

only six events sequences with length three.

4.2 Data-flow

To address data-flow in GUI applications we utilize symbolic execution to obtain

inputs for data widgets. We execute symbolically the chain of event listeners

registered for the events in a test case. This is achieved by executing each test case on

a symbolic version of the application.

In order to obtain a symbolic version of the application, thus enabling symbolic

execution of GUIs, we introduce the abstraction of symbolic widgets. Each GUI

widget has a symbolic counterpart that has the same fields and provides the same

methods, which however represent and operate on symbolic data, respectively. For

example, org.eclipse.swt.widgets.Text is mapped to a

barad.symboliclibrary.ui.widgets.SymbolicText and the string field text of the former

is implemented as a symbolic string in the latter. The corresponding getter and setter

methods, for the text field of the SymbolicText widget, return as a result and receive as

a parameter symbolic strings. To enable the integration of symbolic widgets in our

framework, we introduce symbolic events and symbolic event listeners. Similarly to

symbolic widgets, these entities are structurally equivalent to their concrete

counterparts and operate with symbolic data.

Symbolic widgets could be envisioned as wrappers that relate sets of variables,

representing symbolic primitives and strings, to particular instances in the GUI widget

hierarchy. Therefore, constraints and operations on symbolic widgets are constraints

and operations on symbolic primitives and strings.

However, symbolic widgets have richer semantics than the set of variables they

encapsulate, performing specific to the symbolic and event listener analysis functions:

(1) Symbolic widgets wrap the variables related to concrete GUI widgets, allowing us

to maintain a mapping from symbolic variables to concrete GUI widgets. This

mapping identifies which concrete widgets to be populated with values obtained after

concretization of symbolic variables; (2) Symbolic widgets are mapped one-to-one

with concrete widgets. This guarantees that the symbolic widget hierarchy is

isomorphic to the concrete widget hierarchy and tests generated for the symbolic

version of the GUI are applicable to its concrete version; (3) Symbolic widgets detect

event listeners at run time. Detecting of event listeners is required by our test

generation algorithm; (4) Symbolic widgets implement methods which execute

registered event listeners, passing as a parameter a symbolic event. These methods are

used for execution of the generated tests; (5) Symbolic widgets, similarly to their

concrete counterparts, are referenced by the events passed as parameters to the event

listeners. This provides a mechanism of accessing properties of symbolic widgets

through events instances.

Symbolic widgets abstract away the visualization layer of their concrete replicas.

Such an approach has several advantages. (1) We avoid symbolic execution of the

GUI library implementation and focus our analysis on the application logic. Our

objective is verifying application correctness, rather than proper behavior of the GUI

library. (2) We avoid the native calls made by a GUI widget to the operating system

to generate a visual representation of the widget. Our focus, during symbolic

execution, is on data-flows in GUI applications and the visual representation of these

GUIs is irrelevant to our analysis. Hence, we abstract away unnecessary

computations.

Currently Barad supports the symbolic widgets, events, and event listeners

required for testing the GUI applications presented in this paper. Our framework is an

experimental prototype used to evaluate the applicability of our approach. We did not

encounter any widget specific issues, which make defining a symbolic widget

challenging. We believe that full support for the SWT library as well as other Java

GUI libraries is feasible.

4.3 Symbolic GUI model

 Our view of the symbolic version of a GUI follows the GUI model we have

presented in Section 3.3.

Let },...,{ 21 snsss wwwW  be the set of symbolic widgets. Each symbolic widget has

a set of properties which are symbolic variables },...,{ 21 smsss pppP  . Each symbolic

property has a set of values it can take during its concretization },...,{ 21 pssss vvvV  . A

symbolic GUI is a triple),,(sW that consists of a set of symbolic widgets, a

mapping sP
sW 2:  from symbolic widgets to symbolic properties, and a mapping

sV
sP 2:  from symbolic properties to concrete values.

Let sE be the set of symbolic events. Each symbolic widget sw accepts as input a

set of symbolic events wsE .

),(:| wssswsss EwacceptEEWw 
 (1)

Let sL be the set of event listeners. Each symbolic widget sw has zero or more

event listeners wsL . Each listener sl is registered for a set of symbolic events lsE .

),(||| ssslswslswssswsss elregisteredEeEELlLLWw 
 (2)

4.4 Test generation algorithm

Taking advantage of the symbolic widgets we developed our test generation

algorithm shown in Figure 4.

Fig. 4. Test generation algorithm.

We represent the GUI events with registered event listeners as an Events with

Listeners Graph (ELG)—a directed graph with nodes representing events with

registered listeners and edges. The existence of an edge from event e1 to event e2

means an execution of event e2 can be performed immediately after the execution of

event e1. For example, if event e1 opens a new form (GUI window) every event in

that form strictly succeeds e1. Every time a new event with registered listener is

identified a new node is added to the graph.

Since events with registered listeners are detected at runtime by symbolic widgets

(intercepting event listener registration calls) and these events can open other forms,

all events with registered listeners should be executed at least once (line 1) to build a

complete ELG. Such an approach enables handling of multiple GUI windows. Once

an ELG has been created we generate test cases performing graph traversals. Our test

generation algorithm generates exhaustively test cases in the form of event sequences

up to a given bound without repetition (line 2).

We obtain data inputs by symbolically executing the sequence of listeners

registered for the events in a test case (line 3-6). Doing so, we capture data

dependencies between the event listeners and potentially identify sets of input values

for the data widgets in the GUI (line 4). For each such set (if such sets exist) a test

case is created by concatenating events for populating data widgets with the values

from the set and the events of the test case (line 5).

To illustrate our test generation algorithm, recall the Fare Calculator from

Section 2. The algorithm proceeds as follows. Once the symbolic version of the GUI

is launched the ELG is constructed by executing every event with registered listener

in the GUI (line 1). As a result from this step all three events with registered listeners

1. SymbolicModel.executeEventsWithListeners();

2. eventSequences = TestGenerator.generateTests();

3. for (EventSequence s: eventSequences){

4. in = SymbolicModel.excecuteListenerSequence(s.listeners());

5. test.addAll(TestGenerator.appendInputs(in, s);

6. }

(for clicking the three buttons) e1, e2, and e3 are identified and used for construction

of six event sequences (line 2). The listeners corresponding to these events are

symbolically executed (line 4). Without loss of generality, consider the event

sequence (e1, e2, e3) symbolically executing the listeners of which generated twenty

two sets S of five inputs values v1 – v5 each:

  }},..,{},....,,..,{},,..,{{,, 5122512511321 vvSvvSvvSeee  (1)

Each input set transitions the GUI to such a state that executing the sequence (e1,

e2, and e3) will force visiting of a different program path. Our algorithm constructs a

separate test case for each set of values by concatenating the event sequence required

to populate these values with the test event sequence (line 5). The generated test

cases, where e(x, y) is the event required for populating the value x from value set y,

look as follows:

;e ,e ,e),S ,e(v,…),S ,e(v),S ,e(v 321151211 (2)
 …

;e ,e ,e),S ,e(v,…),S ,e(v),S ,e(v 321225222221 (3)

4.5 Symbolic widget example

 To provide the reader with a better intuition about symbolic widgets we present

as an example a partial implementation of the symbolic combo widget. Figure 5

shows the source code. Symbolic combo extends the symbolic widget (line 1) and

defines a concrete SWT class it represents (line 2).

Fig. 5. Symbolic combo snippet.

1. public class SymbCombo extends SymbWidget {

2. String SWT_CLASS_NAME = "org.eclipse.swt.widgets.Combo";

3. private List<SymbSelectionListener> mSelectionListeners;

4. private SymbString mText;

5. . . .

6. public SymbCombo(SymbComposite parent, SymbInteger style) {

7. super(parent, style, "SymbCombo");

8. . . .

9. mText = new SymbString(20, this, “text”);

10. }

11. public String getSWTClassName() {return SWT_CLASS_NAME;}

12. public void fireSelectionEvent() {

13. SymbSelectionEvent event = new SymbSelectionEvent(this);

14. for (SymbSelectionListener l: mSelectionListeners) {

15. l.widgetSelected(event);

16. }

17. }

18. public void addSelectionListener(SymbSelectionListener l) {

19. TestGenerator.addELGVertex(this, EventType.SELECTION);

20. mSelectionListeners.add(l);

21. }

22. public StringInterface getText() {

23. Path.addInputVariable(text);

24. return text;

25. }

The widget has a list of symbolic listeners (line 3) and a set of symbolic members

representing its properties (line 4). In the constructor (lines 6-10) symbolic variables

are assigned to the combo’s properties (line 9). The symbolic variable receives the

combo and the property it represents as parameters to associates itself with that

property. The combo exposes the SWT class it represents (line 11) and defines a

method for firing a selection event (lines 12-17). Client code can register event

listeners (lines 18-21). Upon detection of an event listener a vertex is added to the

ELG (line 19). Properties of the symbolic combo are exposed via getter/setter (setter

not shown) pairs (lines 22-25). Each symbolic variable representing a widget property

is added to the path (multiple additions has no effect) as an input variable (line 23),

informing the constraint solver to generate an input value for this variable during the

concretization phase.

5 Implementation

This section presents the components of Barad. We discuss the symbolic and

concrete agents and provide an overview of the GUI testing mechanism.

5.1 Symbolic primitives, strings, and constraint solving

Barad supports symbolic operations on all primitive types (integer, float, Boolean,

and character). Supported symbolic operations on integers and floats are: and, or,

addition, difference, multiplication, division, less than, greater than, greater than or

equal, and less than or equal. (Booleans are represented as integers). For solving

numeric constraints Barad has a custom solver implemented via the Choco [2] library.

Supported operations on symbolic strings are: substring, concat, charAt, and trim.

For symbolic string representation and constraint solving we use the work presented

in [19], where finite state automata are employed to model the set of possible values

for a string variable.

5.2 Barad agents

Barad consists of two collaborating agents operating on a symbolic and a concrete

version of the application, respectively. They perform separate steps in the GUI

testing process and can operate as stand-alone testing tools. The Symbolic Agent

performs our algorithm for symbolic analysis and generates a test suite. The Concrete

Agent generates and executes tests on the concrete version of the application as well

as provides reports for code coverage and detected errors. While these agents operate

in a collaborative fashion, test cases are generated by the Symbolic Agent and

executed by the Concrete Agent. The agents run in the same Java Virtual Machine

(JVM) and communicate asynchronously via publish-subscribe paradigm.

5.2.1. Symbolic agent. The Symbolic Agent instruments the GUI bytecode,

performs symbolic execution of the instrumented version, and generates test cases as

event sequences and data inputs. It is a Java agent that registers in the JVM for class

loading events. It intercepts the loading of the main class of the AUT, instruments it,

and executes it symbolically in a separate thread. Subsequently loaded classes are also

instrumented at loading time.

5.2.2. Concrete agent. The Concrete Agent generates tests adopting a traditional

test generation approach and executes tests on the application. In contrast with

conventional GUI testing frameworks, which restart the GUI after executing a test

case, the agent performs reinitialization. The agent is a JVM Tool Interface and can

detect defects via uncaught exceptions thrown by the GUI at runtime.

6 Evaluation

This section presents two case studies and evaluates the applicability of our GUI

testing approach. The first case study is a notepad application which does not exploit

data dependent behaviors. The second case study is a workout generator program the

behavior of which depends on data inputs. We compare our approach to traditional

GUI testing strategies.

6.1 JNotepad

JNotepad is a Java implementation of the popular Notepad text editor. JNotepad

provides basic functionalities such as creating, editing, and saving text files; cut,

copy, paste, undo, redo operations etc. We analyze version 2.0 of the application.

Table 3 presents a summary of JNotepad and Figure 6 shows a screenshot of the GUI.

Table 3. JNotepad application.

Windows Widgets LOC Classes Methods Branches

8 30 849 9 51 90

Fig. 6. Screenshot from JNotepad.

For testing JNotepad we configured Barad to ignore all widgets in the Open, Save,

and SaveAs dialogs except the text field for specifying a file name and the OK and

Cancel buttons. The file chooser class, used for implementing these dialogs, is

provided by the GUI library, testing of which we want to avoid.

First, we tested JNotepad adopting our approach with enabled symbolic and event

listener analysis. To limit the number of generated test cases, we configured the

maximal length of event sequences before appending data populating events to three.

Obtained results are presented in Table 4.

Table 4. Test results with enabled symbolic analysis.

Tests Branch coverage, % Statement coverage, % Time, sec

24 058 92 97 1 495

The first column presents the total number of executed tests. The second and third

columns present the branch and statement coverage, respectively. The fourth column

presents the test generation and execution time (including symbolic analysis). Code

coverage was reported by Barad and branch coverage was obtained by manual

inspection of the code coverage report.

We next disabled the symbolic and event listener analysis simulating a traditional

GUI testing approach. Values for the text boxes were selected from the set {-1, 0, 1,

Test, ThisIsAVeryLongStringValue, and the empty string}. Table 5 shows the results.

Table 5. Test results with disabled symbolic analysis.

Tests Branch coverage, % Statement coverage, % Time, sec

51 694 84 91 29,46

Experimental results show that our approach generated approximately half the

number of test as opposed to the traditional technique. The reason for the moderate

decrease in the number of test cases generated by Barad is twofold: (1) JNotepad has

few data widgets (one textbox in the main, find, and save/open windows,

respectively) and does not have much data dependent behavior; (2) JNotepad contains

primarily buttons, which accept a single event for which corresponding event listeners

exist. Hence, for most of the events accepted by the GUI corresponding listeners

exist. Despite the structure of JNotepad, which is not ideal for our technique, we still

achieve significant reduction in the number of tests.

6.2 Workout Generator

The Workout Generator is a program the first author developed in his previous

experience. The GUI takes as input user’s biometric characteristics and generates a

weekly workout program. Table 6 summarizes the characteristics of the Workout

Generator and Figure 7 shows a screenshot of the GUI.

Fig. 7. Screenshot of the Workout Generator.

Table 6. Workout Generator application.

Windows Widgets LOC Classes Methods Branches

1 9 651 3 15 121

The combo boxes could take one of the following values: for Gender - Male,

Female; for Metabolism - Slow, Normal, and Fast; and for Experience - Beginner,

Intermediate, and Advanced.

First, we tested the Workout Generator adopting our approach with enabled

symbolic and listener analysis. We configured an upper bound of three for the length

of event sequences. The results are presented in Table 7.

Table 7. Test results with enabled symbolic analysis.

Tests Branch coverage, % Statement coverage, % Time, sec

48 100 100 4.3

We next disabled the symbolic and event listener analysis simulating a traditional

GUI testing approach. The values for data widgets were chosen as follows: for text-

boxes a value from the set {-1, 0, 1, Test, ThisIsAVeryLongStringValue, and the

empty string}; for combo-boxes, a value from the set of possible values. We set the

maximal length of generated event sequences to three. The results are presented in

Table 8.

Table 8. Test results with disabled symbolic analysis.

Tests Branch coverage, % Statement coverage, % Time, sec

5 984 76 97 285

Experimental results show that for the Workout Generator our approach generates

significantly fewer test compared to the traditional technique. The reason for that is

twofold: (1) Workout Generator has a fair amount of data widgets and exploits data

dependent behaviors; (2) Workout Generator has fewer listeners. The structure of the

Workout Generator is opportune for our technique and we achieve in order of two

magnitudes decrease in the number of test.

7 Discussion

The experimental results show that our approach generates fewer tests and

achieves higher branch and statement coverage compared to traditional GUI testing

techniques. Further, our approach addressed data-flows in GUI applications by

generating inputs for data widgets, which force the execution of different program

paths. Our technique is especially effective for testing data intensive GUI

applications, with data dependent behavior.

Since we perform symbolic analysis, our technique inherits the limitations of

symbolic execution with regard to native calls. While our implementation does not

handle native calls we can adopt the approach for approximation symbolic execution

presented in [16]. Another issue that arises during symbolic execution is handling of

loops. We take a standard approach and perform loop unwinding up to a given bound.

Such an approximation inevitably introduces errors. Further, symbolic execution

requires solving of path constraints, which in the general case, are undecidable.

The current implementation of Barad supports a subset of the SWT GUI library

which prevents us to apply our approach to the written with Swing TerpOffice, an

application suite used by Memon et al. in his extensive work in GUI testing.

We currently detect bugs as runtime exceptions. However, specification based

oracles that check richer properties would enable more thorough testing of GUIs. We

do not report detected bugs since we adopt the same fault detection strategy as the

conventional GUI testing performed by Memon et al. Our focus is on reducing test

suite size and improving statement and branch coverage.

8 Related work

To the best of our knowledge, in his Ph.D. dissertation [9] Memon presents the

first framework for GUI testing that generates, runs, and assesses GUI tests. The

framework focuses on the event-flow of GUI applications. For emulating user input a

specification based approach is adopted—using values from a prefilled database. The

components of the framework and its extensions are presented in several papers [9],

[11], [13], [14], [22]. This framework considers all events accepted by the GUI while

we focus on events with event listeners. The framework does not provide a

mechanism for obtaining inputs for data widgets. By providing such a mechanism our

work is complementary in this respect.

Memon, Banarjee and Nagarajan present a framework for regression testing of

nightly/daily builds of GUI applications [12]. This tool addresses rapidly evolving

GUI applications executing a small enough test suite that the test process could be

accomplished in less than a day/night. This framework is based on the one presented

in Memon’s PhD dissertation [9] and uses the same test generation algorithm and

specification based approach to simulate user inputs. We employ a different test

generation algorithm and present a technique for obtaining data inputs.

Another approach is representing the GUI as a Variable Finite State Machine from

which after a transformation to an FSM, tests are obtained [18]. This black-box

testing technique does not consider user input while focusing on the event-flow. Our

approach is white-box with dynamic analysis focusing on event listeners and

generates data inputs.

A technique for testing a GUI is transforming the GUI into a FSM and using

different techniques to reduce the states of that FSM to avoid state space explosion

[21]. In approach the focus is on collaborating selections and user sequences over

different objects in the GUI. This is a white-box event centric approach that abstracts

away user inputs. We adopt an event listener centric technique and generate data

values.

Verification of GUI specifications has been performed via model checking [3].

The authors introduce domain specific abstractions to reduce the state space to be

explored. The GUI and its behavior are represented as a Computation Tree Logic in

the input language of the SMV model checker via a manual process. In contrast, our

approach is fully automatic and aims at test generation rather than at model checking.

We see this work as complementary to our approach.

A technique for updating test scripts for evolving GUI applications has been

proposed [6]. This enables reuse of existing scripts via detecting script errors due to

changes in the GUI. Our work focuses on test generation and is complementary.

A system that automatically extracts a program interface, generates a test driver

and a random test suite after completion of which symbolic execution is used to guide

the generation of additional tests has been presented [15]. Similarly, we employ

symbolic execution to generate tests which maximize coverage by exploring different

program paths. We introduce the abstraction of symbolic widgets which allows

scaling symbolic execution for GUIs.

Symbolic execution and concrete execution have been combined for test

generation [16]. This approach uses approximate symbolic execution for testing code

with dynamic data structures. In contrast, we generate inputs in the form of string and

numeric data and do not perform concrete execution. We take advantage of the

systematic approach for path exploration and scale symbolic execution for GUIs.

Symbolic execution has been used for test data generation [23]. The program is

represented as a deterministic FSM and using symbolic execution generates test data.

This work deals exclusively with numeric constraints. Barad performs symbolic

execution over GUI components (widgets) and strings (in addition to primitives).

9 Conclusion

We presented Barad, a novel GUI testing framework that addresses event-flow as

well as data-flow for white-box testing of GUI applications. Barad is fully automatic,

performing instrumentation, symbolic execution, test generation, and test execution.

We introduce the abstraction of symbolic widgets. This abstraction enables

symbolic analysis to reason about the control flow in GUI applications without

analyzing the GUI library implementation. We generate test cases as sequences of

events with registered listeners, pruning significant regions of the event input space.

We execute symbolically the sequence of listeners registered for the events in a test

case enabling a systematic approach to obtain inputs for data widgets.

We evaluate our framework on non trivial GUI subjects. Compared to traditional

GUI testing techniques Barad achieves higher statement and branch coverage while

generating significantly fewer tests.

Acknowledgements. This material is based upon work partially supported by the

NSF under Grant Nos. IIS-0438967, CCF-0702680, and CCF-0845628, and AFOSR

grant FA9550-09-1-0351.

10 References

 1. ASM: Java bytecode manipulation and analysis framework, http://asm.objectweb.org/

 2. Choco: Java library for constraint solving, http://sourceforge.net/projects/choco/

 3. Dweyer, M., Carr, V., Hines, L.: Model Checking Graphical User Interfaces Using
Abstractions. In ESEC, 1997.

 4. Emma: Java code coverage tool, http://emma.sourceforge.net/

 5. Ganov, S., Killmar, C., Khurshid, S., Perry, D., E.: Test Generation for Graphical User
Interfaces Based on Symbolic Execution. In AST, 2008.

 6. Grechanik, M., Xie, Q., Fu, C.: Maintaining and Evolving GUI-Directed Test Scripts. In
ICSE, 2009.

 7. King, J.: Symbolic Execution and Program Testing. In Communications of the ACM, 1976.

 8. Lori, C.: A System to Generate Test Data and Symbolically Execute Programs. In IEEE

Transactions on Software Engineering, 1976.

 9. Memon A.: A Comprehensive Framework For Testing Graphical User Interfaces. In Ph.D.

Thesis, University of Pittsburgh, 2001.

10. Memon, A.: Using Tasks to Automate Regression Testing of GUIs. In AIA, 2004.

11. Memon, A., Banarjee, I., Nagarajan, A.: GUI Ripping: Reverse Engineering of
Graphical User Interfaces for Testing. In WRCE, 2003.

12. Memon, A., Banarjee, I., Nagarajan, A.: DART: A Framework for Regression Testing
Nightly/Daily Builds of GUI Applications. In ICSM, 2003.

13. Memon, A., Banarjee, I., Nagarajan, A.: What Test Oracle Should I use for Effective GUI
Testing? In ASE, 2003.

http://asm.objectweb.org/
http://emma.sourceforge.net/

14. Memon, A., McMaster, S.: Call Stack Coverage for GUI Test-Suite Reduction. In ISSRE,

2006.

15. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In

PLDI, 2005.

16. Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Testing Engine for C. In

ESEC/FSE'05 2005.

17. Ramamoorthy, V., Siu-Bun, H., Chen, W.: On the Automated Generation of Program Test
Data. In IEEE TSE, 1976.

18. Shehady, R., K., Siewiorek, D.: A Method to Automate User Interface Testing Using

Variable Finite State Machines. In FTCS, 1997.

19. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstracting Symbolic Execution

with String Analysis. In TAICPART-MUTATION, 2007.

20. SWT: The Standard Widget Toolkit, http://www.eclipse.org/SWT

21. White, L., Almezen, H.: Generating Test Cases for GUI Responsibilities Using Complete

Interaction Sequences. In ISSRE, 2000.

22. Xie, Q., Atif, M.: Using a Pilot Study to Derive a GUI Model for Automated Testing. In
TOSEM, 2008

23. Zhang, J., Xu, C., Wang, X.: Path-Oriented Test Data Generation Using Symbolic
Execution and Constraint Solving Techniques. In SEFM, 2004

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ftcs/&toc=comp/proceedings/ftcs/1997/7831/00/7831toc.xml
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28shannon%20%20daryl%3CIN%3Eau%29&valnm=Shannon%2C+Daryl&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20hajra%20%20sukant%3CIN%3Eau%29&valnm=+Hajra%2C+Sukant&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20lee%20%20alison%3CIN%3Eau%29&valnm=+Lee%2C+Alison&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20khurshid%20%20sarfraz%3CIN%3Eau%29&valnm=+Khurshid%2C+Sarfraz&reqloc%20=others&history=yes
http://www.eclipse.org/SWT

