
2/13/18 10:01 AM 1

EE422C Spring 2018
Project 3: Word Ladders
Due: Tuesday 2/27/18

100 points

You must work by yourself for this project.
The aim of this assignment is to give you experience working with various collections, as well as to
strengthen your algorithm and Abstract Data Type design skills.

Problem Statement:

A word ladder1 is a (finite) sequence of distinct words from the English language such that any two
consecutive words in the sequence differ by changing one letter at a time, with the constraint that each
of the resulting string of letters is a legitimate word. For example, to turn “stone” into “money”, one
possible word ladder is:

 stone
 Atone
 aLone
 Clone
 clonS
 cOons
 coNns
 conEs
 coneY
 Money

Capital letters are used in the example above only to illustrate the connections. Obviously, there could
be more than one word ladder between “stone” and “money”. You only have to find one of them
for each word pair given.

In this assignment, you are to design and implement a Java program that for any given pair of words,
generates a word ladder that connects those two words (making use of a given dictionary of legal Eng-
lish words). If a word ladder does not exist between the given pair, your program should output a mes-
sage that says so. You are required to find a word ladder, but not necessarily the shortest word ladder.

Input and Output Requirements

Your program will read commands from the standard input (i.e., from the keyboard). The basic com-
mand consists of a pair of words separated by at least one space (with no intervening punctuation or
other words). Commands are case-insensitive. We require that all output be lower case. After reading
both words, your program must determine if there is a word ladder between the two words. For exam-
ple, the command

1 http://www.learnenglish.org.uk/words/activities/revers01.html

2/13/18 10:01 AM 2

smart money

instructs your program to search the dictionary (the dictionary is described below) to find a word lad-
der that starts with “smart” and ends with “money”. If a word ladder can be found, your program
must print the message

 a <N>-rung word ladder exists between <start> and <finish>.
 <start>
 <first rung>
 <second rung>
 <…>
 <finish>

Where <N> must be replaced with the number of intervening words in the word ladder between the
start and finish words (i.e., don’t count start or finish in your calculation of N). You must then print
each of the words in the word ladder on a line by itself, with no initial white space before each line
starts. For the command “smart money”, your program might produce the following

 a 9-rung word ladder exists between smart and money.
 smart
 start
 stars
 soars
 soaks
 socks
 cocks
 conks
 cones
 coney
 money

Note that to be a valid word ladder, every word in the ladder must be a legal word that appears in the
dictionary. If your program cannot find a valid word ladder between the two words, you must print

 no word ladder can be found between <start> and <finish>.

You can be sure that the start word and end word are different, and that both will be part of the diction-
ary.

In addition to the basic command, your program must recognize one more command, and that is /quit.
The command /quit must result in your program terminating with no further output. You may not use
System.exit() in your program.
Note that whitespace, including tab characters and newline characters, is to be ignored (treated like
spaces) when you are reading the input. This whitespace policy applies for any commands (including
basic commands) read from the standard input.

If you enter only one word, and it is not /quit, you may do as you like. It will not be tested. We will
also not be testing commands of multiple (>2) words or words not in the dictionary.

2/13/18 10:01 AM 3

For grading and testing purposes, we have also provided provision in the starter code to replace the
keyboard and console with an input file and output file respectively. You don't need to use these if you
don't want to – just use the Scanner normally.

Dictionary: You may test your project with the dictionary contained in the file named
“five_letter_words.txt”, which is a text file that consists of a collection of English words
with five letters each. We have supplied code to generate a dictionary in the form of a Set object.
Clearly, using this dictionary, it will only be possible to find word ladders when the starting word and
the finishing words are both five letters long.

Implementation requirements and suggestions

Requirements
Many of the requirements are to facilitate automated grading, so you must obey them. Contact us if
you have problems.

1. Your program is divided into three parts – getting the start and end words, calculating the
word ladder, and printing the output.

2. The supplied .java file shows you that you must have only one Scanner object connected
to the keyboard in your program, and it must be in main(). You may pass it as a parame-
ter to other methods. This step has already been done for you. Other Scanner objects are
permitted, as long as they are not connected to Stdin (keyboard, System.in).

3. You must have 5 methods in your Main, besides main(), as shown in the starter code.
a. public static void initialize()
b. public static ArrayList<String> parse(Scanner keyboard)
c. public static ArrayList<String> getWordLadderDFS(String

start, String end) (start and end in lowercase, output ArrayList words in
lowercase)

d. public static ArrayList<String> getWordLadderBFS(String
start, String end) (start and end in lowercase, output ArrayList words in
lowercase)

e. public static void printLadder(ArrayList<String> ladder)
main() itself should work, although, beyond the starter code's contents, you may put in
whatever is necessary. For example, you could have something in there to test out your BFS
and DFS functions.
We use JUNIT to test your methods. Each testcase is run on a newly created instance of your
Main class. So make sure that your static variables' values are not altered inappropriately; for
example, it would not be a good idea to depend on one run of getWordLadderXXX to de-
pend on a previous run of the same method via some static variable setting. Part of your deliv-
erable is a description of your methods in (c) and (d).
4. Your ladder solution may not have loops in it i.e. the same word may not be visited twice.

In your DFS method, you must use some method to attempt to reduce the length of the lad-
der. See the suggestions following this section. Credit will be given for a good method
even if it doesn’t work well for all cases, and you should document this method in your
code comments. If you do not find such a ladder, you must return a list with 2 entries – the
start word and the end word. This method’s signature is in your shell .java file.

2/13/18 10:01 AM 4

5. For this assignment, do not consider the case where the start and end words differ by just
one letter.

6. You must ignore case. The dictionary Set itself has all uppercase words. You may con-
vert this Set to any other data type (such as ArrayList) that you like. The dictionary
creation also has been done for you. You may change the dictionary's filename for testing,
but remember to restore the name for submission.

7. You must call the makeDictionary method from within getWordLadderXXX each
time you call it. Alternately, you may call makeDictionary once from within
initialize().

8. You may create other class files; remember to turn them in.
9. Any methods you create in Main to use in getWordLadderXXX should be static. If you

create other classes, their methods need not be static. If these restrictions are too hard for
you to program with, contact us for suggestions.

10. You must implement WordLadderXXX with both DFS and BFS.
11. Your DFS must be implemented with recursion.
12. You need to submit a test plan in PDF to describe how you tested your program and write at

least five non-trivial test cases for each of both DFS and BFS implementations. The test-
plan outline is provided for you.

13. You need to provide a team plan that shows how you have been working together. Canvas
has a file that shows what to put in your team plan.

14. You must work together on both DFS and BFS. It is not acceptable that one person does
only BFS and the other only DFS. At the very least you should test each other's code.

Submission requirements
Create a package named assignment3 for all of your source code. Create a public class inside pack-
age assignment3 called Main.java that contains main(). Remember to put your UTEID on the
.java files (and other files). Put all .java files (or file, if you have only one file in your solution,
Main.java), required PDF, and README and other docs into the folder and zip your final version of
those files before the submission deadline. You are not required to submit all your test cases, although
you may do so if you wish, especially as documentation or for us to run in case ours fail.

Name of zip file: Project3_EID1.zip (.gzip of .gz are also ok). Make sure that the structure of the final
ZIP file is as follows:

 Project3_EID1/
 test_plan.pdf
 team_plan.pdf
 <other non-code files>
 src/
 assignment3/
 Driver.java
 file2.java
 ...

ZIP your src folder and your other files together. Then rename that ZIP to Project3_EID1.zip.

Suggestions

2/13/18 10:01 AM 5

� While using recursion, remember not to overrun resources, such as stack memory with too
many nested calls. For example, you might want to keep track of words you have visited that
are dead ends (that don’t lead to the end word). There are ways to do DFS using the Stack data
structure without recursion that don't lead to stack overflows, but we don't want you to do that.
The instructor solution did not have a stack overflow for any word combination. If you abso-
lutely keep getting stack overflows, contact us for help.

� Given a choice of letters to change to get to the next ladder step, it might help to pick a change
that leads to a word that is as close to the end word as possible.

Additional Considerations

� External Code – you are permitted to use any classes or interfaces within the java.lang,
java.io, and java.util standard packages. You are specifically prohibited from making
use of another student’s code (including students who may have taken the class in previous se-
mesters). You are also not permitted to use external packages such as Graph.

� Understandability – Comment your program so that its logic would be readily apparent to any
software engineer who is familiar with standard data structures and algorithms. Use Javadoc
style comments for public methods.

� Re-use – Design your code so it is suitable for future adaptations and/or expansion.
� Efficiency Risk – It is possible that additional problem/solution constraints may be needed in

order to guarantee that your program runs in a reasonable amount of time and/or space. These
may be specified later.

Warning - You may not acquire, from any source (e.g., another student or an internet site), a partial or complete solution to
this problem. Except for your partner, you may not show another student your solution to this assignment. You may not
have another person (TA, current student, former student, tutor, friend, anyone) “walk you through” how to solve this as-
signment. Review the class policy on cheating from the syllabus.

Tip – You are required to use the git repository for interim and final versions of your code. The rule of thumb is that you
should commit at least once per working day when code is being generated, preferably at the end of each working session
where code is being changed. Please see the git tutorial provided by your TA for more information on how to use that.

Testing
Testing must be done in 3 stages. First you must test your program by running main, and reading the
input words from a keyboard. Second, you must use the JUNIT tests that we will upload to the assign-
ment directory on Canvas. Thirdly, if we provide a grading script, you must use that also to check
your work.

CHECKLIST – Did you remember to:
 Re-read the requirements after you finished your program to ensure that you meet all of

them?
 Make up your own test cases?
 Use the Git repository regularly?
 Make sure that all your submitted files have the appropriate header file and package state-

ment?
 Upload your solution to Canvas, remembering to include ALL your files in one zip file name

Project3_EID1.zip (.gzip of .gz are also ok)?
 Download your uploaded solution into a fresh directory and re-run all test cases?

Adapted from an assignment written by Herb Krasner, Vallath Nandakumar, and Mike Scott.

