CMU-CS-80-117

Well-Formed System Compositions

A. Nico Habermann

DewayneE. Perry

March 1980

DEPARTMENT
of

COMPUTER SCIENCE

=

Carneqie-Mellon University

MU-CS-80-117

Well-Formed System Compositions

A. Nico Habermann

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Dewayne E. Perry

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213
and
Pegasus Systems
125 Beechwood Road
Summit, NJ 07901

March 1980

Abstract

A Major part of an integrated programming and system development environment such
as Gandalf is that which is concerned with describing systems and controlling versions of
those systems. This paper investigates the foundations of systems’ description and
control. It presents a system description language, discusses the issue of composing
system descriptions from component specifications, addresses the questions of
consistency, ambiguity and completeness, delineates the basic rules for system
compositions, and presents an algorithm to generate all viable system compositions. It
concludes with a demonstration that the algorithm has the desired properties and a
discussion of its theoretical and practical complexity.

This work is sponsored by the Software Enginneering Division of
CENTACS/CORADCOM, Fort Monmouth, NJ. :

1, Inf‘roduction.

This . paper discusses the issue of composing viable system versions out of component
specifications. It addresses qﬁeéﬁons of consistency, almbiguity and complefeness of system
descriptions. We are primarily concerned with func.tional aspects of system composition. For
a discussion of the implementation aspects of s'ystem‘com‘position, see [Tichy 80] and
[Cooprider 79]). The usefulness of this paper is in the application of its result to a software
con'struc_tion and méintenance system. Such a system is typically part of an integrated‘
program and system deveIOpmenti environment (éuch as Gandalf [Gandalf 79]). The
p'rogrammin:g environment can enforce some basic system composition rules and assist the
user in generating system descriptions. Using the resulls of this paper, the environment will

guarantee that users create only well-formed system compositions.

System "d‘eve!Opment is a matter‘of two very different activities -- the conventional task of
writing programs and the construction of system versions out of separate system
componenté. Central to both is a p}ecise specification of the facilities provided by a system
'co‘mponev-nt. For implementors, compbnent specibfications serve as a concise task description
and st_até the desired goal ‘which they must realize by choosing appropriate data
representations and by writing ' effidént subprograms, For designers, component
specfficatiohs define a u.nique user interface which shows how component facilities can be

used and which components can be put together into working systems.

The important role played by systém component specification is reflected in the Ada
language. It makes a clear distinction between the definition of a module and its body. The
definition 'part.specifies the facilities that a module provides to ils users. These facilities are
definitions of idata types, data objects'or constant values, subprograms and modules.
Cobm'p'letel‘y' separate from the definition pért is the module body which determines the
representation of data objects and the implementation of subprograms (see [Ada 79],

Chapter 71

In the Ada fanguage each module has a unique implementation which is given in its body.

Hence, there is no need to name a particular implementation in a definition part in Ada,
because there is only one single implementation. Such an arrangement is not realistic for
systems because modifications, testing and various usage give rise to a multitude of versions
of é single system. Hence we nced descriptors that allow for the specification of multiple

versions of components and systems,

In the first sectjon we start out with a discussion and definition of system and component
descriptors. In the next section we formulate and simplify a small set of rules which express
some baéic properties of system descriptions, We will demonstrate that the two sets of rules
-lare equivalent. In the next section we pro've‘some useful properties of system descriptions
which can be derived from the basic rules. Wc‘introduce the notions of ;;roper compositions,
conflict-free compositions and well-formed compositions. The next section presents an
algorithm that generates all minimal well—forn‘\e'd compositions for a given system description.
" The last section shows that the complexity of the algorithm is on the order of the number of

subse’ts.of the set of components but that this can often be substantially reduced.

‘ ‘Wé use the term "version” in a very gencral sense and not in a specific technical sense.
We use distinct terms to indicate various kinds of versions of software components: e.g.,
source modules .exisi in a humber of implementations and each implementation consists of a
sequence .of réuisions, ordered by date. A system vcrsioﬁ is cohstructed by selecting subsets
of its components. Such a subset is called a composition. Descriptions of compaositions
contain enough information for the programming environment to generate working versions of

a system.

2. System Descriptions

Systems are described in terms of their components and the facilities which they provide
and require.. The provided facilities correspond to the facilities (types, objects, operations
and modules) exported from .the éomponent. An example of the provided facilities can be
found in the visible interfaces of Ada modules. The required facilities correspond to those

facilities (types, o‘bjects, operations and modules) that must be impér’(ed by the component.

2.1. System Description Elements

There are two types of components from which systems are constructed -- modules and
systems. At the system description level, the module is considered atomic and its provided
and required facilities are given in the. module descriptor by the system designer. However,
at the programming level, these facilities are derived from the provided and required facilities
of submoduvle cbmponents: each type definition irhplicitly provides the type name defined and
requirels the types used in the definition; each variable declaration implicitly provides the
variable name and req;JSres the type of the variable; subprograms implicitly provide the
operation defined by thé subprogram and require, again implicitly, the types of the formal
- parameters; additionally, a subprogram tﬁay explicitly require other facilities it needs.
. Because these subcomponenf aescriptions' occur below the level of glranularity desired in
cdnstructing systems, the system designer'must integrate them into the module descriptor by

hand by delineating their provisions and requirements.

Systems, on the othér Hand, are describeci in terms of module and system conﬁponents. The
description of the systém is constructed so that the provide list is a subset of the faciliti'es
 provided by the components while the require list is derived from the requirements of the
.components.. Systéms that requiré no facilitics are tomplete stand-alone systems whereas

systems that require facilities to be supplied externally are simply subsystems.

In- both types of components, the provided faciliti.;as must be considered indivisible.l If two
cohponénts provide identicél facilities, they contlict with each other_and only one of the
components can‘provide facilities required by a third component. Con‘sider ‘the following
example, Coﬁnponents A and B both provide facilities f and g. If component C requires
facilities f and g, one cannot select f from A and g from B to satisfy the requirements of

C. Either A or B can provide the required facilities, but rot both.

- There are two aspects of system building fhat are important -- the sharing of components
and the combining of components. Often different systems may have components in common.

Just ‘as it is safer to have one source of a component that is shared, it is good practice to

have .one "description of the component in the environment along with some means of

designating its use within several system descriptions,

, The use statenﬁen’(make§ explicit the sharir;g of a component and corresponds in function
to an import statement: it specifies that a particular component is o be made available within
‘a system description and may then be used as a component in system compositions. In
contrast, a facility required by a system is analogous'to a formal parameter: the particular
actual parameter will be supplied by other components in a composition and may be satisfied

in any way that the system designer desires.

We provide two mechanisms for combining components. The first is the system descriptor.
Components. of a ;ystem are specified by module descriptors, system descriptors or use
sta.tements. From this ‘set of system componenlts, compositions can be constructed that
- satisfy the provide list of the system specification. The system descriptor, with its
compositions as version specifications, welds the components into a sihél‘el indivisible unit. lis

use in constructing other systems is identical to that of the module des{crbi_-pior.

The second mechanism for combini'ng’ components is the box déscrié»f'ér. It is similar to the
system descriptor in that it provides an encapsulation mechanis'm:jthe;%;"j%!vlows both the hiding
and the sharing of components within a well-hounded and restricfgje_d scﬁpe It is distinct from
a system descriptovr in that it does not provide facilities but expérté é&mponents that should
be viewed as (i'pos;sibly imutual!y exclusive) alternative solutions. dne_oﬁl(r; .'more of the exported
combonents may be selected in the construction of systems. Whether they are mutually
exclusive alternatives depends upon whether their individual sets of provided facilities

conflict.

In short, a system provides facilities that mv'ust be selected together. while a box exports

components that may be selected altef'nativety as desired.

2.2. System Description Grammar

The grémrhar presented below contains four statements that provide the capabilities that

we need to describe systems -- the box, sys, mod and use statements, '

. In the grammar descriptions, normal type is used for syntactic categories, bold face is used
for keywords, square brackets indicate selection, and curly brackets indicate an optional field.
S_or'ne"syntacticlcategories are considered self-explanatory (e.g., name). Elipses have their

usual meaning.

The box descriptor enables one to declare a box name, to define the system and module
components that are exported and to describe the inner structure of the box in terms of

boxes, systems and modules.

box = box name

export [sysname, modname], ... ;
[box, sys, mod, use]; .. .;
end o

For example,

box DB systems
export DES, INS;
sys DES ... end
sys INS ... end
end

In the sys construct the name of the system is declared, the provide list selected as a
subset of all the facilities provided by the cbmponents and the require list constructed from
the requirements of the components not satisfied by provided facilities. The internal

structure of the system is described by component descriptions. Compositions are then

specified using these components,

sys u= sys name '

prov fac,...;

{req fac, ...}

[sys, mod, use]; ...
composition; . . . ;

~ end
For example,

sys DES
prov RE, RU, RR, RT, RP;
req Exec;
mod RMGT ... end

vqnd

The mod descriptor defines the module name, the facilities provided and required by the
module, and the impieme‘ntations of the module.
mod ::= mod name
' _prov fac; . ..;
{req fac,...;}

implementation; . . . ;
. end : :

For example,

mod RFA ' |
C prov getreport, putreport
req RFIQ, SVCs

and

The use statement specifies that a particular system or module known in the environment

is to be used in this system description.

~use = use [sysname, modname] _
' _prov fac,...;
{req fac,...;} '

For example,
‘use RFA .. .;
use DES ...;
Compos;iytions specify collections of components’ that form usable system \)ersions which
satisfy the provide clause of the system specification and contain no requirements other than

those required by the system. The prbgramming environment will insure that the composition

is well-formed. A composition is named and defines the components to be included in the

composition.

composition 1= comp name = component name, ...
For example,

‘comp ‘A = RFA, VIDEQ.BCRT, EXECMM, . . . ;
comp B = RTH, INQUIRY, .. .;
Composition element names are either qualified or unqualified. In the first case, the
qualification is in the form of an implementation name for a module or a composition name for
a ‘system. In the second case, some standard default determination must be used (e.g., the

most recently released system composition or module implementation).

Implementations name particular implementation versions and provide suitable information
to derive or to find the appropriate module. For our purposes here, we require only that

“implementations be named.
implementation ::= impl name = .. .;

For more complete details about compositions and implementations, see [Cooprider, Tichy].

2.3. Scope Rules

We impose the following scope rules and conventions upon the description of systems.

1. Sevel al S Stems ma HOt use eéch other rchrSiVel e.g., use A [;" occut i“
)
'

inside system B and "wse B .. . ;" occuring inside system A leads to the
undesirable consequence of a system using itself.

2. Compositions may be constructed only with components known within the system
description through mod or sys, or use statements. '

3. Facilities may be referenced individually b‘y the name of a particutar facility or
collectively as a set of provided facilities by the component name. "

3. Basic System Construction Rules

Let the set of components of a system S be {Cy,...,C,} and let M = {1,...,m} be the set
of comporent indices. The set of facilities provided by a component C; is denoted by p; and
that provided by the system as a whale by p(S). Sets of required facilities are similarly

denoted by r; and r(S). Any one of these, or all, may. be empty.

In the preceding section, module descriptors were introduced as the atomic building‘blocks
of system descriptions. It is therefore impossible to derive the lists of provided and required
facilities of a module automatically. However, the provide and require lists for each module
descriptor can be checked for contradictions. A contradiction arises if a facility mentioned in
the provide list of a module also occurs in the require list of that module. We require that all

module descriptors are free of contradictions. This is expressed by the basic rule:

p{module) n r(module) = 9 4 EN¢Y)

The purpose of including a particular component in a system is that it provides some
fac‘ility that is required by another companent or one that is exported by the system through
its provide list. We require that the set of components of a system be complete in the sense
that all facilities providea by a systerﬁ are provided by at least one of its components. This

is expressed by the rule:
.
p(S) e Hlp; | (2)

This rule states that a system cannot magically provide some facility from nowhere.
However, it permits information hiding because it is not necessary that all facilities provided

by the components of a sysfem be included in its provide list.

The facilities required by a module must be explicitly indicated by the system designer.
The require list of a system, on the other hand, can be derived automatically from the provide
and require lists of its components. It is obvious that a system requires exactly those

facilities which are required by one or more of its components but are not provided by any

of its components. This is expressed by the rule:
- m m ' '
r(s) =Y ri-Up . (3)

This rule expressés the external dependency of a system on modules and systems other

than its componenté.

Rule 1 is also valid for systems.
- Theorem l: No facility provided by a system is also required by that system,
. or :

~p(S) n r(S) = ¢

Proof

-1 r(S) $, the .»tatement is true. Otherw; e, let f € r(3). Rule 3 implies f ¢ U p; which,
with rule 2, implies. f ¢ p(S). Thus, r(S) n p(S) = ¢.

; : TREEE
Corollary: r; n p; = ¢ for every component C; because a component is either a.module or a

system.

-

It seems that rule 3 is somewhat too strong. We may refine it by saying that a fa;:ility f

requare" by a coimponeint G ;{'15 inciuded in 15y if none of the components other than G
provide that facility. Let 5i P (pI p-) be the complement of Pj: Facility f € i is included
in r(S) if f ¢ P This refinement leads to a rule which replaces rule 3.

r(s) = Ql(ri-ﬁ,) } _ J ‘ ' (4)

Theorem 1 can also be derived from the basic rules if rule 3 is replaced by rule 4.

Alternative Proof of Theorem |

If r(S) = ¢ or p(S) = ¢ the statement is true. Otherwise, let f € r(S); use(4): (ie M) f € r;.

Suppose the components are reordered such that

10

feriforre{l',;..,k},fgﬁri for i € {k+1i,...,m} ' (5)
where 1| <k sm. If k =m, fis an element of all r;.

Suppose f € p(S); use (2): (jeM)fe pj

<

a4l il
Thy s s giiige

k m
Define R i=U (r-p) and R :=U (r-p).
» =1 7 i=ksl T

casc' l: j €

. , m
Gi€fl,...k} Pj € Bis be§ause B = Hlp,—pi and i Sk <.
Hence, (i € {I,... khfe pj, 50O f ¢ R. (6)

Also, f ¢ R® because of (5). This implies that f ‘,‘f r(S), because r(S) = R U R’ (see 4).

case 2: j€ {1, ..k}

In this case there is a _cdmponént Cj whicH has a facility f in both its provide and require list.
Compoﬁent Cj cannot be a module becagse of (1). Thus, if all components are modules, it is

not possible that f € p(S) and f € r(S) are both true. If Cj is a system, we apply the proof
recursively to that system. The nesting rules exclude circularity in system definitions. Since
the total number of module and system descriptors is finite, the proof is eventually applied to

a system that has only modules for components,
Thy

Using theorem 1 we can easily show the equivalence of rules 3 and 4. Since p; N r; = $ is

true for all i, it follows that
m
L ritRm Oy -R=ri-puBr U
Thus, - |
‘ ‘ m
r(s) =U (r, -)
i=1
0 ¢, -0
RSN ALl
Ur -0
=1 TR

_ Theorem 2: The facilities required by a component are either provided by
another component or are required by the system. That is,

fer, = fep;xorfer(S)

11

Proof

m
Afep @f (_u1 p; ® f A r(S) (see rule 3). This means that no facility is both provided
j=

by some component and required by the system as a whole.

B. Let f € r, (i € M) and suppose there is an index j € M such that f € Pj: j #1, because f €

ri and f € p; is in contradiction to theorem 1. If j #i,f € Pj implies f € p;.

. m .
- C.Let f €r, (i €M) and supposc for all indices j € M f ¢ Pj In this case f ¢ ‘lej’ hut f €

m
Ulri. This implies f € r(S) (see 3).
==
ETT T

The relationship between facilities provided by a system and its components is not as strict
as that .betWeen required resources, R’ule 2 allows that some component provides a facility
that is not also provided by the system and rules 3‘or 4 do not preclude that a component
provides a facilify that is required by no other component. All possible situations are shown
in the followihg example. |

Example
sys S prova,b,x reqz

mod A prova,x,yreqv...end
mod Bprovb,vreqx,z...end

comp dflt = (A, B)

end
m
w8 =fa,b,x} Upi=fa,b,x,y,v]
m
CKS) = {z} iU=1ri={v,><,z}

. Facilities ’a” and b’ are examples of ones that are in p(S), but are required by no component.
-Facility *v’ is one that is not in p(S) but is required by some component. Facility ’y’ is an
example of a superfluous facility: it is not included in p(S) and it is required by no -

component,

1.2

4. Basic Composition Rules

A systemicomposition specifies a subset df the components of that system. Each system
'cbmposition describes a different way to realize that system. Different compositions may
in‘corp.orate_diff,erent versions of the same component or different comzonents that provide
simiiar facilities. For simplicity, we dencte a system'S as a set of components {Cl,Cz, .

Cm} and we denote a composition as a set of indices {ipioy « « < ik} where iy € M. We use

J
p{set) as an abbreviation for U P;- COMPOS(S) denotes the set of indices of the

i € set

components in the composition of S.

We first require that a cdmposition be made from components included in the system

description,

(j € COMPOS(S)) j = k for some C, € S | | 7

It is natural to find several components within a system that provide the same facilities.
Theée components may be included because they present different algofithms or different
representations for these common facilities. However, components providing the same
facilities should not be used together in a composition because this gives rise to a conflict
similar ta that of declaring the same variablé name twice in one scope. We require, therefore,

that compositions be qonﬂéct—free.

(ij € COMPOS) i # j= pjnp;=¢ | (8)

Since a composition contains a subset of the set of components of a system, we want to
guarantee that the facilities provided by the system are also provided by the composition. A
composition satisfying this property is self-sufficient.

A composition is self-sufficient &= (9)
p(S) c p(COMPQOS)

i3

We also wish to guarantee that the facilities required by the composition are satisfied (i.e.,
provided) either by the composition itself or are facilities required by the system. Such a

composition is considered self-contained.

" A composition is self-contained <= A ' (10)
r{COMPQOS) - r(S) c p({COMPOS)

A composition that is both sclf-sufficient and sclf-contained is a proper composition. If it

lacks either of these two propertics, it is an improper composition.
: pror

A composition is proper &= : ' (11)
it is both self-sufficient and self-confained

From these rules we can derive the following theorem: the set of facilities required by a
proper composition and provided by the system are included in the set of facilities provided
by that proper composition and required by the system.

Theorem 3: A composition is proper <= r(COMPOS) U p(S) < p(COMPOS) v r(S)

F’roplf

R Assume the antecedant to show that COMPQS is proper

1. We know that p(S) n r(S) = ¢ by theorem 1. Hence, p(S) must be included in p(COMPQS)

since it cannot be induded in r(S). Thus, COMPOS is s_elf'—sufficient.

2. By subtrading r(S) from both sides of the assumption, we have (r(COMPOS) U p(S)) -
r(S) ¢ p(COMPQS). Since, by théomm I, r(%) does" not‘ subtract any element from p(S), we
know tha't r() - r(S) ¢ (r(COMPOS) - r(S) U p(S). Thus, r(COMPOS) - r(S) < p(COMPQOS) and
COMPOS is self-contained (by rule 10). - |

3. By 11, COMPQOS is proper.

> Assunje that COMPOS. is proper and that f € r(COMPOS) or f € p(S).

14

1. Assume that f € r(COMPOS). Since COMPOS is proper, it is seif-contained (by rule 4).

By rule 4, r{COMPOS) - r(S) € p{COMPQS). By adding r(S) to both sets, we have r(COMPQOS) <
p(COMPOS) U r(S). And hence, by the assumption, f € p(COMPOS) U r(S).

2. Assume f€ p(S). By rule 4, since COMPOS is proper, COMPOS is self-sufficient. By rule
4, p(S) ¢ p(COMPQOS) and by the assumption, f € p(COMPOS). Thus, f € p(COMPOS) u r(S).

EE2 234

We have shown the properties that are required of a composition to be proper. We would
like to know whether a proper composition exists for any system.

Theorem 4: Every system has a proper composition.

Proot

Let COMPOS = (1,2, ... ,m)

1. p(S)c Upi = p{COMPQS) by rule 2. Hence, by rule 9, COMPOS is self-sufficient.
i o

2. r(COMPOS) c p(COMPQOS) U r(S) by theorem 2. If we subtract r(3) from each set, then -
r(COMPOS) -~ r(S) < p(COMPOS). Hence, COMPOS is self-contained.

3. Thus, by rule 11, CQMPOS is proper.

KkEkE

The proper composition that is always constructable from a system description may not be
very interesting. in fact, it may not e‘ven be usable as a "real” composition because it may
have conflict'in‘g corﬁponents. However, we can show constructively that given a composition
of S that is proper but contains conflicts, it is possible to derive a system $* such that its
"standard" bropcr composition is also conflict-free. |

Theorem 5: [If a composition CS of system S has a conflict, we can derive a

system §’ from S by removing the conflicts from the components so that CS’ is
conflict-free. ‘ ' ‘

Proof

Let the composition CS = {1,2, . .. k}, where k £ m and m is the number of components in
S, have conflicts. Take the first facility provided by the first element of the composition, fi

€ pys replace all Cj f‘or which 1 € Pj by C’J- such that Pp =P - {fll}' Do this for each
f_écility of each element in 'the composition. $* consists of fhe components from which all
c0nf‘|icting facilitieé have been removed. We note that no facility has been removéd from p(S)
“or from p(CS). Therefore,v if CS was a proper composition with conflicts, then CS’ is also a

proper composition hut is conflict-free,

(23821

Compositions that are both conflict-free and proper are well-formed. A system that has
only conflict-free compositions is considered a conflict-free system; a system that has oniy

- well-formed compositions is considered a well-formed system.

In the complete set o‘f well-formed composilions for a given system S, there exists a
(possibly empty) subset, of .compositi»ons that contain useless elements, ie., elements that
néither ‘provide any recuired facilities of other elements in the composition nor provide
facilities provided by the system. We are not interested in these superflous compositions.
We are iﬁterested only in those compositions that contain the minimum num‘ber of elements to
provide facilities that satisfy the provide list of the sygtem and the reguirements (less the
requirements of the system) of the elements in the composition. These useful system
compositions are minimal well-formed (MWF) compositions.

A composition Cis minimal well-formed &= (12)
C is well-formed and (5 < C) C - 5 is nol well-formed.

16
5. Finding All Minimal Well-Formed Compositions

There is a simple algorith.m for generating all minimal well-formed compositions of a given
system description. This section contains a program for that algorithm, an explanation and a
correctness proof. We show that the program penerates minimal compositions, that it
‘generates allbdistinct solutions, that it generates only one of all possible permutations of a

solution, and that all solutions it generates are well-formed.

5.1. The Algorithm

At the heart of the algorithm is procedure “expand’.

'procedure expand(COMPOS,REM) =
local need = p(S) U r(COMPOS)
Lot if need ¢ p({COMPQS) then prmtsoluhon(COMPOS), return fi
Ly:foriin REM while need c p(COMPOS . REM) if need n p; # P do
Lot REM':= REM - {i}
LS it p; n p{COMPQOS) = @ then Lg: cxpand(COMPOS n {i}, REM) fi
od
end expand

A program for generating all distinct minimal well-formed compositions is
declare COMPOS = ¢, REM := {1, ... m}
begin expand(COMPOS,REM) end

- The program described here operates on stand-alone syst.ems. A stand-alone system is
characterized by r(S) = ¢, implying U i U pJ (see rule 1). This says that all facilities
required by its componentf are collcchvely provndod by its components.. General purpose

operating systems are example stand-alone systems.

The élgorithm can easily be extended Yo apply to arbitrary systems. The only change is in
the definition of constant *need”. A composition does not need any facilities included in r(S),
because those will be supplied by external modules and systems. The definition of ‘need’
must be modified to read

local need = (r(COMPOS) n p(S)) - r(S).

17

"In order to avoid verbosity in the explanation and the correctness proof, we restrict our

discussion from now on to stand-alone systems.

5.2. Explanation

The basic purpose of the procedure is to expand COMPOS by transferring an element from
REM to COMPOS. Selection of an elemént in REM depends on the faciiitieg that are needed by
COMPOS. Initially, COMPOS is cempty and REM contains all indices (representing all
compon‘cnts). The facilities initially needed by COMPOS are those in p(S) because these must
eventually be provided by COMPOS. When COMPOS is extended, additional facilities may be

needed'de;ﬁcnding on theé required facilities of the added element. For this reason the total

need of COMPOS is set to p(S) u r(COMPOS), where r(COMPOS) is short for { U rplie
- COMPOS }.

A dompcsition provides aH‘ the necessary facilities if need ¢ p(COMPOS). In the next
subsection We.will show that the solutions prin.tc;d in state'ment Lo are MWF compositions. If
need” is not included in p(COMF’OSj_, all elements of REM will be tried in succession (see
statement Ll)' However, the construct.ion is short circuited when the needed facilities are not

included in p{CCMPOS U REM), because in that case tranzferring elements from REM to

.COMPOS will never lead to a COMPOS that provides all necded facilities.

If an element is encountered in REM ‘that provides none of 'rhe needed facilities (see if
clause.in statement Ll),vthis element is skipped and left in REM because it may be used later
: if: additional facilities are needed. An element that provides some of the needed facilities is
;Jsed right away: it is removed from REM (see statement Lo). If it causes no conflict with the
elements already in CO.MPOS (see if clause in slatement L), the removed element is added to
COMPOS ‘and ’éxpand’ is called recursively (see stakérner\t Lg» It ié clear that the program
terminatés because the for statement calls "expand® a finite number‘cf times and the number

of elements in REM decreases with each recursive call. The procedure is not called when

REM = ¢.

5.3. The Correctness Proof

O_bserve that every permutation of a MWF composition is itself a MWF composition. Such
compositions are not distinct because they provide the required facilities by the same subset
of c0mponents.. We will show thal the algorithm generates only distinct and interesting
solutions without backtracking cor duplication. To be precise, we will show that

1. every generated solution is well-formed,
2. no solution is gene_rated‘ more than once,
3. every generated solution i§ m'inimai, and
4. | all distinct solutions are generated.

Theorem 6: Every solution pfinted by the algorithm is well-formed.

Proof

A. Every. printed solution is proper, because the if clause in statement Lg is ex'actly the

. ¢ondition for being proper.
B., We prove by induction on the size of COMPOS that COMPOS is always conflict-free.
BI.COMPOS is conflict-free for size{(COMPOS) = .O, because COMPOSO = Q.

B2.Suppose we proved that COMPOS is conflict-frec for 0 < size(COMPQS) < k. All COMPOS
of size k are generated in statement qu.

COMPOS conflict-frec: (ij € COMPOS) i # } = pn pj = ¢ f (13)
The if clause of statement L assures that for the chosen index i 5
 (j € COMPOS) pj n p; = & | | (14)

Combination of (13) and (14) results in
(j,l € COMPOS U {i}) j #1 > pjnp =

Thus, if COMPOS, _; is conflict-free, then COMPOS, is also conflict-free. The induction

19

principle establishes the correctness of B.
kkbk

Theorem 7; The algorithm gencrates no value of COMPOS more than once.
Proof : ‘

Suppose COMPOS = {il, -« -,ig} is generated more than once.

Case 1 COMPOS’ = {ETIIN IR B generated once and COMPQS is generated twice from
COMPOS’. This is not possible, because as soon as COMPOS is generated from COMPOS’,
'element,ik is removed from REM and is therefore never chosen again in an extension of

COMPOS’ (see statement Lo).

Case 2: COMPOS’ is generated more than once, This cannot be the case, since by applying
~ the reasoning recursively we find eventually that COMPOSy = @ must have been generated
more than once. This is not the case, because COMPOSy = @ is generated only once in the

main program. For all recursive calls of “expand’, size(COMPQOS) > 0 (see statement L4).
Egork

Theorem 8: The algorithm gencrates only one of the collection of all
permutations of a given COMPOS.

Proof

Let COMPOS’ and COMPOS™ be permutations of one another and let COMPOS, = {i, ... ,ik}
be the common left part of these permutations (COMPOS, may be empty). COMPOS’ and
COMPOS™ both are exte.nsions of COMPOS,: COMPOS® = {i}, . . . ik, X - .. Yy ...} and
COMPQOS™ = {il, v Y oo x oo b x and y are the leftmost elements that differ in
COMPOS’ and COMPQS”. Ea;h one occurs in the remainder of the other, because COMPQS” =
‘perm(COMPOS’).

Both x and y are in REMy and are apparently eligible as extensions of COMPOS,. Suppose
x occurs before y in REM,. Statement Ll. shows that x is chosen as extension before

y. However, once x is chosen, it is removed from REM,. This means that x 9‘ REMy when vy is

chosen as extension of COMPOS,.. Thus, if COMPQOS" exists then COMPOS™ cannot exist.

kS

20

E2 A2

A

Theorem 9: All compositions generated by the algorithm are minimal.

Proof

Let COMPOS” = {i|, . .. ,ix} be a solution generated by the algorithm. Suppose COMPOS’ is
not minimal. Then there exists a COMPOS™ « COMPQS’ which is a proper composition. Let iy
be the leftmost element that occurs in COMPOS but not in COMPOS™ and let COMPOS := {i -

. ,i;(_l} be the common root of COMPQOS” and COMPOS™

We take it for granted that the algorithm gencrates COMPOS at some point before it
generates COMPOS’, which is an extension of COMPOS. Tt is not possible that COMPOS is a
solution, because this would imply that no further extensions of COMPOS are generated (see

statement Lg), including COMPOS”.

' Indéx iy is selected as exte“nslion of COMPOS in statement Ly. This implies that p(i,) n
hegd(COMPOS) # ¢ . Let f be an clement of that intersection. We proved in theorem 6 that
COMPOS” is conflict-free. Thus |

t ¢ p; for all j € (COMPOS" - {i,} | (15)

Since iy, # COMPOS™, ‘ .
v COMPOS” € COMPOS’ - {i} | (16)

Combining (15) and (16) yields
(j € COMPOS™) f ¢ pj = f ¢ p(COMPOS™)

However, f € need(COMPOS) implics { € noed(COMPOS”). Thus, need(COMPOS™) is not
included in p(COMPQOS™). This implies that COMPOS™ is not a proper composition. It follows

that COMPOS’ is minimal, because none of its subsets is a proper composition.

L2223

Theorem 10: The algorithm generates all minimal well-formed compositions
modulo permutations.

21

Proof

Let W = {ij, ... ,ik} be a minimal well-formed composition. Assume that W is sorted in
ascending order. We will show that the algorithm generates either W itself or a permutation

of W. :
"Wiis proper: p(S) U r(W) ¢ b(W) (17)

", conflict-fréa: (i,j EW)i#|=>p n pj = ¢ ‘ (18)
minimal: (X € W) p(S) U r(X) - p(X) 7 ¢ | (19)

Suppose we show that the algorithm calls 'expand” with a pair (COMPOS,REM) satisfying

COMPOS n REM = ¢ ’ (20)
COMPOS ¢ W ’ (21)

V = W - COMPOS ¢ REM (22)

We want to show that the algorithm either prints COMPQS as a solution if V = @, or selects
an 'elemeht j € REM that is also in W and calls expand’ with a pair (COMPOS’,REM’) satisfying

(20), (21) and (22), where COMPQS’ = COMPOS u {j} and REM’ ¢ REM - {j}.
The .algorith.m defines need := p(S) v r(COMPOS).

Case 1:-V = ¢. Use (22); W < COMPOS. Combined with (21), we find W = COMPQS. Use

(17):
p(S) U r(COMPOS) = p(S) U r{W) & p(W) = p(COMPQS).

Thus, need © p(COMPGS). In this case the algorithm prints COMPOS as a solutidn (see the if

clause of statement Lg).
Case 2: V # ¢. Use (22): COMPOS < W (COMPOS is a true subset of W).

Bl:' Substitute COMPOS for X in (19). p(S) U r(COMPOS) - p(COMPOS) # ¢ implies 'need’ is

- not included in p(COMPOS). Thus, COMPOS is not printed as solution in statement Lo

B2: We show that there is an index j € V such that Py N need # ¢. ‘Substitute. COMPOS for
X in (19). It follows that |
(3 f € p(S) U r(COMPOS)) ¢ p(COMPOS) (23)

Use (21); f € p(S) U r(W)

Use (17): f € p(W)

Use (21), (22): f € p(V U COMPOS) = p(V) U p(COMPOS)

Use (23): f € p(V)

thus, (3) € V) pj N need # O, , (24)

B3: Let j be the smallest index in V satisfying (24). Use (22): j € REM. Because of (24), j
is an eligible index in loop L. We show that the iteration is not aborted before it reaches

j. It seems as if it may be aborted hy the test need ¢ p(COMPOS u REM).

Let REM# be derivéd from REM by climinating some or all indices i € REM for which p; n
neéd_# b and i < j- Al indices selected in loop Ly before j (if any) satisfy these conditions.
None of these are in V, because j is the smallest index in V for which p; N need # ¢. Thus,
~ using (22), we find ‘ |

V < REMx (25)
Use (21): need = p(S) u r(COMPOS) ¢ p(S) U r(W) '
Use (17): p(S) ur(W) c p(W)
Use (21, 22): p(W) = p(COMPOS v V)
Use (25): p(V) < p(REMx) =~
thus, need < p(COMPQOS) u p(REM%) - : (26)

‘This implies that the while clause is true for all iterations before'j is reached.

B4: Let COMPOS’ = COMPOS U {j}, let REM* be derived from REM by eliminating all indices
i < j for which p; n need # § anhd let REM' = REMx - {i}. We show that the pair

(COMPOS" REM") satisfies (20), (21) and (22).
. Use (20): COMPOS’ n REM = (COMPOS U {j}) n (REM# - {j})
= COMPOS n REM# ¢ COMPOS 0 REM = ¢

Use (21): COMPOS’ ¢ W, because COMPOS ¢ W and j €V € W,
“Use (25) V' =W - COMPOS’ = (W - COMPQOS) - {j} = V - {j} < REM# - {j} = REM’

B85: Now we show that ’expand’ is called recursively with pair (COMPOS’,REM’).

Suppose p; N P(COMPOS) # ¢. This cannot be true if COMPOS = é. Let j € REM; j &
" COMPOS (see (20)). If COMPQS is non- empty, there is an index i € COMPOS and i # j.
Use (21, 22, 18): jEWiz=pinp =9 |

23

This is true for ali i € COMPQS, so pj N p(COMPOS) = ¢. This means that the condition of

-étafement L3 evaluates to true, resuiting in the call "expand(COMPQOS’,REM’)".

B6: (20, 21, 22) are initially true, because COMPOSg = ¢ and REMg = {1, ...,m}. Observe
that si;e(,V’) = size(V) - 1 (see BS). Thus, an-inductive proof can be constructed starting with

pair (COMPOS,REMqg) and using Bl through B5 as proof of the induction step. Induction is on

the size of V.

ESEE £ 4

| 6. The Complexity of the Composition Generation Algorithm

The worst case complexity of our composition generation algorithm is O(n!) where n is the
number of components in the 5y5tem. The worst case space complexity is O(n) if the

algorithm is executed on a single processor.

The canonical worst casex is the system specification that provides facilities fy . .. f,
' where each component ci' provides facility f, and reduires tacility f;, | except for component
ch which provides all the facilities but requires none.

sys S —prov fl,f2, (3, {4

mod A prov fl; reqf2;... end
mod B prov f2; reqf3;...end
moed C prov f3; reqf4;... end
mod D prov. f1,f2f3,f4; ... end

end
While this pathological case may exist, it seems that systems such as this one but with a large

number of components would exist only as contrived exampies.

There are several factors thal ameliorate what appears to be an unacceptable level of
éomplexity. '

1. Subsystems have {or should have) a small number of components (say two to
five).

»We are indebted to Loretfa Guarino Reid for this example

24 h

2. Within subsystems, components rarely conflict.

3. Systems have (or should have) a small number of compositions.
The subsystems in the appendix exhibit these characteristics: all have two to five
components and have only one composition each. As a result, the composition generation
‘proces.s is partitioned into small segments each of which requires only a small. amount of

work.

A fourth factor is that even when the number of components is relatively large, the
components that conflict will reduce the number of paths actu'aHy traversed in the execution

of the algorithm. The number of actual executions of Expand will generally be far smaller -

than the number of executions possible.

Consider the fo!lowihgexamplq (abstracted from thetlast system specification in the
appendix). There are 13 components, some of which conflict in different ways: four
~components provide facility f1; two components provide facility {2; three components provide
facility f5. |

sys S prov sli,s?;

use Al prov fl; req {2;

use A2 prov fl; _ req f2;

use A3 prov fl; reg 2;

use A4d prov fl; req {2;

use Bl prov {2, {3; reqfl, f9;

use B2 prov {2, {4 req fl, 9

use Cli prov {5; req f1, f3;

use C2 prov {5; req fl, {3;

mod C3 prov {5; req 1, f4,113;... end
use D prov {6, {7, {8, {9; req fl;

use E prov 10, f11,fl2; reqflf B;

use F prov fi3; .

use G prov sl, s2; req fl, 15, 7, f10, f11, f12;

end

There are .12 minimal well-formed compositions generated by the algorithm for this
‘éxample: |

G, Al,B1,Ci, 0 E

G, A1, Bl1,C2; D
G, Al, Be, C3, b,
G, A2, BIL, ClL, D,
D
D

)

JF

G, A2, BI, C2,
G, A2, B2, C3,
G, A3, B, CI,

E
E
£

JE

y B F

JE
G, A3, BL,C2, D, E

‘G, A3, B2,C3,D, E
E
E
E

D
D
D
G, A4, B1,CI, D,
D
D

y F

G, A4, B1, C2,
"G, A4, B2, C3,

’

, F

)y

In addition, there are 12 partial compositions which cannot be completed because required
facilities cannot be provided by the remaining components:

G, Al, B1,C3
G, Al, B2, Cl
G, Al, B2, C2
G, A2, BI, C3
G, A2, B2, Cl
G, A2, B2, C2
G, A3, BI, C3
G, A3, B2, C!
G, A3, B2, C2
G, A4, Bl, C3 .
G; A4, B2, Cl
G, A4, B2, C2

In summarizing the computation for this example, it is first worth noting that only a
‘maximum of 7 components of the 13 are needed to form complete compositions - a reduction
for the worst case of work from 13! (6,227,020,800) invocations of Expand to 7! (5040)
invocations of Expand. Secondly, there are in fact considerably ;fewer calls to expand than
this = 78 in all: 12 of which determine that a minimurm wel!—fo.émed composition has been
completed and another 12 of which determine that the remaining gcomponents do not contain
provisions for the compositions’ requirements. Notice also that the textual ordering of the
combénehts in this example (i.e, conflicting components are grouped together and the
components are listed more or less in the order that provided facilities are needed) promotes
an efficient exccution of each activation of Expand: the desired components appear early in

the list and the execution stops: after each useful component has been added to a

composition.

26

Thus, while the algorithm has a worst case complcxxty that is appalling, the appropriate use
of the sys stem dercrlphon tools will produce a prachcal complexity that is well within

reasonable bounds.

7. Conclusion

The system version description facility discﬁsscd in this papér is’ pax;t of an integréted
proéramming environment. In contrast to the traditional approach of isolated tools such as a
debugger or a link-editor, a programming environment knows the properties of the type of
bbjecfs.that are rﬁanipﬁlated within its boundaries. The environment is an active participant

in the'-construction of system objects, primarily by enforcing some basic construction rules.

Th.e package concept of the Ada language has proven to be very useful as a basis for
system version'descriptiéns. System and module descriptors are extended for>ms of visible
parts of Ada packages. Since the Ada lanzuage demands that there be exactly one
implementation bhody for every -package descriptor, a-small but significant extension was
needed in order to include‘ the ' cssential feature of describing a variety of different

implementations of a module or different compositions of a system.

Systems' are described in terms of basic building. blocks, }rzodules, lg"and two compaosition
cbnstructs, systcm:-and bores. Modules describe the various concrete implementations of
elementary system facilities. System descriptors are used to nest components and to name
various Ways in which a system‘version can be pﬁt toggther. The déstinction between:
systems and boxes is bésically that of providing a collection of facilties versus a selection of

related systems.

Thére are some basic rules that must be satisfied by system d.escriptors.and that must be
é‘pplied to compositions (prescriptions for generaling system versions). The first set of rules
guarantees that the components of a system indeed provide the facilities that the system
claims to provide. The programming environment can easily enforce these rules and

automatically derive whigh facilities a particular system needs from external sources. The

27

second set of rules not only guarantecs that a composition provides what the system
promises, bul also insures that compositions are complete and free of internal conflicts.

These propertics are expresscd by the notion of well-formed compasitions.

We showed that while every system dcsﬁription has compositions that provide all system
facilities, not every system description has well-formed compositions. It may be that none of
the possible compositions is conflict free. 'We discussed. two ways of eliminating such
undersirable descriptors. First, we showed thal every system that does not h;we a
well-formed composition can be transformed into one that has a well-formed composition.
Second, we sho»«;ed that by. enforcing the sccond set of construction rules ﬂ.'ie programming
envirolnment can prevent the user from writing down such undesirable systelm descriptors.
We strongly favor the second approach over the first, because in the first approach the

resulting transformed system descriptors may not reflect the desired partitioning of a system.

The a!goriihm of section 5 can be used to‘prove constructively that a given system
description a has well-formed composition, or. it can be used to generate all possible
well-formed- compositions. By making.the algorithm part of the standard repertoire of the
'prOgra'mming environment, the lattcr can warn a user when he or she introduces a

non-well-formed' compasition.

The complexity of the algorithm is thecoretically high. It seems, however, that the algorithm
will perform adequately in practice. The example presented in the appendix demonstrates
some of the common habits and conventions that programmers are likely to follow when they

partition systems inlo modules.

" The essence of the péper has been to show that there are some simple construction rules
that can be applied by a programming environment for the purpose of assuring that all

described systems are well-formed.

Acknowledgements

We wish to gratefully acknowledge the coniributions of Loretta Guarino Reid for her

28

discussions of the complexity of the composition generation algorithm, David Notkin for his
careful readings and constructive criticisms, and Izumi Kimura, Philip Wadler, Gail Kaiser and

Raul Medina-Mora for their critical comments. .

Refercnces

[Ada 79] Ichbiah, J. D, et al.
Preliminary Ada Reference Manual.

SIGPLAN Notices 14(6 Part A), June, 1979.

[Cooprider 79] Cooprider, L. W.
The Representation of Familics of Software Systems.
PhD thesis, Carnegie-Mellon University, April, 1979.

[Gandalf 79] Habermann, A. N.
The Gandalf Research Project.

Computer Science Research Review. Carnegie-Mellon University. 1978-79. ,
1979.

[Gaudette 75] Gaudette, J. M. o
Word Processing at Dun & Bradstreet.
Datamation , November, 1975.

[Tichy 80] Tichy, W. F. o :
' Software Development Control Bascd on System Structure Description.
PhD thesis, Carncgie-Mellon University, January, 1980.

I. An Example

The system described here is drawn from a "real"'_aexisting system -- the Dun & Bradstreet
AOS Minicomputer System. We have simplified the system by emphasizi'ng only the basic

aspects of the system. .

From a pool of programs and subsystems, two basic systems are constructed -- the Data
Entry System (DES) and the Inquiry System (INS). For the latter system, two primary

versions exist -- the Duns Dial System (DDS) and the Remote Terminal System (RTS).

. We proceed first with a short description of each component in order to feel somewhat

comfortable with the construction of the system.

The Executive (EXEC) is the operating system and as such provides servicés (SVCs) for 10,

memory management, job management, file management, etc. It requires the program file

29

(CPS file), a task description table (TDT), and a system initialization task.

The D&B minicomputery systems are concerned primarily with credit reports. These reports
are entered, updated, transmitted and stored in a compressed coded form. For an early

description of the system, see [Gaudette 75].

‘

Warm Start (WS) provides the system initialization tasks such as opening files, moving data
from files to memory, and invoking the initiators of the various processes in the system. To
this end it requires task initialization procedures from various components (which ones are

required is dependent upon the particular system).

Video Control (VC) provides the basic data entry and screen handling capabilities for the
CRT/keyboard terminals and is the interface (through the EXEC) between the user and the
dialog control programs (Reporl Management and Report Inquiry). Data is transmitted

between the two in conjunction with screen formats described in the Display File (DF).

The Remote Terminal Handler (RTH) is similar to Video Control, but is used in the Remote
Terminal system to interface with various communicating terminals rather than the directly

connected CRT/keyboard terminals.

Report Management (RM) controls the interaction of the user with the system. It guides
the user in the process of entering (RE), updating (RU), generating (RG), requesting (RR), and
sending (RS) reports to the central data bank. Reports entered and updated are validated for
‘correctness of form and, to some exténd, content (Data Validation provides this). They are
stored in the system by .Report Fite ‘Access (RFA). Transmilted reports are sent and received
through the interface provided by the Message Queue Handler. Reports are generated by

Report Generation. RM is used in the Data Entry Systems.

Report Inquiry (RI) provides a similar function for the Inquiry systems. The facilities
provided to the user, however, are different: Name and Address Look Up (NALU) and Report
Display (RD). Required interfaces are Report Generation to generate the reports for Report

Display and Message Queue Handler to retrieve name and addresses and reports from the

30

data bank.

Data Validation (DV) validates that the report has the correct syntax and, where possible,
consistent contents. It is essentially a table driven program working from the Data Validation
File (DVF) for the appropriate report type. It retrieves the report data from Report File

Access.

.Report File Access (RFA) provides the capabililies to enter and upda’te. reports and to

retrieve them from local storage. It uses the basic Report File 1/0 routines to do this.

The Message Queue Handler (MQH) provides the capabilities to send and retrieve reports
from remote storage in the central data bank. It communicates with Communications through

the Mess;age Queue (MQ) to send and receive reports,

Coﬁﬁmunicatipns (COMM) is an ind.cpondcnt task that encapsulates the handling of binary
synchronous communications. The Message Queue specifies. what .is to be output. The
Méssage. Handler (MH) is invoked to deblock input and to coordinate the storage of input
information through the Message Queue. The deblocked data is stored in the Report File

through the Report File I/0 routines.

F.R.eport Generation (RPG) retrieves the specificd report from either RFA or MQH, depending
on the configurlation and the request, and expands it according to the generation blocks kept
in the Report Generation File .(F?GF}. Print lines are dueued to the Print Line Queue (PLQ)
(from which they are removed to be either printed by the Printer Driver (PD) or displayed by

Report Inquiry.

Figures | and 2 show the basic provide and require dependencies betweern the components
of the two systems. For simplicity, the dependancies of ail components upon the Executive
are removed as are the initialization requirements of Warm Start. The arrows point in the

direction of the compaonents requiring provided facilities.

Rather than just present the entire system description in one piece, we will first give an

overview of the entire structure and then proceed a component at a time, elaborating the

231

' Figure 1.
DATA ENTRY SYSTEM
rrogram executive §a§l'< description
i E———et 12DIE
(cps) >| fexed) (tdt)
warm start
(ws)
flle (dY) > | video control
(ve)
;
report management
l i > (rm) < l !
dale report reporf message -
validation file access gengrahon quenn ! !g j
{dv) (rfa) (rpg) (mah) '
1\ A 1\ 1\ 1\
date rint rp message
validation !ing queue blocgks us:::g]
files {dvf} {plg) {rgf) ma) |
. 1\ '
N
printer communication
driver (comm)
(pd)
1
report file i/o report file
{rfio) < (rf)

Figure 2.

32

INQUIRY SYSTEM

grogram
i

le —
{cpsf)

executive

{exec) P —

1

warm start
(ws)

’
r'd
4

I

video contirol

N

4

task

tebiaa
descrintiss

table
(tdf)

(depends on versions)

remote terminal hardlan 2008 I-

i

(ve)
1

display files
(ah)

}

print line
queue

(plq)

report inquiry
(ri)

generation
- (rpg)

report
generation

blocks
{rgf)

Py

7L

message queue handizy {ms

FREL
gty

|

message
ueue
mq)

Imessage handlers
e (%tﬁ

] 1

|

/ report file i/o

communication
{comm)

(rpio)

i)

report file
(rf)

33

P

structure in-more detail. We will comment on the detcription as we proceed.

The entire minicomputer system is encapsulated in a box from which we export two

systems; DES and RIS,

box DB Systems exports DES, RIS;

box Executives ... end
box Warm Start “w.. end
box Display. Files ... end
box Video Controls end
box Interface : ... end
box Report File ... end
box Report Generation ... end
sys DES ... end
sys RIS ... end

end

The dividing line between boxing to export diffecrent versions of a component and
composing to make different vérsions is not clc;wr. Clearly, when distinct facilities are
provided boxes should be useé. - The case here is not clear: the facilities provided by the
execu'tive:s remain identical "'when considercc.l from. the standpoint of usage by the system
prober. However, there 5re other facilities that are provided and used that are not apparent

from the current system description. Hence our use of boxes.

box executives :
export ExecS, -- standard

Exec.DM, -- disc measures
Exec.MM, -- mapped memory
Exec.RM; -~ resource measures
mod Execfiles prov CPSF, TDT; ... end
sys Exec.S ‘
prov SVCs

req systeminitialization(...)
uso Execfiles ...
sys EXEC ... end;
comp ... ; :

end;

sys Exec.DM ... end;

sys Exec.MM ... end;

sys Exec.RM ... end;

end;

34

Because of the possible use of either Video Control or Remote Terminal Handler, we
require two versions of Warm Start, This justifies the use of boxes--there are different

facilities required by the two versions.

box WarmStarts exports WSVC, WSRTH;
mod WSVC
prov systeminitialization(.. .), VCinit(...)
" req SVCs, COMMiInit(...)
impl 4June79 = ...

end

mod WSRTH
prov systeminitialization(...), VCinit(...)
req SVCs, COMMInit(... %
impl 17August79 = ...

end - :

‘end

The Video Control component has two distinct versions sufficiently different as to be given
separate names and boxed together. The standard video requires the standard video display
file. " The Buffered CRT Video> Control only works in conjuncation with a special display file
and special. havfdwafe (not specified in the sysfem des;cription)}_, Again, that makes the

- versions sufficiently distinct to warrant boxing them.

box Video Controls.exports VCS, VCBCRT; .
sys VCS
prov Display(...) ‘ n
req SVCs, VCinit(.. .)
' use DFS prov DF;
‘mod VC .
prov Display(...)%
req SVCs, DF, VCinit(...)
impl June78 = ", . .
impl May79 = .. .;
end
comp new = DFS, VC;
~ comp old = DFS, VC.June78;
end
sys VCBCRT
prov Display(...)
req SVCs, VCinit(...)
mod VC o :
prov VCinit(...), Display(...)
req SVCs, DF; .

35

impl ... ;
end
use DFBCRT prov DF;
comp Sept79 = DFBCRT, VC;
_ end
end

Note that we have exported a system rather than a module and that we have tied the

appropriate file to the desired version of Video.
’ .

We package the display file as the facilily of a module, since that is the lowest level of
granularity of system components. As mentioned above there are two different constructions
given to the display file which arc incompatible.

box Displayfiles export DFS, DFBCRT;
mod DFS prov DF; -~ standard
impl ... ;

. end; o
mod DFBCRT prov DF; -- buffered CRT
impl ... ; '
end .

end

The repqrt file provides two completely different mechanisms for filing and retrieving
régporté. The one uses the Report File Accrnss program and the other uses the Message
Queue Handler, Message Handler and Communications. The form of the reports in the file is
" different as well. The RF routines provide mcrely basic consistency checks as well as

consistent access {0 the reserve and releasc page mechanisms.

box Reportfile exporis RFAsys, MQsys;
sys RF ' :
' prov write(...), read(...), reserve(...), release(...)
req SVCs; : '
mod RFIO :
prov write(...), read(...), reserve (...), release (...),
req SVCs, Rfile '
impl ... ;
end .
‘mod RFmod prov Rfile;
impl ... ;
end :
comp new = RFmod, RFI0;

end
sys RFAsys

36

prov getreport(.. .), putreport(...)

“req SVCs;

use RF prov write(...), .

mod RFA

., release(...)

prov getreport(...), putreport(...)

req SVCs, write{ ...), .

impl ... ;
end '

comp new = RF, RFA;
end o

sys MQsys

.., release(, ..)

prov sendreport(...), receivercport(...),

req SVCs;

.use RF prov write{ .. .), .
“mod MQmaod prov MQ, eng{ ...), deg(..

impl ... ;
and;
mod MQH

prov sendreport(...), receivereport{...),

obtainreport(...), COMMInit(...)

.., release(...)

obtainreport(...)

req SVCs, read(...), release(...), MQmod;

Cimpl L.

req SVCs, read(...), write(...), reservé(o)

T

end
mod MH ,
prov putreport(...)
_ MQ, find(...)%
impl ... ;
end
mod COMM
prov BSC, COMMinit(. .
" req MQ, find(...), putreport(...)
impl ... ;
~end

: end
end

The Interface box exports the two programs that control the user dialog

facilities. Their facilities are radically different but their function is the same.

box Interface export RM, RI;
mod RM
prov RE, RU, RR, RS, RP

req SVCs, validaterepori(...), setreport(...), putreport(...),
- sendreport(...), receivereport(...), generatereport(...),

comp new = MQH, RF, MQmod, COMM;

)y find(L L)

for system

37

display(...)

impl ...
end
mod RI
. prov NALU, RD
req SVCs, receivereport(...), generatereport(...),
display(...), PLQ, PLQ.deq(...)
impl .. '
_end

end

We require two distinct versions of report generation because it must interface with both

report filing mechanisms.

box ReportGenerations export RPGDES, RPGRIS;
mad RPGFmod prov RPGF;
~ impl ...
-and o
mod PLQmod prov PLQ, eng(...), deq(...)
impl ... ; : o
. end
-sys RPGDES ‘ :
. prov generatereport(....), PLQ, PLQ.enq(...);
-raq getreport(...), obtainreport(...), SVCs;
use RPGFmod prov RPGF;
" use PLQmod prov PLQ, ...;
mod RPG1
' prov generatereport(...) '
req getreport{ .. .), obtainreport(...), SVCs, PLQ,
' RPGEF; -
Simpl L
end :)
comp new = RPGI, RPGFmoad, PLQmod;
end - T '
-sys RPGRIS ')
_ prov generatereport(...), PLQ, PLQdea(...)
req obtainreport(...), SVCs;
use RPGFmod prov RPGF;
use PLQmod prov PLQ,...;
mod RPG2 ‘
prov generatereport{ ...) '
req obtainreport(. ..), SVCs, PLQ, PLQ.eng(. ..), RPGF;
impl ... ;
end
comp new = RPG2, RPGFmod, PLQmod;
and . .
end

The two main systems are then described in terms of the components in the environment

and components local to the syste‘m.

sys DES
- prov RE,RU,RR,RT,RP;
use Exec.S ...
use WSVC .. .
use VCS cel
use RFAsys ...
use MQsys. .. .;
use RU R
use RPGDES ... ;
. mod PD
prov PD; -- drives printer
req SVCs, PLQ, PLQdeq(...)
impl ...
end '
sys DV o ‘
- prov validate(...);
. req SVCs, getreport(...)
mod DVFmod prov DVF;

_ impl ... ;

end

mod DV
mov validate v :
req SVC, DVF, getreport(...)
impl ... o

end :

- comp new = DV, DVFmod;

end ' ' '

comp new = Exec.S, WSVC, VCS, RFAsys, MQsys, RM,
RPGDES, DV, PD

end .

The Report Inquiry System has a wider range of versions. Two main versions consist of
* the Duns Dial System and the Remote Terminal Systém. There exist a number of versions for

the Duns Dial System to try out new hardware and do performance measurement and

 analysis.

sys RIS
prov NALU, RD;
use Exec.S ...}
use Exec.DM ...
use Exec.MM .. .3
use Exec.RM ...

39

- use WSVC ., ..
use WSRTH .. .;
‘use VCS ...
"use VCBCRT ...;
‘use MQsys ...
use DFS ...
use RPGRIS ...
use R
mod RTH
prov display(...)
req SVCs, DF, RTHinit(...}
impl ... ;)

-

end

comp RTS = Exec.S, WSRTH, RTH, MQsys, RI, RPGRIS, DFS;

comp DDS = Exec.S, WSVC, VCS, MQsys, RI, RPGRIS;

comp DDS.DM = Exec.DM, WSVC, VCS, MQsys, RI, RPGRIS;

comp DDS.RM = Exec.RM, WSVC, VCS, MQsys, RT, RPGRIS;

comp DDS.MM = Exec.MM, WSVC, VCS, MQsys, R, RPGRIs;

comp DDS.BCRT = Exec.5, WSVC, VCECRT, MQsys, RI, RPGRIS;

comp DDS.BCRT.RM = Exec.RM, WSVC, VCICRT, MQsys, RI, RPGRIS;

comp DDS.BCRT.MM = Exec.MM, WSVC, VCBCRT, MQsys, RI, RPGRIS;
end

. []
Thus we have completed our systems’ descriptions. We have relied heavily on box and use

statements to construct our sysiems. We constructed small systems where practical and
~ useful. - However, we still remained within the bounds of useful abstractions in structuring

these small systems,

. The amount of sharing of components is obvious. Where this is prevalent, the use

statement is absolutely necessary.

We have illustrated a wide usége of the boxes and delincated a need for them as opposed

to systems. The structuring would not be as clear without them.

In some systems, li't't!e emphasis is placed on versions. In system RIS, however, we see an
elaborate use of versions to provide distinct systems, The one type of version not depictéd
here is the earlier released version: versions that depend upon particular versions of the
components, usually dated versions. These versions play at lcast as large a part as the ones

we have described.

