Audio Compression Multimedia Systems (Module 4 Lesson 4)

Summary:

Sources:

- Simple Audio Compression:
 Lossy: Prediction based
- Psychoacoustic Model

MPEG Audio

- Layer I and II
- MP3 (MPEG Layer III)

Dr. Ze-Nian Li's course material at: http://www.cs.sfu.ca/CourseCentral /365/li/

MPEG Audio: http://www.mpeg.org/MPEG/audio.h tml

Simple Audio Compression Methods

- Silence Compression detect the "silence", similar to runlength coding
- Adaptive Differential Pulse Code Modulation (ADPCM) e.g., in CCITT G.721 -- 16 or 32 Kbits/sec.
 - Encode the difference between two or more consecutive signals; the difference is then quantized --> *hence the loss*
 - Adaptive quantization
 - ${\scriptstyle \bigcirc}\,$ It is necessary to predict where the waveform is headed
 - Apple has proprietary scheme called ACE/MACE. A Lossy scheme that tries to predict where wave will go in next sample. Gives about 2:1 compression.
- Linear Predictive Coding (LPC) fits signal to speech model and then transmits parameters of model. It sounds like a computer talking, 2.4 kbits/sec.
- Code Excited Linear Predictor (CELP) does LPC, but also transmits error term --> audio conferencing quality at 4.8 kbits/sec.

Psychoacoustic Model

Human hearing and voice

- Frequency range is about 20 Hz to 20 kHz, most sensitive at 1 to 5 kHz.
- Dynamic range (quietest to loudest) is about 96 dB
- Normal voice range is about 500 Hz to 2 kHz
 - · Low frequencies are vowels and bass
 - High frequencies are consonants

How sensitive is human hearing?

To answer this question we look at the following concepts:

- Threshold of hearing
 - Describes the notion of "quietness"
- Frequency Masking
 - A component (at a particular frequency) masks components at neighboring frequencies. Such masking may be partial.
- Temporal Masking
 - When two tones (samples) are played closed together in time, one can mask the other.

MPEG Coding Specifics

- MPEG Layer I
 - Filter is applied one frame (12x32 = 384 samples) at a time. At 48 kHz, each frame carries 8ms of sound.
 - Uses a 512-point FFT to get detailed spectral information about the signal. (sub-band filter). Uses equal frequency spread per band.
 - Psychoacoustic model only uses frequency masking.
 - Typical applications: Digital recording on tapes, hard disks, or magnetooptical disks, which can tolerate the high bit rate.
 - Highest quality is achieved with a bit rate of 384k bps.

MPEG Layer II

- Use three frames in filter (before, current, next, a total of 1152 samples). At 48 kHz, each frame carries 24 ms of sound.
- Models a little bit of the temporal masking.
- Uses a 1024-point FFT for greater frequency resolution. Uses equal frequency spread per band.
- Highest quality is achieved with a bit rate of 256k bps.
- Typical applications: Audio Broadcasting, Television, Consumer and Professional Recording, and Multimedia.

MPEG Coding Specifics

MPEG Layer III

- Better critical band filter is used
- Uses non-equal frequency bands
- Psychoacoustic model includes temporal masking effects, takes into account stereo redundancy, and uses Huffman coder.

Stereo Redundancy Coding:

- Intensity stereo coding -- at upper-frequency sub-bands, encode summed signals instead of independent signals from left and right channels.
- Middle/Side (MS) stereo coding -- encode middle (sum of left and right) and side (difference of left and right) channels.

Effectiveness of MPEG Audio

Layer	Target bit-rate	Ratio	Quality* at 64 kbps	Quality at 128 kbps
Layer I	192 kbps	4:1		
Layer II	128 kbps	6:1	2.1 to 2.6	4+
Layer III	64 kbps	12:1	3.6 to 3.8	4+

*Quality factor:

5 - perfect

- 4 just noticeable
- 3 slightly annoying
- 2 annoying
- 1 very annoying