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Abstract— This paper develops two new greedy algorithms
for learning the Markov graph of discrete probability distri-
butions, from samples thereof. For finding the neighborhood
of a node (i.e. variable), the simple, naive greedy algorithm
iteratively adds the new node that gives the biggest improve-
ment in prediction performance over the existing set. While fast
to implement, this can yield incorrect graphs when there are
many short cycles, as now the single node that gives the best
prediction can be outside the neighborhood.

Our new algorithms get around this in two different ways.
The forward-backward greedy algorithm includes a deletion
step, which goes back and prunes incorrect nodes that may
have initially been added. The recursive greedy algorithm uses
forward steps in a two-level process, running greedy iterations
in an inner loop, but only including the final node. We show,
both analytically and empirically, that these algorithms can
learn graphs with small girth which other algorithms - both
greedy, and those based on convex optimization - cannot.

I. INTRODUCTION

Graphical models have been widely used to tractably
capture dependence relations amongst a collection of random
variables in a variety of domains, ranging from statistical
physics, social networks to biological applications [1]–[6].
A key challenge in these settings is in learning the pre-
cise dependence structure among the random variables –
a problem that is known to be NP hard in the number of
variables [7]. However, with restrictions placed on the class
of graphical models considered, it is known that polynomial
time algorithms exist. One of the first results in this spirit is
that by Chow and Liu [8], where efficient algorithms for
learning tree-structured graphical models were developed.
Since then, there have been several algorithms developed for
learning restricted classes of graphical models (see Section I-
B for more details).

A. Main Contributions

In this paper we propose two new greedy algorithms to
find the Markov graph for any discrete graphical model.
While greedy algorithms (that learn the structure by sequen-
tially adding nodes and edges to the graph) tend to have low
computational complexity, they are known to fail (i.e., do
not determine the correct graph structure) in loopy graphs
with low girth [12], even when they have access to exact
statistics. This is because a non-neighbor can be the best
node at a particular iteration; once added, it will always
remain. Convex optimization based algorithm like in [9] by
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Ravikumar et al. (henceforth we call this the RWL algorithm)
also cannot provide theoretical guarantees of learning under
these situations. These methods require strong incoherence
conditions to guarantee success. But such conditions are not
always satisfied in graphs with small girth. They are seen
to fail empirically too. For example if we run the existing
algorithms for an Ising model on a diamond network (Figure
2) with D = 8 the performance plot in Figure 1 shows that
greedy and RWL algorithms fail to learn the correct graph
even with large number of samples.

Fig. 1. Performance of different algorithms in an Ising model on diamond
network with 10 nodes. Both the Greedy(ε) and RWL algorithms estimate
an incorrect edge between nodes 0 and 9 therefore never recovers the
true graph G, while our new RecGreedy(ε), FbGreedy(ε, α) algorithms
succeed.

In this paper, we present two algorithms that overcome
this shortfall of greedy and convex optimization based al-
gorithms. The recursive greedy algorithm is based on the
observation that the last node added by the simple, naive
greedy algorithm is always a neighbor; thus, we can use the
naive greedy algorithm as an inner loop that, after every
execution, yields just one more neighbor (instead of the
entire set). The forward-backward greedy algorithm takes
a different tack, interleaving node addition (forward steps)
with node removal (backward steps). In particular, in every
iteration, the algorithm looks for nodes in the existing set
that have a very small marginal effect; these are removed.
Note that these nodes may have had a big effect in a
previous iteration when they were added, but the inclusion
of subsequent nodes shows them to not have enough of a
direct effect.

Thus our main contributions are as follows:
• Two greedy algorithms: (i) A recursive greedy algo-

rithm, and (ii) a forward-backward greedy algorithm,
that correctly learn the graphical model structure for



any non-degenerate, bounded degree graph (including
those with small cycles) (Theorem 1);

• Sample complexity and computational (number of it-
erations) complexity for the recursive and forward-
backward greedy algorithms (with high probability) un-
der non-degeneracy and correlation decay assumptions
(Theorems 1 and 2);

• Numerical results that indicate tractable computational
complexity for loopy graphs (diamond graph, grid).

B. Related Work

Several approaches have been taken so far to learn the
graph structure of MRF in presence of cycles. These can be
broadly divided into three classes – search based, convex-
optimization based, and greedy methods. Search based algo-
rithms like local independence test by Bresler et al. in [10]
and the conditional variation distance thresholding (CVDT)
by Anandkumar et al. in [13] try to find the smallest set
of nodes through exhaustive search, conditioned on which
either a given node is independent of rest of the nodes in the
graph, or a pair of nodes are independent of each other. These
algorithms although have a fairly good sample complexity,
but due to exhaustive search they have a high computation
complexity.

In case of Ising models a convex optimization based
learning algorithm was proposed in [9] by Ravikumar et
al. This was further generalized for any pairwise graphical
model in [11]. These algorithms have a very good sample
complexity of Ω(∆3 log p), where ∆ is the maximum degree
of a node and p is the total number of nodes. However
these algorithms require a strong incoherence assumption to
guarantee its success.

Recently a greedy learning algorithm was proposed in [12]
which tries to find the minimum value of the conditional
entropy of a particular node in order to estimate its neigh-
borhood. We call this algorithm as Greedy(ε). It was shown
that for graphs with correlation decay and large girth this
exactly recovers the graph G. But it fails for graphs with
small cycles. A forward-backward greedy algorithm based
on convex optimization was also presented recently by Jalali
et al. in [18], which works for any pairwise graphical model.

This paper is organized as follows. First we review the
definition of a graphical model in section II and then the
graphical model learning problem in section III. The two
greedy algorithms are described in section IV. Next we
give sufficient conditions for the success of the greedy
algorithms in section V. In section VI we present the main
theorems showing the performance of the recursive greedy
and forward-backward greedy algorithms. We compare the
performance of our algorithm with other well known algo-
rithms in section VII. Finally in section VIII we present some
simulation results.

II. BRIEF REVIEW: GRAPHICAL MODELS

In this section we briefly review the general graph-
ical model structure and the Ising model. Let X =
(X1, X2, . . . , Xp) be a random vector over a discrete set

X p, where X = {1, 2, . . . ,m}. XS = (Xi : i ∈ S) denote
the random vector over the subset S ⊆ {1, 2, . . . , p}. Let
G = (V,E) denote a graph having p nodes. Let ∆ be the
maximum degree of the graph G and ∆i be the degree of the
ith node. An undirected graphical model or Markov random
field is a tuple M = (G,X) such that each node in G
correspond to a particular random variable in X . Moreover
G captures the Markov dependence between the variables Xi

such that absence of an edge (i, j) implies the conditional
independence of variables Xi and Xj given all the other
variables.

For any node r ∈ V , let Nr denote the set of neighbors
of r in G. Then the distribution P(X) has the special
Markov property that for any node r, Xr is conditionally
independent of XV \{r}

⋃
Nr given XNr = {Xi : i ∈ Nr},

the neighborhood of r, i.e.

P(Xr|XV \r) = P(Xr|XNr ) (1)

Ising Model: An Ising model is a pairwise graphical model
where Xi take values in the set X = {−1, 1}. For this
paper we also consider the node potentials as zero (the zero
field Ising model). Hence the distribution take the following
simplified form.

PΘ(X = x) =
1

Z
exp

 ∑
(i,j)∈E

θijxixj

 (2)

where xi, xj ∈ {−1, 1} and Z is the normalizing constant.

III. GRAPHICAL MODEL SELECTION

In this section we describe the general graphical
model selection problem. The graphical model selec-
tion problem is as follows. Given n independent sam-
ples Sn = {x(1), x(2), . . . , x(n)} from the distribution
P(X), where each x(i) is a p dimensional vector x(i) =

(x
(i)
1 , x

(i)
2 , . . . , x

(i)
p ) ∈ {1, . . . ,m}p, the problem is to esti-

mate the Markov graph G corresponding to the distribution
P(X) by recovering the correct edge set E. This problem is
very hard in general and has been solved only under special
assumptions on the graphical model structure. In some cases
a learning algorithm is able to find the correct neighborhood
of each node v ∈ V with a high probability and hence
recover the true topology of the graph. We describe some
notations. For a subset S ⊆ V , we define P (xS) = P(XS =
xS), xS ∈ X |S|. The empirical distribution P̂ (X) is the
distribution of X computed from the samples. Let i ∈ V −S,
the entropy of the random variable Xi conditioned on XS

is written as H(Xi|XS). The empirical entropy calculated
corresponding to the empirical distribution P̂ is denoted by
Ĥ . If P and Q are two probability measures over a finite set
Y, then the total variational distance between them is given
by, ||P −Q||TV = 1

2

∑
y∈Y |P (y)−Q(y)|.

IV. GREEDY ALGORITHMS

In this section we describe two new greedy algorithms for
learning the structure of a MRF.



Main idea: The algorithms can be divided into two steps.
The first step common to both algorithms is a node pruning
step called super-neighborhood selection (described in detail
in section V). This step generates a collection of proper
super-neighborhoods S = {Si ⊆ V : Ni ⊆ Si and i /∈
Si ∀i ∈ V } one for each i ∈ V , such that |Si| is small. This
super-neighborhood set S is the input to the second step of
the algorithms which is described next.

A. Recursive Greedy Algorithm

The simple naive greedy algorithm [12] adds nodes to
the neighborhood until there is no further reduction in
conditional entropy. This will happen when the true neigh-
borhood is a subset of the estimated neighborhood. Our key
observation here is that the last node to be added by the naive
greedy algorithm will always be in the true neighborhood.
We leverage this observation by using the naive greedy
algorithm as an inner loop; at the end of every run of this
inner loop, we pick only the last node and add it to the
estimated neighborhood. The next inner loop starts with this
added node as an initial condition, and finds the next one.
Hence the algorithm discovers a neighbor in each run of the
innermost loop and finds all the neighbors of a given node
i in exactly ∆i iterations of the outer loop.

The above idea works as long as every neighbor has a
measurable effect on the conditional entropy, even when
there are several other variables in the conditioning. The
algorithm is RecGreedy(ε), pseudocode detailed below. It
needs a non-degeneracy parameter ε, which is the threshold
for how much effect each neighbor has on the conditional
entropy.

B. Forward-Backward Greedy Algorithm

Our second algorithm takes a different approach to fix
the problem of spurious nodes added by the naive greedy
algorithm, by adding a backward step that prunes nodes it
detects as being spurious. In particular, after every forward
step that adds a node to the estimated neighborhood, the
algorithm finds the node in this new estimated neighborhood
that has the smallest individual effect on the new conditional
entropy. If this is too small, this node is removed from the
estimated neighborhood.

The algorithm, FbGreedy(ε, α), is given in pseudocode. It
takes two input parameters beside the samples. The first is the
same non-degeneracy parameter ε as in the RecGreedy(ε)
algorithm. The second parameter α ∈ (0, 1) is utilized by
the algorithm to determine the threshold of elimination in
the backward step. The algorithm stops when there are no
further forward or backward steps.

V. SUFFICIENT CONDITIONS FOR LEARNING

In this section we describe the sufficient conditions which
guarantees that the RecGreedy(ε) and FbGreedy(ε, α) al-
gorithms recover the correct Markov graph G.

Algorithm 1 RecGreedy(ε)

1: Generate super-neighborhood S
2: for i = 1 to |V | do
3: N̂(i)← φ
4: iterate ← TRUE
5: while iterate do
6: T̂ (i)← N̂(i)
7: last ← 0
8: complete ← FALSE
9: while ! complete do

10: j = arg mink∈Si\T̂ (i) Ĥ(Xi|XT̂ (i), Xk)

11: if Ĥ(Xi|XT̂ (i), Xj) < Ĥ(Xi|XT̂ (i)) −
ε
2

then
12: T̂ (i)← T̂ (i)

⋃
{j}

13: last ← j
14: else
15: if last ! = 0 then
16: N̂(i)← N̂(i)

⋃
{last}

17: else
18: iterate ← FALSE
19: end if
20: complete ← TRUE
21: end if
22: end while
23: end while
24: end for

Algorithm 2 FbGreedy(ε, α)

1: Generate super-neighborhood S
2: for i = 1 to |V | do
3: N̂(i)← φ
4: added ← FALSE
5: complete ← FALSE
6: while ! complete do . Forward Step:
7: j = arg mink∈Si\N̂(i) Ĥ(Xi|XN̂(i), Xk)

8: if Ĥ(Xi|XN̂(i), Xj) < Ĥ(Xi|XN̂(i))−
ε
2 then

9: N̂(i)← N̂(i)
⋃
{j}

10: added ← TRUE
11: else
12: added ← FALSE
13: end if . Backward Step:
14: l = arg mink∈N̂(i) Ĥ(Xi|XN̂(i)\k)

15: if Ĥ(Xi|XN̂(i)\l)− Ĥ(Xi|XN̂(i)) <
αε
2 then

16: N̂(i)← N̂(i)\{l}
17: else
18: if ! added then
19: complete ← TRUE
20: end if
21: end if
22: end while
23: end for



A. Non-degeneracy

Our non-degeneracy assumption require every neighbor
have a significant effect. Other graphical model learning
algorithms require similar assumption to ensure correctness
[9], [10], [12].

(A1) Non-degeneracy condition: Consider the graphical
model M = (G,X), where G = (V,E). Then for all i ∈ V
and A ⊂ V such that Ni 6⊂ A the following condition holds.
Let j ∈ Ni and j 6∈ A. Then there exists ε > 0 such that

H(Xi|XA, Xj) < H(Xi|XA)− ε (3)

Thus by adding a neighboring node to the conditioning
set the conditional entropy strictly decreases by at least ε.
Also the above condition together with the local Markov
property (1) imply that the conditional entropy attains an
unique minimum at H(Xi|XNi).

B. Correlation Decay

Correlation decay broadly means that the influence of
a random variable on the distribution of another gradually
decreases as the path distance between the corresponding
nodes increase in the graph G. In [17] Bento et al. showed
that learning graphical models become more difficult in
absence of some sort of correlation decay. Many different
forms of correlation decay have been assumed in MRF
learning algorithms [10], [12], [13]. We assume a weak
form of correlation decay similar to the weak spatial mixing
assumption in [19]. First we define the following quantity.

Definition 1 Consider the graphical model M = (G,X).
Let i, j ∈ V . Define φi(j) = maxx 6=x′ ||P (Xi|Xj = x) −
P (Xi|Xj = x′)||TV . The corresponding function calculated
from the empirical distribution P̂ is denoted as φ̂i(j).

Now the correlation decay assumption is the following.
(A2) Correlation decay: For the graphical model M =

(G,X) there exists a monotonic decreasing function f : Z→
R such that for any i, j ∈ V

φi(j) < f(d(i, j)) (4)

where d(i, j) is the graph distance between nodes i and j.
It can be shown that the correlation decay assumption in [12]
implies (4). Hence this is a weaker assumption. Next we give
an example when the decay function f(.) is exponential.

Example 1 (Exponential correlation decay)

It can be shown that in any graphical model M =
(G,X) if Dobrushin’s condition holds then M exhibits an
exponential correlation decay. First we restate the definition
of influence coefficient from [14], [15].

Definition 2 Influence coefficient: For any i, j ∈ V the
influence coefficient of node j on node i is

Cij = max
y,z∈X |V |−1

yk=zk ∀k 6=j

||P (Xi|XV \i = y)−P (Xi|XV \i = z)||TV

Note that due to the Markov property of the graph Cij = 0
for all j /∈ Ni. Dobrushin’s condition [16] is the following.
Dobrushin’s condition: Let Cij be the influence coefficient
of node j on node i. Then Dobrushin’s condition require

γ = sup
i∈V

∑
j∈V

Cij

 < 1 (5)

In an Ising model (2) with maximum degree ∆ and θij = θ
the Dobrushin’s condition corresponds to γ = ∆ tanh 2θ <
1. The following lemma connects this to assumption (A2).

Lemma 1 ( [20]) Suppose Dobrushin’s condition holds for
a Markov random field. Then,

φi(j) ≤
γd(i,j)

1− γ
where γ is given by (5).

Hence in this case f(x) = γx

1−γ is an exponentially
decaying function.

C. Super-Neighborhood Selection

In this section we describe a method to choose a proper
super-neighborhood Si for each node i ∈ V in the first step
of Algorithm 1, 2 when there is correlation decay. A super-
neighborhood Si is said to be proper if it includes the true
neighborhood Ni.

Before we describe the procedure, we motivate the need
for a super-neighborhood selection method. First, observe
that if we run Algorithm 1, 2 with Si = V for all i ∈ V
and with exact distribution P (X) known, under the non-
degeneracy assumption (A1) the algorithm correctly outputs
the true neighborhood Ni with a proper ε. However the
problem is that for an arbitrary graphical model (or any
graphical model with the super-neighborhood set to be very
large), the size of the conditioning set T̂ (i) in RecGreedy(ε)
or N̂(i) in FbGreedy(ε, α) can also become very large.
This implies that the number of samples required to get
a good estimate of the conditional entropy H(Xi|XA) is
Ω(|X ||A|+1) will be exponentially large (a good estimate is
needed to ensure Algorithm 1, 2 give the correct graph G
with a high probability). In order to mitigate this problem
we need to appropriately bound the size of the set T̂ (i),
N̂(i). To do this we choose a proper super-neighborhood Si
with |Si| = Θ(poly(∆)). Then the size of the conditioning
set never exceeds maxi∈V |Si| := ξ (a constant when ∆ is
bounded).

The problem of proper super-neighborhood selection be-
comes easier under the correlation decay assumption (A2).
Let κ be such that,

min
i∈V,j∈Ni

φi(j) = κ (6)



The super-neighborhood is then selected as follows.

Si = {j ∈ V |φ̂i(j) ≥
κ

2
} (7)

Remark: Note that there may be other ways to gener-
ate a proper super-neighborhood based on domain knowl-
edge/structural properties of the system (e.g. in social net-
works, weather forecasting). All that is needed for our
algorithms is to have a super-neighborhood of small size.

Definition 3 (Super-neighborhood radius) The super-
neighborhood radius R is defined as

R = min{x ∈ Z|f(x) < κ/2} (8)

We assume that R exists and R does not grow with p. i.e.,
R = O(1).

For example if a MRF satisfies Dobrushin’s condition then
R < log 2

(1−γ)κ/ log 1
γ . With the above definition it is clear

that for a bounded degree graph G the size of the super-
neighborhood set Si is bounded as |Si| ≤ ξ < ∆R.

VI. MAIN RESULT

In this section we state our main result showing the perfor-
mance of the RecGreedy(ε), FbGreedy(ε, α) algorithms.
First we restate a lemma from [12], [22] that will be used
to show the concentration of the empirical entropy Ĥ with
samples.

Lemma 2 Let P and Q be two discrete distributions over a
finite set X such that ||P −Q||TV ≤ 1

4 . Then,

|H(P )−H(Q)| ≤ 2||P −Q||TV log
|X |

2||P −Q||TV
We now state our main theorem showing the performance

of Algorithms 1, 2.

Theorem 1 Consider a MRF over a graph G with maximum
degree ∆, having a distribution P (X).
1) Correctness (non-random): Suppose (A1) holds and the
RecGreedy(ε) and FbGreedy(ε, α) algorithms have access
to the true conditional entropies therein, then they correctly
estimate the graph G.
2) Sample complexity: Suppose (A1) holds, proper super-
neighborhoods Si are given and super-neighborhood size
|Si| < ξ, for all i ∈ V . Let 0 < δ < 1.
• When the number of samples n = Ω(|X |2ξξ log p

δ ) the
RecGreedy(ε) correctly estimates G with probability
greater than 1− δ.

• When the number of samples n = Ω(|X |2ξ ξ
α4 log p

δ ) the
FbGreedy(ε, α) correctly estimates G with probability
greater than 1− δ, for 0 < α < 1.

Proof: The proof of correctness with true conditional
entropies known is straightforward under non-degenerate
assumption (A1). The proof in presence of samples is
based on Lemma 3 similar to Lemma 2 in [12] showing

the concentration of empirical conditional entropy, which
is critical for the success of Algorithms 1, 2. We show
that when proper super-neighborhoods Si are given and
|Si| ≤ ξ for all i ∈ V with Ω(|X |2ξ ξ

α4 log p
δ ) samples the

empirical distributions and hence the empirical conditional
entropies also concentrate around their true values with a
high probability and Algorithm 1, 2 correctly recovers the
Markov graph G.

Lemma 3 Consider a graphical model M = (G,X) with
distribution P (X). Let 0 < δ3 < 1. If the number of samples

n >
215|X |2(s+2)

ε4α4

[
(s+ 1) log 2p|X |+ log

1

δ3

]
then with probability at least 1− δ3

|Ĥ(Xi|XS)−H(Xi|XS)| < αε

8

for any S ⊂ V such that |S| ≤ s.

Lemma 3 follows from Lemma 2 and Azuma’s inequality.
When there is correlation decay (A2) the super-neighborhood
selection procedure (7) is also successful with a high prob-
ability with only Ω(log p) samples, where by success we
mean Si will be proper and |Si| < ∆R. This is shown
by the following lemmas. We define the minimum marginal
probability Pmin as Pmin = mini∈V,xi∈X P (Xi = xi).

Lemma 4 Consider a graphical model M = (G,X) with
distribution P (X), X ∈ X p. Let 0 < δ1 < 1. Then if the
number of i.i.d. samples

n >
32|X |4

κ2P 2
min

[
2 log |X |p+ log

2

δ1

]
we have with probability at least 1− δ1

|P (Xi|Xj)− P̂ (Xi|Xj)| <
κ

4|X |
(9)

for all i, j ∈ V , where κ is given by (6).

Lemma 5 Let a graphical model M = (G,X) satisfy
assumption (A2). Let 0 < δ1 < 1. Then with probability
greater than 1− δ1, Ni ⊆ Si for all i ∈ V when the number
of i.i.d. samples n = Ω(log p

δ1
).

Lemma 6 Consider a graphical model M = (G,X) with
maximum degree ∆ satisfying assumption (A2) with decay
function f(.). Let 0 < δ2 < 1. Then with probability greater
than 1−δ2 we have |Si| < ∆R when the number of samples
n = Ω(log p

δ2
), where R is given by (8).

Lemmas 4, 5, 6 also follow from Azuma’s concentration
inequality and the proofs are omitted due to space constraint.
Although the sample complexities of RecGreedy(ε) and
FbGreedy(ε, α) algorithms are slightly more than other non-
greedy algorithms [9], [10], [13], the main appeal of these
greedy algorithms lie in their low computation complexity.



The following theorem characterizes the computation com-
plexity of Algorithms 1, 2. In order to do so the first step is
to bound the number of greedy steps. We have the following
corollaries following from Theorem 1.

Corollary 1 Let T = min{ 2 log |X |
ε , ξ}. Then the number of

greedy steps in each recursion of the RecGreedy(ε) is less
than T .

Corollary 2 The number of steps in the FbGreedy(ε, α) is
bounded by 4 log |X |

ε(1−α) .

When calculating the run-time, each arithmetic operation
and comparison is counted as an unit-time operation. For
example to execute line 10 in Algorithm 1, each comparison
takes an unit-time and each entropy calculation takes O(n)
time (since there are n samples using which the empirical
conditional entropy is calculated). Since there are at most
|Si| ≤ ξ comparisons the total time required to execute this
line is O(nξ).

Theorem 2 (Run-time) Consider a graphical model M =
(G,X), with maximum degree ∆, satisfying assumptions
(A1) and |Si| < ξ, for all i ∈ V . Then the expected run-
time of the second step of RecGreedy(ε) is O(δpξ3n +
(1 − δ)pε∆ξn) and that of the FbGreedy(ε, α) algorithm
is O( p

(1−α)εξn).

The proofs of Corollary 1, 2 and Theorem 2 are omitted
for brevity.
Remark: Suppose that 4 log |X |

ε(1−α) < ξ. Then if we take α <
∆−1

∆ the FbGreedy(ε, α) has a better run time guarantee
than the RecGreedy(ε) algorithm for small δ. But when
∆ξ < 2 log |X |

ε(1−α) then the RecGreedy(ε) algorithm has a better
guarantee. Note that the super-neighborhood selection step
(7) has an additional complexity of O(p2).

VII. PERFORMANCE COMPARISON

In this section we compare the performance of the
RecGreedy(ε) and FbGreedy(ε, α) algorithms with other
graphical model learning algorithms.

A. Comparison with Greedy(ε) algorithm:

The RecGreedy(ε) and FbGreedy(ε, α) algorithms are
strictly better than the Greedy(ε) algorithm in [12]. This is
because Algorithms 1 and 2 always finds the correct graph
G when the Greedy(ε) finds the correct graph, but they are
applicable to a wider class of graphical models since they
do not require the assumption of large girth to guarantee its
success. Further the correlation decay assumption (A2) in
this paper is weaker than the assumption in [12]. Note that
the RecGreedy(ε) algorithm uses the Greedy(ε) algorithm
in each recursion step and the FbGreedy(ε, α) algorithm
uses the Greedy(ε) algorithm in its forward step. Hence
when Greedy(ε) finds the true neighborhood Ni of node
i, Algorithm 1 will find the correct neighborhood in each
of the recursive steps and Algorithm 2 outputs the correct
neighborhood directly without having to utilize any of the

backward steps. Hence Algorithms 1 and 2 also succeed
in finding the true graph G. We now demonstrate a clear
example of a graph where Greedy(ε) fails to recover the true
graph but the Algorithms 1, 2 is successful. This example is
also presented in [12]. Consider an Ising model on the graph
in Figure 2. We have the following proposition.

0 D+1 

1 

2 

D 

D-1 

Fig. 2. An example of a diamond network with D+2 nodes and maximum
degree D where Greedy(ε) fails but RecGreedy(ε) and FbGreedy(ε, α)
algorithms correctly recover the true graph.

Proposition 1 Consider an Ising model with V =
{0, 1, . . . , D,D+1} and E = {(0, i), (i,D+1) ∀i : 1 ≤ i ≤
D} with a distribution function P (x) = 1

Z

∏
(ij)∈E e

θxixj ,
Xi ∈ {1,−1}. Then with D > 2θ

log cosh(2θ) + 1 we have

H(X0|XD+1) < H(X0|X1)

The proof follows from simple calculation. Hence for
the Ising model considered above (Figure 2) with D >

2θ
log cosh(2θ) +1 the Greedy(ε) incorrectly includes node D+1
in the neighborhood set in the first step. However with an
appropriate ε the MRF satisfies assumption (A1). Hence by
taking Si = V , Theorem 1 ensures that the RecGreedy(ε)
and FbGreedy(ε, α) algorithms correctly estimate the graph
G.

B. Comparison with search based algorithms:

Search based graphical model learning algorithms like the
Local Independence Test (LIT) by Bresler et al. [10] and
the Conditional Variation Distance Thresholding (CVDT) by
Anandkumar et al. [13] generally have good sample com-
plexity but suffer due to their high computation complexity.
As we will see the RecGreedy(ε) and FbGreedy(ε, α)
algorithms have slightly more sample complexity but signifi-
cantly lower computational complexity than the search based
algorithms. Moreover to run the search based algorithms one
needs to know the maximum degree ∆ for LIT and the
maximum size of the separator η for the CVDT algorithm.
However the greedy algorithms can be run without knowing
the maximum degree of the graph.

For bounded degree graphs the LIT algorithm has a sample
complexity of Ω(|X |4∆∆ log 2p

δ ). Without any assumption



on the maximum size of the separator, for bounded de-
gree graphs the CVDT algorithm also has a similar sam-
ple complexity of Ω(|X |2∆(∆ + 2) log p

δ ). Note that the
quantity Pmin in the sample complexity expression for
CVDT algorithm (Theorem 2 in [13]) is the minimum
probability of P (XS = xS) where |S| ≤ η + 1. This
scales with ∆ as Pmin ≤ 1

|X |η+1 . For general degree
bounded graphs we have η = ∆. The sample complexity for
RecGreedy(ε) and FbGreedy(ε, α) algorithms is slightly
higher at Ω(|X |2ξξ log p

δ ) and Ω(|X |2ξ ξ
α4 log p

δ ) respectively
(since ξ > ∆). However the computation complexity of
the LIT algorithm is O(p2∆+1 log p) and that of the CVDT
algorithm is O(|X |∆p∆+2n), which is much larger that
O(pε∆ξn) for RecGreedy(ε) algorithm and O( p

(1−α)εξn)

for the FbGreedy(ε, α) algorithm (since ξ = Θ(poly(∆))
and ξ < ∆R when (A2) holds). Note however that using the
correlation decay property and super-neighborhood selection,
the computation complexity of search based algorithms can
be decreased. We have the following proposition.

Proposition 2 Consider a graphical model M = (G,X),
where G = (V,E) have maximum degree ∆, satisfying
correlation decay (A2). Then by super-neighborhood se-
lection the CVDT algorithm has an expected run-time of
O(p∆(∆+1)R|X |∆n), when the super-neighborhood is cho-
sen as (7).

However with correlation decay (A2) the run-time of
Algorithms 1, 2 are O(pε∆R+1n) and O( p

(1−α)ε∆
Rn) re-

spectively still smaller than the CVDT algorithm.

C. Comparison with convex optimization based algorithms:

In [9] Ravikumar et al. presented a convex optimiza-
tion based learning algorithm for Ising models, which we
have referred as the RWL algorithm. It was later extended
for any pairwise graphical model by Jalali et al. in [11].
Although these algorithms have a low sample complex-
ity of Ω(∆3 log p), these algorithms have a computation
complexity of O(p4) higher than the RecGreedy(ε) and
FbGreedy(ε, α) algorithms. Moreover the greedy algorithms
we propose are applicable for a wider class of graphical
models. Finally these optimization based algorithms require
a strong incoherence property to guarantee its success;
conditions which may not hold even for a large class of
Ising models as shown in [17]. In our simulation section we
will see that even for Ising model on the diamond network
(Figure 2) the RWL algorithm fails to recover the correct
graph even with large number of samples whenever there is
a strong correlation between non-neighbors, our algorithm
successfully recovers the correct graph in such scenarios.
In [18] Jalali et al. presented a forward-backward algorithm
based on convex optimization for learning pairwise graphical
models (as opposed to general graphical models in this
paper). It has even lower sample complexity of Ω(∆2 log p)
and works under slightly milder assumptions than the RWL
algorithm.

VIII. SIMULATION RESULTS

In this section we present some simulation results
characterizing the performance of RecGreedy(ε) and
FbGreedy(ε, α) algorithms. We compare the performance
with the Greedy(ε) algorithm [12] and the logistic regression
based RWL algorithm [9] in an Ising model. We consider
two graphs, a 4× 4 square grid (Figure 3) and the diamond
network (Figure 2). In each case we consider an Ising model
on the graphs. For the 4× 4 grid we take the edge weights
θ ∈ {.25,−.25}, generated randomly. For the diamond
network we take all equal edge weights θ = .25. Independent
and identically distributed samples are generated from the
models using Gibbs sampling and the algorithms are run
with increasing number of samples. The parameter ε for the
greedy algorithms and the `1 regularization parameter λ for
the RWL algorithm are chosen through cross validation. For
the FbGreedy(ε, α) algorithm α was taken as .9.

Fig. 3. A 4x4 grid with ∆ = 4 and p = 16 used for the simulation of
the RecGreedy(ε), FbGreedy(ε, α) algorithms.

First we show that for the diamond network (Figure 2)
whenever D > Dth = 2θ

log cosh(2θ)+1 the RWL algorithm
fails to recover the correct graph. We run the RWL algorithm
in diamond network with increasing maximum degree D
keeping θ fixed. We take θ = .25 for which Dth =

2×.25
log cosh(2×.25) +1 = 5.16. The performance is shown in Fig-
ure 4. We clearly see that the failure of the RWL algorithm
in diamond network corresponds exactly to the case when
D > Dth. The RWL algorithm fails since it predicts a false
edge between nodes 0 and D + 1. This is surprising since
this is also the condition in Proposition 1 which describes
the case when Greedy(ε) algorithm fails for the diamond
network due to the same reason of estimating a false edge.
In some sense D = Dth marks the transition between
weak and strong correlation between non-neighbors in the
diamond network, and both Greedy(ε) and RWL algorithms
fail whenever there is a strong correlation. However see
next that our greedy Algorithms 1, 2 succeed even when
D > Dth.

Figure 1 shows the performance of the various algorithms
in the case of the diamond network with D = 8 > Dth =
5.16. The Greedy(ε) and RWL algorithms are unable to re-
cover the graph but the RecGreedy(ε) and FbGreedy(ε, α)
recover the true graph G, they also show the same error
performance. However Figure 5 shows that FbGreedy(ε, α)



Fig. 4. Performance of the RWL algorithm in diamond network of Figure
2 for varying maximum degree with θ = .25 and Dth = 5. RWL fails
whenever D > Dth.

has a better runtime than the RecGreedy(ε) algorithm for
the diamond network.

Fig. 5. Figure showing the average runtime performance of RecGreedy(ε)
and FbGreedy(ε, α) algorithms for the diamond network with p = 10,
∆ = 8, for varying sample size.

Figure 6 shows the performance of the different algorithms
for a 4 × 4 grid network. We see that for this network
the RWL algorithm shows a better sample complexity than
either of RecGreedy(ε) or FbGreedy(ε, α) as predicted
by the performance analysis. This network exhibits a weak
correlation among non-neighbors, hence the Greedy(ε) is
able to correctly recover the graph, which obviously implies
that the RecGreedy(ε) and FbGreedy(ε, α) also correctly
recovers the graph, and all have the same performance.

Fig. 6. Performance comparison of RecGreedy(ε), FbGreedy(ε, α),
Greedy(ε) and RWL algorithms in a 4× 4 grid with p = 16, ∆ = 4 for
varying sample size. The error event is defined as E = {∃i ∈ V |N̂i 6= Ni}.
All three greedy algorithms have the same error performance for this graph.
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