
Online Load Balancing and Correlated
Randomness

Sharayu Moharir, Sujay Sanghavi
Wireless Networking and Communications Group (WNCG)

Department of Electrical & Computer Engineering
The University of Texas at Austin

Austin, TX 78712, USA
Email: sharayu.moharir@gmail.com, sanghavi@mail.utexas.edu

Abstract—This paper looks at online load balancing, in
a setting where each job can only be served by a subset of
the servers. The subsets are revealed only on arrival, and
can be arbitrary. The cost of an allocation is the sum of
cost for each server, which in turn is a convex increasing
function of the number of jobs allocated to it. There are
no departures.

A natural class of policies are those which always put
a job into one of its servers that has the least load at
the time of arrival. However, it turns out that not all
(randomized) ways of breaking ties is the same. We propose
an algorithm - TIERED RANKING - that breaks ties in a
very particular, correlated random way; it is inspired by
the online matching work of Karp, Vazirani and Vazirani.
We show that it is optimal (in terms of competitive ratio)
in the above class, for all convex cost functions that grow
slower than ex (which includes all `p norms). We also
prove it strictly outperforms any deterministic algorithm;
simulations show that it also visibly outperforms the naive
randomized algorithm, that breaks ties among lowest-
loaded servers uniformly at random.

I. INTRODUCTION

We consider the online problem of allocating jobs to
a group of servers. We study the case where each job
can only be served by a subset of the servers. The jobs
arrive in a sequence and there are no departures. An
example of such a system is a data center where there
is a bank of servers, and several pieces of content. Each
piece of content has been replicated and put on a few
of the servers. As jobs come in and make demands for
a particular content piece, they need to be allocated to
one of the servers having that content.

We define the cost of an allocation as the sum of
the cost borne by the individual servers. We focus on
the cases where the cost function for each server is a
convex function of the number of jobs allocated to that
server. Many such cost functions have been studied in
literature, for example, the `p norm for p < ∞ of the
load vector was studied in [4], the `∞ norm was studied
in [2] and is popularly known as the make-span problem.

The main challenge is to design an online algorithm
that is universal in the sense that it provides the optimal
performance for any convex cost function.

In this work, the performance of an online algorithm
is compared with the performance of the optimal offline
algorithm which knows the sequence of job arrivals in
advance. We characterize the performance of an online
algorithm by its competitive ratio which is the ratio of
the cost of the online algorithm to the cost of the optimal
offline algorithm, maximized over all input sequences.

We are interested in a class of algorithms which we
call the Load the Lowest Queue (LLQ) algorithms. The
LLQ class of algorithms include all deterministic and
randomized algorithms where an incoming job is always
allocated to one of the currently lowest loaded servers
that can serve it.

A. Contributions

Our main contribution is the TIERED RANKING
algorithm and its performance analysis. The TIERED
RANKING algorithm is an LLQ algorithm, but it breaks
ties between several lowest-loaded servers in a very
particular correlated-random way: first a random permu-
tation is chosen for every load-level, then, every tie at a
particular level is broken according to that permutation.
We show
• An upper bound (i.e. achievable) on the competitive

ratio of TIERED RANKING (Theorem 1).
• A lower (i.e. outer) bound on the competitive ratio

of any randomized LLQ algorithm for convex cost
functions that grow slower than ex. This shows
the optimality of TIERED RANKING in this class
(Theorem 2).

• A lower bound for all deterministic algorithms,
showing them to be strictly worse than randomized
algorithms (Theorem 3).

We use these results to prove the optimality of the
TIERED RANKING algorithm for load balancing in the

`p norm for any p < ∞ which has been of interest
in [4], [3]. Our results improve the known competitive
ratio bounds for online load balancing in the `p norm [4]
and we compare the results in Section VII. Finally we
show via simulations that TIERED RANKING visibly
outperforms the simple random LLQ algorithm.

B. Related Work

Our tie-breaking rule is inspired by the work on
online matching. We now review this and previous work
on online allocation.

1) Online Matching: The problem of online matching
in bipartite graphs has been studied in [5] by Karp,
Vazirani and Vazirani. This work provides tight bounds
on the competitive ratio. An online algorithm called
RANKING was proposed in [5] and it was shown that
the competitive ratio of RANKING is greater than 1− 1

e .
It was also shown that the competitive ratio for any
online algorithm is less than 1− 1

e + o(1).
Various extensions to weighted graphs, stochastic

arrivals etc. can be found in the references of [1].

2) Online Load Balancing: [2] looks at the make-
span problem, i.e., minimizing the largest load among
servers. The randomized algorithm proposed in [2] is
called AR. The algorithm was shown to be optimal in
the class of all randomized algorithms for this objective
function.

[3] looks at the `p norm of the load vector for
the GREEDY algorithm (load the lowest loaded server,
breaks ties uniformly at random). For the Euclidean
norm, they proved that competitive ratio is at most 2.41.

An improvement on the results of [3] was made in
[4] which looked at the problem of scheduling over
unrelated machines. The term unrelated machines means
that each job takes a different service time on each of the
machines with no correlation between jobs or machines.
This is the first analysis of randomized algorithms for
`p norms for p = 2,3.., 137. The proposed randomized
algorithm is called BALANCE.

II. SETTING

There is a set U of servers and jobs arrive sequentially.
Each job can be served by any one of the servers in a
subset of servers. The appearance of a job is equivalent
to the disclosure of the set of servers which can serve it.
We consider a convex cost function f such that the cost
of allocating nu jobs to server u is f(nu). We assume
that f(0) = 0. The goal is to design an online allocation

algorithm which minimizes the total cost C where

C =
∑
u∈U

f(nu).

The online algorithm must assign each job to a server
when it arrives. We consider the adversarial setting
where we assume the presence of an oblivious adversary,
i.e., one who knows the online allocation algorithm, but
is unaware of the results of the coin flips during its
execution. We restrict ourselves to arrival sequences such
that it is possible for the optimal algorithm to assign
exactly one job to each server. Let the set of such arrival
sequences be A. Thus in the set A, the number of jobs
is equal to the number of servers = n. This restriction is
required for the proofs in this paper, but, we drop this
restriction in the simulations. The performance of the
algorithm is measured in terms of the competitive ratio
ρ, where

ρ(algorithm) = max
A∈A

(
Calgorithm (A)
Coptimal(A)

)
.

Note that Coptimal(A) = nf(1) by our assumption on
A. Calgorithm(A) is the expected cost of the online
algorithm on A. By definition, this ratio is always >1.
The goal is to design an algorithm which minimizes this
quantity.

III. OUR ALGORITHM

Algorithm 1 TIERED RANKING
1: Choose a uniformly random sequence of permuta-

tions πi, i ≥ 0.
2: Initialize Load(j)=0 for all servers j.
3: for arriving job p with server set Sp do
4: From its set Sp, find the subset Lp ⊂ Sp of the

lowest loaded servers.
Lp = {j ∈ Sp|Load(j) ≤ Load(k),∀k ∈ Sp}
Let l be the load in the servers in Lp.

5: Allocate p to j∗ ∈ Lp such that
πl(j

∗) ≤ πl(j) for all j ∈ Lp.
6: Increment Load(j∗)← Load(j∗) + 1
7: end for

Remark: This algorithm was studied in [2] where its
performance was studied for the makespan problem. Our
proofs use the following equivalent visualization of the
allocation process. Construct a sequence of copies of the
servers in set U and name them U1, U2, ... We will refer
to all servers in Ui as servers at level i. Let πi−1 induce
priorities on Ui. In this larger set of servers, we allocate
at most 1 job to each server. When a job arrives, find
the smallest i such that the job can be served by a server

2

2

2

2

1

1

1

3

3

3

Level 1

Level 2

Level 3

a

b

c

d

{1,2}

{2}

{1,3}

{2}

Jobs with resp.
server sets

Servers

Figure 1. TIERED RANKING

in Ui. Assign the job to that available node in Ui which
can serve this job and has the highest priority according
to πi−1. An illustrative example with 3 servers can be
seen in Figure 1.

Consider an arrival sequence A ∈ A on which algo-
rithm TIERED RANKING is executed. Let P1 be the set
of jobs allotted to servers in U1 during this execution.
Consider now a new arrival process A′ = A \ P1

obtained from A by removing the jobs in P1. Now the
algorithm TIERED RANKING is executed on A′ with
permutations π′i = πi+1, and with the same order of job
arrivals as in A. The allocation that TIERED RANKING
produces in U ′1 is identical to the allocation in U2 of the
original execution [2].

Lemma 1. Let the total number of job arrivals in A be n
and let Ni be the number of jobs that do not get allocated
to servers in U1, ... Ui−1 by the TIERED RANKING
algorithm. Then,

E[Ni] ≤ n
(

1

e

)i−1

.

Proof:
We prove the property by induction. The statement
clearly holds for i = 1. Assuming that the statement
holds for i = k, we have that,

E[Nk] ≤ n
(

1

e

)k−1

.

Let Mk denote the jobs allocated to servers at level k
by the TIERED RANKING algorithm. This allocation
is equivalent to a allocation by the TIERED RANKING
algorithm with π0 = πk with the arrival process being

A\M1...\Mk−1. Using Theorem 1 in [5], we have that,

E[Mk] ≥
(

1− 1

e

)
E[Nk].

Therefore,

E[Nk+1] = E[Nk]− E[Mk]

≤ n

(
1

e

)k−1

− E[Mk]

≤ n

(
1

e

)k−1

− n
(

1

e

)k−1(
1− 1

e

)
= n

(
1

e

)k

,

which completes the proof by induction.

�

By Theorems 4.2 and 4.3 in [2], we have that for the
`∞ norm i.e. the makespan, the TIERED RANKING
algorithm has an expected competitive ratio which is
at most log n + 1 which is optimal in the class of all
randomized online algorithms.

IV. UPPER BOUND FOR TIERED RANKING FOR
CONVEX COST FUNCTIONS

Theorem 1. Let |U | = n and let A ∈ A be an arrival
sequence of n jobs as defined in Section II. Define

S
(f)
k = f(k + 1)− 2f(k) + f(k − 1).

The expected competitive ratio of Algorithm TIERED
RANKING for the cost function f is at most

1 +

n−1∑
k=1

(
1

e

)k
S
(f)
k

f(1)
.

Proof:
For this proof, recall the visualization outlined in Section
III. All servers in Ui are assigned a cost of C(f)

i units
where

C
(f)
i = f(i)− f(i− 1). (1)

Note that with this definition of C(f)
i , if only the first

k copies of a node u ∈ U are allocated a job, their
combined contribution to the cost of the algorithm is
f(k).

Recall from the definition of Ni that the number of
jobs allocated to a server in Ui is Ni−Ni+1. Hence the
total cost C of an allocation is

C =

n∑
k=1

(Nk −Nk+1)C
(f)
k

= nf(1) +

n∑
k=2

Nk(C
(f)
k+1 − C

(f)
k),

3

which can be rewritten as

C = nf(1) +

n∑
k=2

NkS
(f)
k−1.

If f is a convex function, then,

S
(f)
k = f(k + 1)− 2f(k) + f(k − 1) ≥ 0.

Using the linearity of expectation, Lemma 1 and the fact
that S(f)

k ≥ 0 for all k ≥ 1,

E[C] = nf(1) +

n∑
k=2

E[Nk]S
(f)
k−1

≤ nf(1) + n

n−1∑
k=1

(
1

e

)k

S
(f)
k .

Since the cost of the offline optimal allocation is nf(1),
the result follows.

�

V. LOWER BOUND FOR LLQ ALGORITHMS

We now provide example arrival sequences which
provide lower bounds (i.e. outer bounds) on the LLQ
algorithms.

A. Deterministic LLQ Algorithms

Lemma 2. Let |U | = n = 2k. The competitive ratio for
any deterministic algorithm for the cost function f is at
least

f(k + 1)

2kf(1)
+

k−1∑
i=1

f(i)

f(1)

1

2i+1
.

Proof: For the purpose of illustration, we divide the
2k job arrivals into k phases. In the first phase, 2k−1

jobs are introduced, each one can be served by all the
2k servers. The servers that are assigned jobs by the
algorithm in this phase are retained for the next phase.
In the next phase, 2k−2 jobs are introduced, each one
of them can be served by all the 2k−1 retained servers.
The same process continues for the next k − 3 phases.
In the last phase, the adversary presents one job that can
be served only by both the remaining servers and then
presents an additional job that can be served only by the
server that was assigned the first job in this phase. The
cost of the allocation done by the deterministic algorithm
is

2kf(1) + 2k
k∑

i=1

(
1

2

)i

S
(f)
i + S

(f)
k+1.

The optimal allocation has cost 2kf(1). Therefore, the
competitive ratio is

1 +

k∑
i=1

(
1

2

)i
S
(f)
i

f(1)
+

S
(f)
k+1

2kf(1)
. (2)

So, the upper bound for the TIERED RANKING is
lower than the lower bound for any deterministic LLQ
algorithm.

�

B. Randomized LLQ Algorithms

Consider the following arrival pattern. Let T be the
n×n complete upper-triangular matrix. Let the columns
of this matrix represent jobs and the rows represent
servers. We assume that jobs i.e. columns arrive from
right to left. The entry T (i, j) = 1 if job j can be served
by server i and 0 otherwise. In this section, we consider
the set of all Randomized LLQ algorithms. For example
for n = 8, the arrival matrix T is

1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

Remark: We now remark on a particular recursive
property of the above arrival sequence, that we use in our
bounds. For any sample path of a randomized allocation
algorithm, consider the sub-matrix formed by all jobs
allocated at level i or above. In particular, consider the
sub-matrix formed as follows: fix any number i, and
remove all jobs (i.e. columns) that were allocated to
servers that already had at most i − 1 jobs (including
that particular job). Then, remove servers which cannot
be used by any of the remaining jobs (i.e. remove
rows which, after the column removal, have no non-zero
element).

Then, this sub-matrix is upper triangular. This is easy
to see: let j be the job (i.e. column) that was the first to
face all servers with loads i−1 or higher at arrival. Since
every subsequent job can only be served by a subset of
the servers that j can use, this means all of them are
retained in the sub-matrix above. Also, every server that
j could not use will be removed as well in the above
construction. Thus the remaining matrix is a square top-
left corner sub matrix of the above matrix, and hence is
also upper triangular.

4

Lemma 3. For the arrival sequence described above for
n > c where c is an absolute constant and for every level
l ≥ 1, the number Nl of jobs placed at levels higher than
l − 1 satisfies:

E[Nl] ≥ n
(

1

e

)l−1

−
l−1∑
i=0

1

ei
.

Proof: We prove the property by induction. For the
upper triangular arrival sequence, for n > c where c is
an absolute constant, by Lemma 16 in [5], we have that

E[N1] ≥ n

(
e1/n

e

)
− 1

≥ n

e
− 1.

Therefore, the statement holds for l = 1. Assuming that
the statement holds for l = k, we have that,

E[Nk] ≥ n
(

1

e

)k−1

−
k−1∑
i=0

1

ei
.

Let Mk denote the allocation obtained at level k by
the randomized LLQ algorithm. We know that the input
matrix at level k is upper triangular. For an upper
triangular matrix, by Lemma 16 in [5], we have that,

E[Mk] ≤
(

1− e
1

Nk

e

)
Nk + 1

≤
(

1− 1

e

)
Nk + 1.

Therefore,

E[Nk+1] = E[Nk]− E[Mk]

≥ E[Nk]−
(

1− 1

e

)
E[Nk]− 1

=
1

e
E[Nk]− 1

≥ 1

e

(
n

(
1

e

)k−1

−
k−1∑
i=0

1

ei

)
− 1

= n

(
1

e

)k

−
k∑

i=0

1

ei
.

This completes the proof by induction.

�

Theorem 2. Let C(f)
i be as defined in (1). If the function

f is such that
n∑

i=1

1

ei
f(i) = o(n),

then the expected competitive ratio of any Randomized
LLQ Algorithm for the cost function f as n→∞ is at
least

1 +

∞∑
i=1

(
1

e

)i
S
(f)
i

f(1)
.

Proof: We show this by evaluating any Randomized
LLQ algorithm on the upper triangular arrival sequence
defined above. Let C be the total cost of an allocation.
We have that,

C = n+

n−1∑
i=1

NiS
(f)
i−1.

By Lemma 3, we know that:

E[Nl] ≥ n
(

1

e

)l−1

−
l−1∑
i=0

1

ei
.

Since S(f)
i ≥ 0 for all i ≥ 1, we get that

E[C] ≥ nf(1) +

n−1∑
i=1

(
n

(
1

e

)i

−
i−1∑
j=0

1

ej

)
S
(f)
i

= nf(1) +

n−1∑
i=1

n

(
1

e

)i

S
(f)
i −

n−1∑
i=1

i−1∑
j=0

1

ej
S
(f)
i

= nf(1) +

n−1∑
i=1

n

(
1

e

)i

S
(f)
i −

n−1∑
j=0

1

ej

n−1∑
i=j

S
(f)
i .

Note that,

lim
n→∞

n−1∑
i=j

S
(f)
i →

∞∑
i=j

S
(f)
i = −C(f)

j .

By the assumption on the arrival process, we have that
cost of the optimal algorithm is nf(1). Additionally, if
we have that,

n−1∑
i=0

1

ei
f(i) ≈ o(n),

then, we have that,
n−1∑
i=0

1

ei
C

(f)
i =

e

e− 1

n−1∑
i=0

1

ei
f(i) ≈ o(n).

Therefore,

lim
n→∞

C

nf(1)
≥ 1 +

∞∑
i=1

(
1

e

)i
S
(f)
i

f(1)
, (3)

which gives us the desired result. From (2) and (3), we
can see that as n→∞, the randomized algorithms have
a smaller lower bound for the expected competitive ratio
than the deterministic algorithms. Therefore, in the class

5

of all online LLQ algorithms, the competitive ratio is at
least

1 +

∞∑
i=1

(
1

e

)i
S
(f)
i

f(1)
.

�

VI. LOWER BOUND FOR DETERMINISTIC
ALGORITHMS

Theorem 3. Let |U | = n = 2k. The competitive ratio for
any deterministic algorithm for the function f as k →∞
is

1 +

∞∑
i=1

(
1

2

)i
S
(f)
i

f(1)
.

Proof: For the purpose of illustration, we divide the n
job arrivals into k phases. In the first phase, the adversary
forms 2k−1 pairs. For each pair, the adversary presents
one job that can be served only by both serves in that
pair. The servers that are assigned jobs by the algorithm
in this phase are retained for the next phase. The same
process continues for the next k − 2 phases. In the last
phase, the adversary presents one job that can be served
only by both the remaining servers and then presents an
additional job that can be served only by the server that
was assigned the first job in this phase. The cost of this
allocation is

S
(f)
k+1 + 2k

k−1∑
i=2

(
1

2

)i

S
(f)
i + 2kf(1).

As k →∞, the competitive ratio tends to

1 +

∞∑
i=1

(
1

2

)i
S
(f)
i

f(1)
.

�

VII. `p NORMS

By Theorems 1 and 2, the TIERED RANKING al-
gorithm is the optimal LLQ algorithm all `p norms for
p > 1. The case p = 2 is of special interest as the square
of the `2 norm of the load vector can be interpreted as
the average delay of the jobs in the system assuming that
the service discipline is processor sharing and each job
needs a service of 1 unit.

Corollary 4. The expected competitive ratio of Algo-
rithm TIERED RANKING for average delay is at most
e+ 1

e− 1
.

Proof: For p = 2, consider the cost function
f(i) = i2. Therefore,

S
(2)
i = (i+ 1)2 − 2i2 + (i− 1)2 = 2.

The cost C of an allotment for f(i) = i2 is

C = n+ 2

n∑
k=2

Nk.

Using the linearity of expectation and Lemma 1,

E[C] = n+ 2

n∑
k=2

E[Nk]

≤ n+ 2n

∞∑
k=1

(
1

e

)k

= n+ 2n

(
1

e− 1

)
= n

(
e+ 1

e− 1

)
.

Since the offline optimal has an `2 norm of
√
n units, the

expected competitive ratio for the `2 norm is less than√
e+ 1

e− 1
. The competitive ratio for the average delay is

less than
e+ 1

e− 1
= 2.16.

�

Table I
UPPER BOUNDS FOR EXPECTED COMPETITIVE RATIOS

p TIERED RANKING BALANCE [7]
(Upper Bound) (Upper Bound)

2 1.47 2.23
3 1.86 3.66
4 2.37 4.88
5 2.64 6.11
6 3.03 7.33

Table I lists the competitive ratios for two algorithms for
a few values of p. The algorithm BALANCE introduced
in [4] was analyzed for a more general setting, where
the weight of each job on every server that can serve it
was independent of its weight on any other server. The
bounds listed for the BALANCE algorithm are for this
more general setting.
In Figure 2 we can see that as n → ∞, TIERED
RANKING outperforms any deterministic algorithm for
the `p norm.

6

Figure 2. Competitive Ratios for the `p Norm

VIII. SIMULATIONS: RANDOM LLQ VS TIERED
RANKING

In this section, we compare the performance of
TIERED RANKING with another randomized LLQ al-
gorithm for the cost function being the square of the `2
norm. We call the new algorithm RANDOM LLQ. When
a job comes in, the algorithm RANDOM LLQ allots it
to any one of the lowest loaded servers that can serve
it, and breaks ties uniformly at random, and independent
of past choices.
Consider an arrival matrix such that T (i, i) = 1 for
1 ≤ i ≤ n, T (i, j) = 1 if j ≥ n/2, i ≤ n/2, T (i, j) = 1
if j ≥ n/4, i ≤ n/4 and T (i, j) = 0 otherwise. Recall
that columns represent jobs and rows represent servers.
The columns arrive from right to left. For example, for
n = 8, this matrix is

1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

We now analyse the performance of the RANDOM LLQ
algorithm for this matrix. We first focus on the first
n/2 servers. Let x(t) and y(t) be random variables
denoting the number of jobs remaining and the number
of servers among the first n/2 servers which have not
been allocated a packet by time t. Let

∆x = x(t)− x(t+ 1),

∆y = y(t)− y(t+ 1).

Therefore, ∆x = −1 and

∆y = −1 w.p.
y

y + 1

and 0 otherwise. We therefore have that
dy

dx
=

y

y + 1
.

Solving for y with initial conditions x = n, y = n/2,
we get that:

x = y +
n

2
+ log

2y

n
.

For x = n/2, we have that:

y + log
2y

n
= 0. (4)

Consider the function

f(y) = e−y − 2y

n
.

The solution to Equation 4 is the same as the solution to
f(y) = 0. We have that f(0) = 1, f is a strictly decreas-
ing function and f(log(n)) = (1− 2 log(n))/n < 0 for
n large enough. Therefore, y∗, the solution to Equation 4
is < log(n). Therefore, M1 ≤ n/2 + o(n). Carrying out
the same analysis for the next n/4 packet arrivals, we
have that M2 ≤ n/4 + o(n) and M3 = n− (M1 +M2).
Therefore the total cost C of allotment is

C = M1 + 3M2 + 5M3

= M1 + 3M3 + 5(n− (M1 +M2))

= 5n− 4M1 − 2M2

≥ 2.5n+ o(n).

Therefore the competitive ratio for RANDOM LLQ is
≥ 2.5 which is greater than the upper bound for the
competitive ratio of TIERED RANKING for the square
of the `2 norm (2.16).

In Figure 3 we see the competitive ratios for RAN-
DOM and TIERED RANKING for the matrix T for
different values of n. It can be seen that TIERED
RANKING outperforms RANDOM LLQ for this input
sequence.

IX. CONCLUSIONS AND DISCUSSION

We considered a natural model for online allocation of
jobs to servers with a constraint on which serve can serve
each job. Our algorithm, and analysis established the
(somewhat counter-intuitive) importance of correlated
randomness in this setting.
Several extensions naturally suggest themselves:

1) looking at systems with departures.
2) different cost functions for different servers.
3) stochastic vs adversarial arrivals.
4) more general arrival sequences.

7

Figure 3. Competitive Ratios for f(i) = i2 for T

REFERENCES

[1] U. Vazirani V. Vazirani A. Mehta, A. Saberi. Adwords and
generalized on-line matching. Proceedings of FOCS, 2005.

[2] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line
assignments. In Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms, Orlando, FL, September 1992.

[3] E. F. Grove M.-Y. Kao P. Krishnan B. Awerbuch, Y. Azar and J. S.
Vitter. Load balancing in the `p norm.

[4] I. Caragiannis. Better bounds for online load balancing on
unrelated machines. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, San Francisco,
California, 2008.

[5] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm
for on-line bipartite matching. In Proceedings of the twenty-second
annual ACM symposium on Theory of computing, Baltimore,
Maryland, May 1990.

8

