
EE 381V: Large Scale Learning Spring 2013

Lecture 3 — January 22

Lecturer: Caramanis & Sanghavi Scribe: Subhashini Krishnasamy

3.1 Clustering

In the last lecture, we saw Locality Sensitive Hashing (LSH) which uses hash functions
to map high dimensional data to points in lower dimensional space. We will now study a
closely related learning problem called Clustering that also involves dimensionality reduction.
Examples of large dimensional data applications include recommendation engines (grouping
of consumers/consumer products), search engines (grouping of files/sites), and the Sloan Sky
Survey Project that catalogues millions of sky objects with the aim of constructing a 3-D
map of the sky.

Learning algorithms can be classified based on the data available. While Supervised
learning uses labelled data (sample input and output points) to learn the mapping function,
Unsupervised learning methods like clustering try to find structure in unlabelled data. More
specifically, the problem of clustering is to partition a set n data points x1, x2, . . . , xn ∈ X
into k groups based on some notion of similarity. We will study clustering algorithms for
two kind of models -

1. Probabilistic Model: In this kind of models, it is assumed that each of the data points
was independently generated from a mixture of k distributions. The conditional den-
sities are modelled with cluster dependent parameters, and the algorithms then try to
solve the maximum likelihood problem.

Xi ∼ p(x|c) =
1

k

k∑
a=1

q(x|ca),

where ca are the cluster dependent parameters. The goal is to maximize
∏n

i=1 p(xi|c).

2. Optimization Model: Some algorithms consider the problem in an optimization frame-
work where the goal is to maximize agreements/similarities within clusters. Given
some pseudo-distance metric d : X ×X → R, partition the points such that the sum of
distances to the cluster centers is minimized. The center of a group {xi}i∈S is defined
as follows -

c(S) := arg min
z
{
∑
i∈S

d(xi, z) : z ∈ X}.

3-1

EE 381V Lecture 3 — January 22 Spring 2013

The problem is to find S = S1∪S2∪· · ·∪SK that minimizes C(S) =
∑k

a=1

∑
i∈Sa

d(xi, c(Sa)).
This optimization problem is NP-hard even for points on a 2-D plane, and so we con-
sider approximate algorithms.

3.2 k-means Algorithm

k-means is an approximate algorithm that aims to solve the optimization problem above.
The algorithm is given below.

Data: x1, x2, . . . , xn
Result: S = S1 ∪ S2 ∪ · · · ∪ SK
Initialize partition S = S1 ∪ S2 ∪ · · · ∪ SK .
while C(S) improves do

1. Centers update: Compute the cluster centers of the partition,
c(Sa) := arg minz{

∑
i∈Sa

d(xi, z) : z ∈ X}.
2. Cluster Assignment: Compute the partition induced by the centers,
Sa = {i ∈ [n] : a = arg minb∈[k] d(xi, cb)}.
Compute the objective C(S).

end

Algorithm 1: k-means

Computing the partitions is straight forward; it is the update of the cluster centers
that drives the computational cost. The k-means algorithm is popular in applications with
distance metric that allows easily computable cluster centers. Some examples are given
below.

1. Euclidean distance: If X = Rm and d(x, y) = ||x− y||22 =
∑m

i=1 (xi − yi)2, then

c(S) =
1

|S|
∑
i∈S

xi.

2. Spherical distance: If X = Sm−1 = {x ∈ Rm : ||z||2 = 1} (all points lie on a unit
sphere) and d(x, y) = 1− < x, y >, then

c(S) = arg min
z
{
∑
i∈S

d(xi, z) : ||z||2 = 1}

= arg max
z
{<

∑
i∈S

xi, z >: ||z||2 = 1}

=
c̃(S)

||c̃(S)||2
,

where c̃(S) =
∑

i∈S xi.

3-2

EE 381V Lecture 3 — January 22 Spring 2013

3. KL divergence: If X = Pm−1 = {x ∈ Rm : x > 0, ||x||1 = 1} (all points lie on the
probability simplex) and d(x, y) = D(x||y) =< x, log(x/y) >, then

c(S) =
1

|S|
∑
i∈S

xi.

For all the three distance metrics, the cluster center is easy to compute as the cost is only
that of vector addition. But it should be noted that the cluster centers need not be one
of the data points and might not be meaningful in the context of the application. Also,
Euclidean distance (which is a convex function) gives large weights to larger distances, and
therefore k-means with this distance measure is not very robust to outliers. An alternative
algorithm is the k-medoids algorithm which forces the cluster centers to be one of the data
points. Here again, the most computationally intensive step is the determination of cluster
centers given a partition of the data points.

Theorem 3.1. k-means terminates after at most kn iterations.

Proof: The cost C(S) decreases monotonically at each iteration, and stabilizes once succes-
sive partitions coincide. This is true because the algorithm alternately minimizes the cost
over all partitions and over all cluster centers. Since there are at most kn possible partitions,
and the algorithm does not get trapped in cycles, it terminates within kn iterations. �

The main drawback of the k-means algorithm is that the solution may not be the global
optimum, and it may take a long time to converge. It is known to be NP-hard in Rd for a
general d and k = 2, and for 2-D plane and a general k. For a fixed d and k, polynomial time
algorithms exist. A variant of k-means is the Incremental k-means algorithm. A drawback
of this algorithm is that it may not converge, or it may converge to a local optimum.

Data: x1, x2, . . . , xn
Result: S = S1 ∪ S2 ∪ · · · ∪ SK
Initialize partition S = S1 ∪ S2 ∪ · · · ∪ SK .
while C(S) improves do

For each a, b ∈ [k], each i ∈ Sa, shift i to Sb if the new partition improves cost
end

Algorithm 2: Incremental k-means

Another issue is the choice of the number of clusters, k. One strategy to choose k is to
look at the cost versus number of clusters curve and identify the k above which the curve
flattens out (see Fig 3.1). That is, increasing the number of clusters beyond this value
provides only a marginal improvement in the total cost, and therefore there is no incentive
to choose a higher value of k. This technique is called the Elbow Method.

The following theorem gives a lower bound on the cost that an optimal algorithm can
achieve in the Euclidean distance case.

3-3

EE 381V Lecture 3 — January 22 Spring 2013

Number of Clusters k

Elbow Region

k clusters
Cost of

Figure 3.1. Elbow Method

Theorem 3.2.

min
S
C(S) ≥

min(m,n)∑
l=k+1

σl(X)2,

where X =

x1
x2
...
xn

,
x1, x2, . . . , xn ∈ Rm are the data points, and σl(X) is the lth largest singular value of X.

Remark: Here is a simple example where the bound is tight. Suppose that the data
points x1, x2, . . . , xn ∈ {z1, z2, . . . , zk} where zi ⊥ zj for all i, j ∈ [k]. Then XXT is a block
diagonal matrix with k diagonal blocks, and the rank of each block is 1. Thus the rank of
XXT is k, and the LHS and the RHS in the above inequality are both equal to zero.

Proof:

C(S) =
k∑
a=1

∑
i∈Sa

||xi − ca||2

≥
k∑
a=1

∑
i∈Sa

||xi||2 − ||ca||2

=
n∑
i=1

||xi||2 −
k∑
a=1

1

na
||
∑
j∈Sa

xj||2.

3-4

EE 381V Lecture 3 — January 22 Spring 2013

Let uSa =
∑

i∈Sa
ei and Y =

1√
n1
uS1

1√
n2
uS2

...
1√
nk
uSk

. Then

F(S) =
k∑
a=1

|| 1
√
na

∑
j∈Sa

xj||2

=
k∑
a=1

|| 1
√
na
XTuSa ||2

=
k∑
a=1

1
√
na
uTSa

XXTuSa

1
√
na

= Tr(Y XXTY T).

Note that since Sa ∩ Sb = ∅, and uSa ⊥ uSb
, we have Y Y T = Ik×k. Now

max
S
F(S) = max Tr(Y XXTY T)

s.t. Y =

1√
n1
uS1

1√
n2
uS2

...
1√
nk
uSk

 ,
Y Y T = Ik×k, Y ∈ Rk×n

≤ max Tr(Y XXTY T)

s.t. Y Y T = Ik×k, Y ∈ Rk×n

=
k∑
l=1

σl(X)2 from Lemma 3.3.

Therefore,

min
S
C(S) ≥

n∑
i=1

||xi||2 −max
S
F(S)

≥
min(m,n)∑
l=k+1

σl(X)2.

�

Lemma 3.3.

max Tr(Y XXTY T) = σ1(X)2 + · · ·+ σk(X)2.

s.t. Y Y T = I, Y ∈ Rk×n

3-5

EE 381V Lecture 3 — January 22 Spring 2013

Proof:

Tr(Y XXTY T) =
k∑
i=1

λi(Y XX
TY T)

≤
k∑
i=1

λi(XX
T) (since Y Y T = Ik×k =⇒ λi(Y XX

TY T) ≤ λi(XX
T) ∀1 ≤ i ≤ k).

In the above inequality, equality is achieved for Y that has the top k eigenvectors of XXT

as its rows. This completes the proof.
�

3.3 Next time: Probabilistic Model

As already mentioned, the k-means algorithm views clustering in an optimization framework.
Alternatively, one could view the problem in a probabilistic setting where the data set
is modelled by a mixture of distributions with each cluster represented by a parametric
distribution. Very often, it is assumed that each data point is equally likely to be from any
of the cluster. Thus, the data points x1, x2, . . . xn are assumed to be generated according to
p(·|c) = 1

k

∑k
a=1 q(·|ca), and are used to find an ML estimate of the parameters.

A widely used model is the Gaussian mixture model with fixed variances and means
(interpreted as the cluster centers) as the parameters of the component Gaussian distri-
butions. Another interesting model is one in which the means are fixed and the vari-
ance is cluster dependent; but we will not consider that model here. Thus, given that

q(x|c) = 1
(2πσ2)m/2 exp(− ||x−c||

2

2σ2), we would like to minimize the negative log-likelihood given

by

l(c|x1, . . . xn) = −
n∑
i=1

log(
k∑
a=1

exp(−||xi − ca||
2

2σ2
))

σ→0−−→ −
n∑
i=1

log(max
a
{exp(−||xi − ca||

2

2σ2
)})

=
n∑
i=1

min
a
{||xi − ca||

2

2σ2
}.

This establishes a connection between the optimization and the probabilistic models. For
very small σ, l(c|x) = minS C(S, c). The k-means algorithm tries to minimize minS C(S, c)
while the EM algorithm (which we will see in the next class) tries to minimize l(c|x).

3-6

