
Image Compression: JPEG 
Multimedia Systems (Module 4 Lesson 1)

Summary:
� JPEG Compression

� DCT
� Quantization
� Zig-Zag Scan
� RLE and DPCM
� Entropy Coding

� JPEG Modes
� Sequential
� Lossless
� Progressive
� Hierarchical

Sources:
� The JPEG website:

http://www.jpeg.org

� My research notes

 

Why JPEG
� The compression ratio of lossless methods (e.g., 

Huffman, Arithmetic, LZW) is not high enough for 
image and video compression. 

� JPEG uses transform coding, it is largely based on 
the following observations: 
� Observation 1: A large majority of useful image contents 

change relatively slowly across images, i.e., it is unusual 
for intensity values to alter up and down several times in 
a small area, for example, within an 8 x 8 image block. 
A translation of this fact into the spatial frequency 
domain, implies, generally, lower spatial frequency 
components contain more information than the high 
frequency components which often correspond to less 
useful details and noises. 

� Observation 2: Experiments suggest that humans are 
more immune to loss of higher spatial frequency 
components than loss of lower frequency components. 

 

JPEG Coding
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Steps Involved:
1. Discrete Cosine 

Transform of each 8x8 
pixel array
f(x,y) �T F(u,v)

2. Quantization using a 
table or using a 
constant

3. Zig-Zag scan to exploit 
redundancy

4. Differential Pulse Code 
Modulation(DPCM) on 
the DC component and 
Run length Coding of 
the AC components

5. Entropy coding 
(Huffman) of the final 
output

 



DCT : Discrete Cosine Transform
DCT converts the information contained in a block(8x8) of 

pixels from spatial domain to the frequency domain.
� A simple analogy: Consider a unsorted list of 12 numbers 

between 0 and 3 -> (2, 3, 1, 2, 2, 0, 1, 1, 0, 1, 0, 0). Consider a 
transformation of the list involving two steps (1.) sort the list 
(2.) Count the frequency of occurrence of each of the numbers 
->(4,4,3,1 ). : Through this transformation we lost the spatial 
information but captured the frequency information.

� There are other transformations which retain the spatial 
information. E.g., Fourier transform, DCT etc. Therefore 
allowing us to move back and forth between spatial and 
frequency domains.

1-D DCT: 1-D Inverese DCT:
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Example and Comparison
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Inverse DCT Inverse FFT

Example Description:
� f(n) is given from n = 0 to 7; (N=8)
� Using DCT(FFT) we compute F(ω) for ω = 0 to 7
� We truncate and use Inverse Transform to compute f�(n)

 

2-D DCT
� Images are two-dimensional; How do you perform 2-D DCT?

� Two series of 1-D transforms result in a 2-D transform as 
demonstrated in the figure below

1-D 
Row-
wise

1-D 
Column-
wise

8x8 8x8 8x8

j)f(i,

v)F(u,

� F(0,0) is called the DC component and the rest of F(i,j) are called 
AC components

 



2-D Transform Example
� The following example will demonstrate the idea behind a 2-

D transform by using our own cooked up transform: The 
transform computes a running  cumulative sum.
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Note that this is only a hypothetical 
transform. Do not confuse this with DCT

 

Quantization
� Why? -- To reduce number of bits per sample 

F�(u,v) = round(F(u,v)/q(u,v))
� Example: 101101 = 45 (6 bits). 

Truncate to 4 bits: 1011 = 11. (Compare 11 x 4 =44 against 45) 
Truncate to 3 bits: 101 = 5. (Compare 8 x 5 =40 against 45) 
Note, that the more bits we truncate the more precision we lose

� Quantization error is the main source of the Lossy
Compression. 

� Uniform Quantization:
� q(u,v) is a constant.

� Non-uniform Quantization -- Quantization Tables
� Eye is most sensitive to low frequencies (upper left corner in 

frequency matrix), less sensitive to high frequencies (lower right 
corner) 

� Custom quantization tables can be put in image/scan header. 
� JPEG Standard defines two default quantization tables, one 

each for luminance and chrominance.

 

Zig-Zag Scan
� Why? -- to group low frequency coefficients in top of vector 

and high frequency coefficients at the bottom
� Maps 8 x 8 matrix to a 1 x 64 vector 

8x8

. . .

1x64

 



DPCM on DC Components
� The DC component value in each 8x8 block is large and varies 

across blocks, but is often close to that in the previous block.
� Differential Pulse Code Modulation (DPCM): Encode the 

difference between the current and previous 8x8 block. 
Remember, smaller number -> fewer bits
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RLE on AC Components
� The 1x64 vectors have a lot of zeros in them, more so towards 

the end of the vector. 
� Higher up entries in the vector capture higher frequency (DCT) 

components which tend to be capture less of the content.
� Could have been as a result of using a quantization table

� Encode a series of 0s as a (skip,value) pair, where skip is the 
number of zeros and value is the next non-zero component. 
� Send (0,0) as end-of-block sentinel value.

. . .

1x64

0 0 0 0 0 1 1 0 0 0 0 0

5,1

0 0

7,2

0 . . .2

 

Entropy Coding: DC Components

---00

�-2047,�, -1024, 1024,� 204711
..
..

0000,�, 0111, 1000,�, 1111-15,�, -8, 8,�, 154
000,�, 011, 100,�111-7,�, -4, 4,�, 73

00,01,10,11-3, -2, 2,32
0,1-1,11

CodeValueSIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a Value is derived from the following table

Size_and_Value Table

 



Entropy Coding: DC Components (Contd..)

11111110810

1111057
11111068

111046

0020

111111110911

111111079

11035
10134
10033
01132
01031

CodeCode 
Length

SIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a SIZE is derived from the following table

Example: If a DC component is 40 
and the previous DC 
component is 48. The 
difference is -8. Therefore it 
is coded as:
1010111

0111: The value for representing �8
(see size and value table in 

previous slide)
101:  The size from the same table 

reads 4. The corresponding 
code from the table at left is 
101.

Huffman Table for DC component SIZE field

 

Entropy Coding: AC Components 
� AC components (range �1023..1023) are coded as (S1,S2 pairs):

� S1: (RunLength/SIZE)
� RunLength: The length of the consecutive zero values [0..15]
� SIZE: The number of bits needed to code the next nonzero AC component�s 

value. [0-A]
� (0,0) is the End_Of_Block for the 8x8 block.
� S1 is Huffman coded (see AC code table below)

� S2: (Value)
� Value: Is the value of the AC component.(refer to size_and_value table)

1111111110000011160/A

1111100080/7

1111110110100/8

111100070/6

101040/0

1111111110000010160/9

1101050/5

101140/4

10030/3

0120/2

0020/1

CodeCode 
Length

Run/
SIZE

1111111110001000161/A

Such rowsMore� 15/A

1111111110000110161/8

1111111110000111161/9

1111111110000101161/7

110041/1

1111111110000100161/6

11111110110111/5

11111011091/4

111100171/3

1101151/2

CodeCode 
Length

Run/
SIZE

Partial Huffman Table for AC Run/Size Pairs

 

Entropy Coding: Example 
Example: Consider encoding the AC components by 

arranging them in a zig-zag order -> 12,10, 1, -7 
2 0s, -4, 56 zeros

12: read as zero 0s,12: (0/4)12 � 10111100
1011: The code for (0/4 from  AC code table)
1100: The code for 12 from the 

size_and_Value table.
10: (0/4)10 � 10111010
1: (0/1)1 � 001
-7: (0/3)-7 � 100000
2 0s, -4: (2/3)-4 � 1111110111011

1111110111: The 10-bit code for 2/3
011: representation of �4 from size_and_Value 

table.
56 0s: (0,0) � 1010 (Rest of the components are 

zeros therefore we simply put the EOB to 
signify this fact)

Note: For DC component see slide 13

40 12 0 0 0 0 0 0
10 -7 -4 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 



JPEG Modes
Sequential Mode:
� Each image is encoded in a single left-to-right, 

top-to-bottom scan. 
� The technique we have been discussing so far is an 

example of such a mode, also referred to as the Baseline 
Sequential Mode.

� It supports only 8-bit images as opposed to 12-bit images 
as described before.

 

JPEG Modes
Lossless Mode:
� Truly lossless
� It is a predictive coding mechanism as opposed to the 

baseline mechanism which is based on DCT and 
quantization(the source of the loss).

� Here is the simple block diagram of the technique:

Predictive
Difference

Huffman 
EnCoder Lossless 

Coding

 

Lossless Mode (Contd..)
Predictive Difference:

� For each pixel a predictor (one of 7 possible) is used that best
predicts the value contained in the pixel as a combination of up
to 3 neighboring pixels.

� The difference between the predicted value and the actual 
value (X)contained in the pixel is used as the predictive 
difference to represent the pixel.

� The predictor along with the predictive difference are encoded 
as the pixel�s content.

� The series of pixel values are encoded using huffman coding

C B
A X

(A+B)/2P7
B + (A-C)/2P6
A + (B-C)/2P5
A+B-CP4
CP3
BP2
AP1
PredictionPredictor Notes:

� The very first pixel in location 
(0, 0) will always use itself. 

� Pixels at the first row always 
use P1, 

� Pixels at the first column always 
use P2. 

� The best (of the 7) predictions 
is always chosen for any pixel.

 



JPEG Modes
Progressive Mode: It allows a coarse version of an 

image to be transmitted at a low rate, which is 
then progressively improved over subsequent 
transmissions.
� Spectral Selection : Send DC component and first few 

AC coefficients first, then gradually some more ACs. 

Spectral Selection:

First Scan:

Second Scan:
Third Scan:

.

.

Nth Scan:
Image Pixels

 

Progressive Mode
� Successive Approximation : All the DCT components are 

sent few bits at a time: For example, send n1 (say,4) bits 
(starting with MSB) of all pixels in the first scan, the next 
n2(say 1) bits of all pixels in the second and so on.

Pixels ordered (zig-zag-wise)

First Scan:

Second Scan:

Third Scan:

5th Scan:

7 6 5 4 03 2 1MSB LSB

.

.

. . .

. . .

. . .

. . .

.

.

One Pixel

 

Hierarchical Mode
� Used primarily to support multiple resolutions of the same 

image which can be chosen from depending on the  target�s 
capabilities.

� The figure here shows a description of how a 3-level 
hierarchical encoder/decoder works:
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