
Asymptotics of Query Strategies over a Sensor Network

Sanjay Shakkottai∗

February 11, 2004

Abstract

We consider the problem of a user querying for information over a sensor network, where
the user does not have prior knowledge of the location of the information. We consider three
information query strategies: (i) a Source-only search, where the source (user) tries to locate the
destination by initiating query which propagates as a continuous time random walk (Brownian
motion); (ii) a Source and Receiver Driven “Sticky” Search, where both the source and the
destination send a query or an advertisement, and these leave a “sticky” trail to aid in locating
the destination; and (iii) where the destination information is spatially cached (i.e., repeated over
space), and the source tries to locate any one of the caches. After a random interval of time with
averaget, if the information is not located, the query times-out, and the search is unsuccessful.

For a source-only search, we show that the probability that a query is unsuccessful decays
as (log(t))−1. When both the source and the destination send queries or advertisements, we
show that the probability that a query is unsuccessful decays ast−5/8. Further, faster polynomial
decay rates can be achieved by using a finite number of queries or advertisements. Finally, when
a spatially periodic cache is employed, we show that the probability that a query is unsuccessful
decays no faster thant−1. Thus, we can match the decay rates of the source and the destination
driven search with that of a spatial caching strategy by using an appropriate number of queries.

The sticky search as well as caching utilize memory that isspatially distributedover the
network. We show thatspreading the memoryover space leads to a decrease in memory re-
quirement, while maintaining a polynomial decay in the query failure probability. In particular,
we show that the memory requirement for spatial caching is larger (in an order sense) than that
for sticky searches. This indicates that the appropriate strategy for querying over large sensor
networks with little infrastructure support would be to use multiple queries and advertisements
using the sticky search strategy.

∗This research was partially supported by NSF Grants ACI-0305644 and CNS-0325788. The author is with the
Wireless Networking and Communications Group, Department of Electrical and Computer Engineering, The University
of Texas at Austin,shakkott@ece.utexas.edu . A shorter version of this paper appears in the Proceedings of
IEEE Infocom, Hong Kong, March 2004.

1

1 Introduction

With the availability of cheap wireless technology and the emergence of micro-sensors based on

MEMS technology [10, 23], sensor networks are anticipated to be widely deployed in the near fu-

ture. Such networks have many potential applications, both in the military domain (eg. robust

communication infrastructure or sensing and physical intrusion detection), as well as commercial

applications such as air or water quality sensing and control. Such networks are usually character-

ized by the absence of any large-scale established infrastructure, and nodes cooperate by relaying

packets to ensure that the packets reach their respective destinations.

An important problem in sensor networks is that of querying for information. The query type

could range from trying to determine the location of a particular node to querying for particular

information. This problem has recently received a lot of attention [8, 3, 2, 21], and is also related to

routing over such networks [6, 20, 9, 7].

We consider a problem where a querying node (the source/user) transmits a query for some

information (the destination), which is located at a (normalized) distance of ’1’ from the source.

However, we assume that the source has no prior knowledge of the location of the information (the

destination), nor that they are separated by a distance of ’1’ (i.e.,no prior destination location infor-

mation is available). Further, we assume that the nodesdo not have any “direction” information.

In other words, nodes only know who their local neighbors are, but do not have their geographical

position or direction information.

We consider three search/query strategies:(i) A Source-only search, where the source (i.e.,

the user) tries to locate the destination by initiating a query which propagates as a continuous time

random walk (Brownian motion);(ii) a Source and Receiver Driven “Sticky” Search, where both the

source and the destination send a query or a advertisement, and these leave “sticky” trails to aid in

locating the destination; and(iii) where the destination information is spatially cached (i.e., repeated

periodically over space), and the source tries to locate any one of the caches.

As an aside, we note that if partial destination location information was available, one could

design strategies which explicitly use this knowledge. For instance, if it was known a-priori that the

destination was at a distance ’1’ from the source, constrained flooding would be a candidate strategy

for locating the position of the destination. Further, the availability of direction information (for

2

instance, with GPS equipped nodes) would enable strategies similar to the sticky search, but route

along “straight-lines” in the network [2] instead of random walks.

In this paper, we study query strategies in the absence of location/direction information. We

consider the search strategies based on random walks, and associate an (exponentially distributed)

random time-out interval, after which a query ceases to propagate. Thus, if the destination is not

found before the time-out, the query is unsuccessful. We derive the asymptotic behavior of the

querying strategies discussed above, and discuss their relative performance.

1.1 Related Work

As discussed earlier, there has been much work on querying and routing with information constraints

in sensor networks. There have been various protocols and algorithms that have been recently devel-

oped for these networks [8, 3, 2, 21, 6, 20, 9, 19, 12, 13]. These protocols span various types – from

using geographical information [9, 12, 8, 6] to (limited) flooding [19, 21] to gossip [13, 19] – and

use various combinations of the three schemes we have considered. In Section 2, we shall discuss

[2] in detail.

We use Brownian motion based models for analysis. Related work includes [7], where the

author studies optimal placement of limited routing information over a sensor network. The author

shows that uniform placement over space will not be optimal. Instead, the routing information

needs to be “concentrated” according to a specific pattern (a bicycle wheel spokes like pattern).

Other related work includes [14], where the authors consider an object at origin and an infinitely

large number of mobile nodes (initially placed according to a spatial Poisson process) looking for

the object. They show that the probability that the object is not located decays exponentially in time.

For the schemes we have described in Section 1, there does not seem to be a analytical comparison

in literature. In this paper, we derive the asymptotic performance of these schemes, and discuss their

trade-offs.

3

���
���
���

���
���
���

n
1

destination source

Figure 1: A random walk based search on a sensor grid

2 Querying Models for a Sensor Network

Let us consider a regular sensor grid network [22], withn sensor nodes per unit area as shown in

Figure 1. For such a model, nodes are spaced regularly with the inter-node distance being 1/
√

n.

Let us assume that each node can communicate a distance 1/
√

n. In other words, the nodes can

communicate with each of it’s adjacent neighbors.

We are interested in the situation where a node located at origin (also referred to as thesource

node) is interested in locating some particular information, which is located at some region or node

on the grid, henceforth referred to as thedestination.We assume that the destination is located at

a (normalized) distance of ’1’ from the source node. However, we assume that the source node

hasno prior knowledgeof the location of the destination. Thus, the distance normalization of ’1’

is used merely for comparison and computation of the performance of various strategies that we

will consider, and this information is not available to the routing/query forwarding algorithms in the

network.

We consider the following three query strategies for locating the destination.

(i) Source-only Search:In this strategy, the source transmits a query requesting the destination in-

4

formation. As the location of the destination is unknown, the query propagates through the network

as a random walk. In other words, each intermediate node along the query path picks a neighbor

at random (i.e., with equal probability of 0.25) and forwards the query to it (see Figure 1). The

destination is located at a normalized distance of ’1’ from the source. We assume that all nodes that

are a distance less thanε (for some fixed 0< ε < 1) from the destination know the location of the

destination, or equivalently, they form a spatial memory structure (for example, all the nodes in the

shaded region in Figure 1 have the information, or possibly store the information in a distributed

manner). Thus, if the query enters a region which is at a distance less thanε, the query is said to be

successful. The destination can then pass the information back to the source node by various means

depending on the infrastructure available (for example, using an addressing mechanism where the

routing tables in intermediate nodes are updated by the source query).

Further, we assume that there is a time-out associated with the query. At each intermediate node

along the path of the query, the node could do one of two things: it could decide to not forward the

query with some positive probability, or it could decide to forward the query (to a random neighbor).

Thus, for such a forwarding model, the query will terminate after a geometrically distributed number

of hops (if the destination has not been found).

(ii) Source-Receiver “Sticky” Search: The second strategy we consider is a sticky search. Unlike

the previous case where the source alone sends a query, we now consider the case whereboth

the source and destination send “probes” into the network. As before, the source sends (one or

more) queries. These queries propagate as a random walk, with a geometrically distributed time-

out. However, in addition, the destination also sends probes into the network to advertise itself.

These advertisements propagate over the network in a manner similar to that of a query, i.e., as a

random walk with a geometrically distributed time-out. Henceforth, we will refer to queries and/or

advertisements asprobesthat are transmitted by the source and/or destination.

In addition, the source and destination probes leave a “sticky” trail as they traverse the networks

(see Figure 2). That is, each node in the network through which the source query passes throughre-

membersthat a query passed through it and is searching for some particular information. Similarly,

each node in the network through which the destination advertisement passes throughremembers

that a a probe passed through it advertising the presence of some information. Thus, if the source

(destination) probe passes through a node through which the destination (source) previously passed

5

n
1

source

destination

Figure 2: A source and destination based “sticky” random walk on a sensor grid

through, it can simply trace backward along the destination (source) probe’s path to reach the desti-

nation (source), see Figure 2. This scheme has been proposed by Braginsky and Estrin [2], and the

authors develop the rumor routing protocol for sensor networks based on this idea.

(iii) Spatially-periodic Caching: Finally, the third strategy we consider is spatial caching. As in

the previous cases, we assume source initiates a query which propagates as a random walk with a

geometrically distributed time-out. However, in this case, we assume that the destination information

is assumed to be periodically cached along a regular grid as shown in Figure 3. Thus, we assume

that there is some infrastructure which allows the dispersion of the information to each of the caches.

Further, we assume that each of the caches is of radius 0< ε < 1. Thus, as in the source-only search

strategy,eachcache of radiusε could either be a distributed memory structure, or else one of the

nodes in each cache could have the data, and let all the other nodes within the cache point toward it.

2.1 A Brownian Motion Based Model

In the previous section, we considered a random walk on a grid, with step size 1/
√

n and a geomet-

rically distributed time-out. In this section, we will informally show that forn large enough, this

model can be approximated by a two dimensional planar model, where the source and destination

6

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

n
1

source

Figure 3: Periodic caching over a sensor grid

probes propagate as a Brownian motion with an exponentially distributed time-out. Thus, in the rest

of the paper, we will consider Brownian motion based models for querying over a sensor network.

Let us rotate the coordinate axes by 45 degrees, and let(X(i),Y(i)) be the random variables

which correspond to the discrete step taken at timei, with respect to the new coordinate system.

Thus,(X(i),Y(i)) can take one of four values:(1/
√

2,1/
√

2), (−1/
√

2,1/
√

2), (1/
√

2,−1/
√

2),

or (−1/
√

2,−1/
√

2), each with equal probability, depending on which direction the random walk

propagates.

Thus the location of the random walk(Lx(j),Ly(j)) at time j is given by

Lx(j) =
1√
n

j

∑
i=0

X(i)

Ly(j) =
1√
n

j

∑
i=0

Y(i)

Now, let us define the continuous time processes

Bn
x(s) =

1√
n

b2nsc

∑
i=0

X(i) (1)

Bn
y(s) =

1√
n

b2nsc

∑
i=0

Y(i). (2)

7

Thus, at any continuous times, Bn
x(s) is the x-coordinate of the random walk afterb2nsc time-

steps (and correspondinglyBn
y(s)), and b·c is the integer floor function (i.e., the integer part of

the argument). From standard theory for Brownian motion [11], we can show that the processes

described in (1) and (2) converges (in a suitable sense) to a two dimensional Brownian motion

B(s) = (Bx(s),By(s)) whereBx(s) andBy(s) are independent one-dimensional Brownian motions.

This follows from a central limit theorem type of an argument for functions1.

In addition, we can show that under the time scaling that has been considered here (the mean

time-out of the geometric random variable is scaled as 2nt), the geometrically distributed time-out

converges to an exponentially distributed time-out. We will denote the random variable correspond-

ing to the time-out byτ, whereτ ∼ exp(1/t). In other words,τ is exponentially distributed, with

mean durationE(τ) = t.

Thus, in the rest of this paper, we will study unit variance Brownian motion based models for

querying, and the details of the models will be described in the appropriate sections of this paper.

3 Main Results and Discussion

The main results in this paper are the following:

(i) For a source-only search, in Section 4, we show that the probability that a query is unsuccessful

decays as 1
log(t) , wheret is the mean time-out interval.

(ii) Next, in Section 5, we consider the case where both the source and the destination send sticky

probes (thus, memory in the network is utilized). We show that the probability that a query

is unsuccessful decays as1
t5/8 . Further, withk probes (i.e., the source sends multiple queries,

and the destination sends multiple advertisements), the probability that a query is unsuccessful

decaysat leastas fast ast−5k/8.

(iii) In Section 6, we consider a spatially periodic caching strategy. We show that the probability

that a query is unsuccessful decaysno faster than1
t . We also provide an order computation

which argues that spatial caching in fact leads to an order1
t decay.

1We scale time by 2n in (1) and (2) to ensure that the limiting Brownian motion has unit variance.

8

(iv) The sticky search as well as caching utilize memory that isspatially distributedover the

network. In Section 7, we consider these strategies, as well as a fixed routing strategy that

“directs” the query toward the destination. We show thatspreading the memoryleads to a

decrease in memory requirement while achieving the same query failure probability.

The results in Section 4 shows that the probability that a query is unsuccessful decays as

(logt)−1 for a single source-only search. By using multiple source probes, it is easy to see that

the probability decays as(logt)−k, wherek is the number of probes. On the other hand, the source

and receiver driven search, as well as spatial caching utilize memory in the network.This enables

the decay probability to change from logarithmic decay to polynomial decay.Thus, the implica-

tion is thatno matter how many finite number of source queries are used, we cannot match query

techniques which utilize memory that is spatially distributed over the network.In Section 8, we

will see that there is a marked difference in performance between the source-only search and the

performance of query/search strategies which use memory.

Next, for the source and receiver driven sticky search, the probability that a query is unsuccess-

ful decayat leastas fast ast−k5/8, wherek is the number of probes. However, from the analysis in

Section 6 for spatially periodic caching, the probability that a query is unsuccessful decaysat most

as fast ast−k, wherek is the number of probes.

Thus, as both strategies have polynomial decay laws, by choosing thenumber of probesappro-

priately, it is possible to make the decay asymptotics for both the source and receiver driven search,

as well as that due to spatial caching to be the same.

Finally, in Section 7, we present an argument to show that the memory requirement for caching

is larger (in an order-wise sense) than that for sticky searches. While the spatial caching strategy

requires memory that is proportional to the node densityn (i.e., Θ(n)), the sticky search strategy

requires memory that scales2 asΘ(n/ log(n)).

Further, a caching strategy requires a higher degree of cooperation and infrastructure in the

network than to simply send advertisements. These arguments indicate that the appropriate strategy

for querying over large sensor networks with little infrastructure support would be to use multiple

probes with a sticky strategy.

2A function f (n) is said to beΘ(n) if there exist positive constantsc2 > c1 > 0 such that for alln large enough,
c1 ≤ f (n)/n≤ c2.

9

2ε

Source

Destination

Figure 4: A Source driven search

The heuristic reason for the decrease in memory requirement with the sticky strategy is the

following. While caching “concentrates” the spatial memory into small regions of space, the sticky

strategy distributes it over the path of the query and advertisement. In other words, the sticky strategy

spatially spreadsthe memory.

In Section 7, to illustrate the effect of spreading the memory, we consider arouting strategy

whereevery node in the networkpoints the query toward the destination. In other words, instead of

randomly routing a query, there is a small bias at each node that tends to direct the query toward the

destination. While this strategy requiresfar more infrastructure supportto setup the routing tables

at every node, studying this strategy provides insight into spatially spreading the memory. We show

that such a strategy alsoleads to a polynomial decay in the probability that a query fails. However,

the memory required is far smaller than caching or the sticky strategy, and grows only asΘ(
√

n).

Thus, the results in this paper illustrate the trade-offs involved in spatial memory, infrastructure

and the probability of success in routing a query.

4 Source-only Search

As described in Section 2.1, we consider a query which propagates as a two-dimensional planar

Brownian motion, denoted byB(s), and ceases after an exponentially distributed time-outτ, with

E(τ) = t.

We assume that the destination is at a (normalized) distance ’1’ from the source. Without

loss of generality, we assume that it is located at(−1,0) on the x-y plane (see Figure 4). The

10

destination advertises that it has the required information to a small neighborhood (of radiusε)

around itself. Thus, the query successfully finds the destination if the Brownian motion trajectory

enters the circular region of radiusε about(−1,0).

Let us define

B̂(s) =

{
B(s) s≤ τ
B(τ) s> τ

Thus,B̂(s) is a Brownian motion that has been “stopped” at a random timeτ. Next, we fix some

small value ofε > 0, (ε < 1) and lety = (−1,0). Let A = {x∈ ℜ2 | d(x,y)≤ ε} be a ball of radius

ε centered at(−1,0). Define

psd(t) = Pr
(
B̂(s) does not intersectA

)
Thus,psd(t) is the probability that the query does not locate the information before time-out.

Proposition 4.1 Fix anyε ∈ (0,1). We have

lim
t→∞

(logt)psd(t) = −2logε (3)

Proof: Let us translate the axes such that the receiver is centered at origin. To do so, let us define

W(s) = B(s)− (−1,0),

Â = {x∈ ℜ2 | | x |≤ ε}

Thus,W(s) is the shifted Brownian motion which starts at(1,0), andÂ is a small circular region

about origin. Then, from the translation invariance property of Brownian motion [11], we have

psd(t) = Pr
(

Ŵ(s) does not intersect̂A
)

Let R(t) = |W(t) | be the Euclidean distance ofW(t) from the origin.R(t) is known as the Bessel

process of order zero. Then, we have

psd(t) = Pr
(

Ŵ(s) does not intersect̂A
)

= Pr

(
inf

0≤s≤τ
R(s) > ε

)
,

11

with R(0) = 1. From standard formulas for a Bessel process [1, page 373, 1.2.2], we have that

Pr

(
inf

0≤s≤τ
R(s) > ε

)
= 1−

K0(
√

2/t)
K0(ε

√
2/t)

(4)

whereK0(x) is the modified Bessel function of order zero, and is given by

K0(x) = I0(x) log

(
2
x

)
−C

+
∞

∑
k=1

x2k

22k(k!)2ψ(k+1), (5)

ψ(k+1) = −C +
k

∑
i=1

1
i
, (6)

I0(x) =
∞

∑
k=0

1
(k!)2

(x
2

)2k
, (7)

whereC = 0.5772 is the Euler’s constant. Let us denote

g(x) =
∞

∑
k=1

x2k

22k(k!)2ψ(k+1)

To show (3), we first prove the following.

lim
x→0

| g(x) | = 0 (8)

lim
x→0

| g(x)−g(εx) | = 0 (9)

These follow directly from the definition ofg(·). To see that the limits are well defined, we observe

that

ψ(k+1) < −C +k < k!.

Thus, we have

| g(x) | <
∞

∑
k=1

1
22k(k!)2x2k(k!)

=
∞

∑
k=1

1
k!

(x
2

)2k

= ex2/4−1

Thus, (8) follows. The proof of (9) follows from the triangle inequality. Similarly, we have

lim
x→0

I0(x) = 1 (10)

lim
x→0

| I0(x)− I0(εx) | log(1/x) = 0 (11)

12

Equation (10) follows directly from (7) by substitution. To show (11), for any fixed 0< ε < 1, and

for anyx≥ 0, we have from (7), we have

| I0(x)− I0(εx) | =
∞

∑
k=1

(1− ε2k)
22k(k!)2 x2k

<
∞

∑
k=1

1
22k(k!)2x2k

<
∞

∑
k=1

1
22kk!

x2k

= ex2/4−1

≤ x2

4
,

Thus, we have

0 ≤ lim
x→0

| I0(x)− I0(εx) | log(1/x)

≤ lim
x→0

x2

4
log(1/x)

= lim
y→∞

logy
4y2

= 0

Next, from (4), we have

log(t)psd(t) = log(t)

(
1−

K0(
√

2/t)
K0(ε

√
2/t)

)

= log(t)



 I0(ε
√

2/t) log(2/(ε
√

2/t))
−I0(

√
2/t) log(2/

√
2/t)

−g(
√

2/t)+g(ε
√

2/t)


(

I0(ε
√

2/t) log(2/(ε
√

2/t))
−C +g(ε

√
2/t)

)


= log(t)




1
2 log(2t)(I0(ε

√
2/t)− I0(

√
2/t))

−I0(ε
√

2/t) log(ε)
+(g(ε

√
2/t)−g(

√
2/t))




1
2I0(ε

√
2/t) log(2t)

−C +g(ε
√

2/t)
−I0(ε

√
2/t) log(ε)




13

Now, from (10) and (8), it follows that

lim
t→∞

log(t)
1
2I0(ε

√
2/t) log(2t)

−C +g(ε
√

2/t)
−I0(ε

√
2/t) log(ε)


= 2 (12)

Finally, combining the various limits, from (12), (10), (11) and (9), we have

lim
t→∞

log(t)psd(t) = −2log(ε).

We finally comment that by using multiple independent queries, it is clear that Proposition 4.1

implies

lim
t→∞

(logt)kpsd = (−2log(ε))k,

wherek is the number of queries.

5 Source and Receiver Driven “Sticky” Search

In the previous section, we assumed that the destination advertises in a small neighborhood about

itself. Instead, in this section, we consider the case whereboth the source and destination send

probes into the network. As before, the source sends (one or more) queries, which are described

by means of Brownian motions with exponential time-outs. The destination also sends probes into

the network to advertise itself. These advertisements propagate over the network also as Brownian

motions with exponential time-outs. In addition, as discussed in Section 2, the probes each leave

“sticky” trails as they traverse the networks (see Figure 5), where intermediate nodes in the network

remember the query or advertisement that passed through it.

Let the source initiatem queries, each of which is described by a Brownian motionBsrc
i (t), i =

1,2, . . . ,m. Over any interval of time[0,T], we denoteBsrc
i [0,T], i = 1,2, . . . ,m to be the correspond-

ing trajectories. Similarly, let the destination initiaten advertisements, each of which is described

by a Brownian motionBdst
j (t), j = 1,2, . . . ,n, with the corresponding trajectories over[0,T] denoted

by Bdst
j [0,T], j = 1,2, . . . ,n.

14

Source

Destination

1

Figure 5: Source-destination “sticky” search, where the query and the advertisement both leave trails
in the network

Then, in recent work by Lawler et. al. [16, 17, 18] on intersection exponents for Brownian

motion, the authors show the following result. Let us define

qmn(T) =

Pr

[(
m[

i=1

Bsrc
i [0,T]

)\(
n[

i=1

Bdst
i [0,T]

)
= φ

]
Thus,qmn(t) is the probability that the two “bundles” of Brownian motions will never intersect over

the time interval[0,T].

Theorem 5.1 [Lawler, Schramm and Werner 2000] There exist c> 0 such that for any T≥ 1,

1
c

T−η(m,n) ≤ qmn(T) ≤ cT−η(m,n)

where

η(m,n) =
1
96

[(√
24m+1+

√
24n+1−2

)2
−4

]

In the problem we consider on source and receiver driven search, each Brownian motion has an

independent time-out. Letτsrc
i , i = 1,2, . . . ,m, andτdst

j , j = 1,2, . . . ,n, be independent, identically

distributed exponential random variables, withE(τsrc
i) = E(τdst

j) = t. Let us denote

pmn(t) =

Pr

[(
m[

i=1

Bsrc
i [0,τsrc

i]

)\(
n[

j=1

Bdst
j [0,τdst

j]

)
= φ

]

15

Thus,pmn(t) is the probability that the two “bundles” of Brownian motions3, each with an indepen-

dent time-out will never intersect. In our case, we have randomness due to two sources: the path of

the Brownian motions, and the exponential time-outs. Interestingly, we observe that forn+m≤ 3,

the decay function ofpmn(t) depends only on the randomness due to the path of the Brownian mo-

tions. Using Theorem 5.1, we will derive the exact asymptote. However, for larger numbers of

Brownian motions, the randomness due to the exponential time-outs could also become a factor, and

we will derive an upper bound on the non-intersection probability.

Proposition 5.1 There exist finite, strictly positive constants c1,c2 such that

c1 ≤ liminf t→∞ t5/8p11(t)

≤ limsupt→∞ t5/8p11(t) ≤ c2 (13)

c1 ≤ liminf t→∞ t p21(t)

≤ limsupt→∞ t p21(t) ≤ c2 (14)

Further, for any k≥ 1, there exists a finite, positive constant, c3(k) > 0, such that

limsup
t→∞

t5k/8pkk(t) ≤ c3(k) (15)

Proof: We first consider (13). Let us definēτ = max{τsrc
1 ,τdst

1 }, andτ = min{τsrc
1 ,τdst

1 }. Then, we

have

pmn(t) = Pr
[
Bsrc

1 [0,τsrc
1]

\
Bdst

1 [0,τdst
1] = φ

]
≤ Pr

[
Bsrc

1 [0,τ]
\

Bdst
1 [0,τ] = φ

]
=

Z ∞

0
q11(s)

2
t
e−2s/tds,

where the last step follows from the definition ofqmn(T), and the fact that min of two independent

3From symmetry, we havepmn(t) = pnm(t).

16

exponential random variables is also an exponential random variable. Thus, we have

pnm(t) =
Z 1

0
q11(s)

(
2
t

)
e−2s/tds

+
Z ∞

1
q11(s)

(
2
t

)
e−2s/tds

≤
Z 1

0

2
t
e−2s/tds

+ c
Z ∞

1
t−5/8

(
2
t

)
e−2s/tds (16)

= (1−e−2/t)+
cΓ(3/8,2/t)

t5/8
, (17)

whereΓ(·, ·) is the incomplete Gamma function. Equation (16) follows from Theorem 5.1, and the

fact thatq11(s) ≤ 1. Equation (17) follows from expressions for exponential integrals [5, Section

3.381].

Now, observe that(1− e−2/t) = 2/t + o(1/t). Further, it follows from the definition of the

incomplete Gamma function that limt→∞ Γ(3/8,2/t) = Γ(3/8) ≈ 2.27. Thus, the upper bound in

(13) follows. Similarly, the lower bound in (13) can be derived using the definition ofτ̄. The proof

of (14) is identical. We skip the details for brevity.

To show (15), observe that

pkk(t) ≤ [p11(t)]
k (18)

To see this, recall that we havek independent Brownian motions originating from the source, which

are indexed byi = 1,2, . . . ,k; andk independent Brownian motions originating from the destination,

which are indexed byj = 1,2, . . . ,k. By considering intersectionsonly between equal indices(i.e.,

i = j), and neglecting all intersections with indicesi 6= j, the bound in (18) follows from the inde-

pendence of the paths and the time-outs. Thus, (15) follows.

Remark 5.1 In Proposition 5.1, we have the exact asymptotics when n+ m≤ 3. However, when

n+m≥ 4, we provide only an upper bound.

This is explained by observing that when n+ m≤ 3, the upper bound based on the minimum

of the time-outs is dominated by the randomness in the Brownian paths, and not the randomness

17

1 − ε

2

2ε

Figure 6: A spatially periodic cache

in the time-out. This can be seen from (17). The first term in the summation corresponds to the

randomness in the time-out, and the second term corresponds to the randomness in the paths. The

first term is of order1/t, while the second term decays slower. Thus, the asymptote is dominated by

the randomness in the Brownian path. However, for n+m≥ 4, the asymptote due to the Brownian

path decays as1/ta for some a> 1. Thus, a bound using the minimum of time-outs will not provide

a tight bound. In general, it is possible that the exact asymptote will depend on both the randomness

due to the paths as well as the randomness due to the time-outs.

6 Spatially Periodic Caching

Unlike in the previous sections where the target information was localized, in this section, we con-

sider asymptotics of caching (see Section 2). Assume that the source initiates a query from origin.

The destination information is assumed to be periodically cached along a grid (see Figure 6), with

the distance from the origin to the nearest cache being normalized to ’1’. A smallε is chosen, and

each cache is assumed to be of radiusε.

Let us definepspc(t) to be the probability that the query times-out before it reaches any cache

(such as for the trajectory in Figure 6).

18

Proposition 6.1 Fix anyε ∈ (0,1). We have

lim
t→∞

t pspc(t) ≥ (1− ε)2

2
(19)

Proof: The result follows from asymptotics of a killed Bessel process. As in Proposition 4.1, let

R(t) =| B(t) | be the Euclidean distance ofB(t) from the origin.

Suppose that the Bessel processR(t), (the “radius”’ process) does not exceed 1−ε before time-

out (see Figure 6). Then, this clearly implies that the Brownian motion does not hit a cache before

time-out. Thus, we have

pspc(t) ≥ Pr

(
sup

0≤s≤τ
R(s) < 1− ε

)
,

with R(0) = 0. From standard formulas for a Bessel process [1, page 373, 1.1.2], we have that

Pr

(
sup

0≤s≤τ
R(s) < 1− ε

)
= 1− 1

I0((1− ε)
√

2/t)

whereI0(x) is defined in (7). Thus, we have

t pspc(t) ≥
t(I0((1− ε)

√
2/t)−1)

I0((1− ε)
√

2/t)
(20)

Consider the numerator in (20). We have

t(I0((1− ε)
√

2/t)−1) = t
∞

∑
k=1

1
(k!)2

(
1− ε

2

√
2
t

)2k

= t
∞

∑
k=1

1
(k!)2(1− ε)2k

(
1
2t

)k

=
(1− ε)2

2

∞

∑
k=1

1
k2

1
((k−1)!)2(1− ε)2(k−1)

(
1
2t

)k−1

=
(1− ε)2

2

∞

∑
l=0

1
(l +1)2

1
((l)!)2(1− ε)2l

(
1
2t

)l

=
(1− ε)2

2

+
∞

∑
l=1

(1− ε)2

2(l +1)2

1
((l)!)2(1− ε)2l

(
1
2t

)l

(21)

19

Substituting (21) in (20), and taking the limit ast → ∞, the result follows.

The bound derived in this section is optimistic, in the sense that it under-estimates the probabil-

ity that the query does not locate a cache (note that for a “perfect” search strategy, this probability

should be zero). Thus, the result says that the “miss” probability is no better than order 1/t. In the

next section, we present an approximate computation which suggests that the bound captures the

correct order of decay with respect tot.

Remark 6.1 We comment that the computation used in Proposition 6.1 could also be used to model

a sensor network with multiple exit points to a wired Internet. Another example could consist of a

large number of sensor nodes which measure some physical quantity, and report this data to one of

many “fusion centers.” If the location of the fusion centers are not known, the analysis in this section

and that in Section 6.1 could be used to determine the time-out that is needed for the message to be

transfered to any one fusion center with a low probability of failure.

6.1 A Computation for Correctness of Order

In this section, we present an approximate computation that indicates that the optimistic bound

in Proposition 6.1 is of correct order (with respect tot). As in the previous section, consider a

spatially periodic cache as shown in Figure 7, with distance between consecutive caches being
√

2.

In addition, we consider a boundary (indicated by the dotted curve in Figure 7), which consists of a

circle with four protuberances. For smallε, the curve is approximately a circle of radius ’1’.

Now consider a Brownian motion which starts at origin. There are three possible cases to

consider: (i) due to time-out, the Brownian motion terminates before it hits the dotted curve in

Figure 7 (i.e., before it travels a distance (approximately) ’1’ from origin) which is illustrated by the

thick trajectory in Figure 7,(ii) the Brownian motion hits the dotted curve, butdoes nothit a cache,

and(iii) the Brownian motion hits the dotted curve, and hits a cache.

Consider Case (ii), where the Brownian motion hits the dotted curve, butdoes nothit a cache.

This is illustrated in Figure 7 by the trajectory which hits some point ’x’ on the dotted curve. From

the independent increments property of the path of the Brownian motion [11], and the memoryless

20

x

2ε

Figure 7: Approximation by periodic “restarting”

property of the exponential time-out, we can ’restart’ the Brownian motion from location ’x’ inde-

pendent of both the path and the time it took to get there. In other words, we can reset the time to

zero and consider a new exponential time-out as well as a new Brownian motion with initial value

of ’x’, independent of the past history.

As an approximation, instead of restarting at ’x’, we will restart the Brownian motion at origin.

This seems to be a conservative approximation. To see this, suppose that ’x’ is very close to a

cache. Then, restarting at origin will lead to a smaller cache hitting probability than restarting at ’x’.

However, for a small cache radiusε, the probability that ’x’ is close to a cache is small. For a small

value ofε, given that the Brownian motion trajectory hits the dotted curve, ’x’ is (approximately)

uniformly distributed over the dotted curve, and the probability that it hits a cache is approximately

(4×2ε)/(2π). Thus, with large probability, ’x’ is not very close to a cache.

Now, letq(t) = 1− pspc(t), be the probability that the Brownian motion trajectory hits a cache

before time-out. Next, letf (ε) to be the probability that the trajectory hits a cache on the boundary of

the dotted curve given that the Brownian motion trajectory hits the dotted curve. From the discussion

in the previous paragraph, for a small value ofε, we have

f (ε) ≈ 4ε
π

Finally, letg(ε, t) be the probability that the trajectory hits the dotted curve (irrespective of whether

it hits a cache or not) before time-out. For smallε and larget, from the discussion in Proposition 6.1,

21

we have

g(ε, t) ≈ 1− (1− ε)2

2t

With the above definitions, and our approximation (of restarting the Brownian motion at origin),

we have

q(t) ≈ [g(ε, t) f (ε)]+ [g(ε, t)(1− f (ε))][g(ε, t) f (ε)]

+[g(ε, t)(1− f (ε))]2[g(ε, t) f (ε)]+ . . .

The first term corresponds to the probability that the Brownian motion trajectory hits a cache when

it first hits the dotted curve (Case (iii) we considered earlier). The second term corresponds to the

probability that initially Brownian motion hits the dotted curve, butdoes nothit a cache. However,

the restarted Brownian motion hits a cache. A similar reasoning holds for the third term, and so on.

Thus, summing the geometric series, we have

q(t) ≈ g(ε, t) f (ε)
1−g(ε, t)(1− f (ε))

From the definition ofq(t), we now have

pspc(t) = 1−q(t)

≈ 1−g(ε, t)
1−g(ε, t)(1− f (ε))

Simplifying, and using the approximate expression forg(ε, t), we have

pspc ≈ (1− ε)2

2
1

f (ε)t + (1−ε)2

2 (1− f (ε))

Thus, for larget, and fixedε > 0, this indicates that

pspc(t) ∼ 1
t
,

i.e., this suggests that the bound derived in Proposition 6.1 is of the correct order with respect tot.

7 Memory Requirement and Comparison

As we have discussed in Section 3, for a source only search, the results in Section 4 shows that the

probability decays to zero only logarithmically fast (i.e.,(logt)−k, wherek is the number of probes).

22

Θ(1/ δ)

Figure 8: Order computation for memory with periodic caching

On the other hand, the sticky search as well as caching utilize memory in the network, andthis

enables the decay probability to change from logarithmic decay to polynomial decay.Thus, as both

are polynomial decay laws, by choosing the number of probes appropriately, it is possible to make

the decay asymptotics for the sticky search and due to spatial caching to be the same.

7.1 Memory Comparison of Sticky Search and Caching

Now, let us consider the memory requirements for the spatially periodic caching strategy. From

properties of Brownian motion, over an interval of time[0,T], the Brownian motion traverses a

distance
√

T. Thus, given that the probability that a query fails is at mostδ, the search time-out

should be set to have a mean of (order)(δ)−1 (becausepspc(t) ∼ 1/t). Over this interval of time,

the Brownian motion will traverse a distance of order
√

δ−1 from origin (see Figure 8). Thus, when

spatially periodic caching is used, we need to make sure that caching is present at least over the

region of radius
√

δ−1 from origin.

As there is one cache per unit area (a unit square about origin contains four “quarter” caches),

we need a total ofπ/δ− 1 caches4, where we subtract ’1’ in the expression to discount for the

“original” destination.

4The area of a circle with radius
√

δ−1.

23

On the other hand, the Lebesgue measure of the trajectory of Brownian motion (i.e., the “area

occupied” by the Brownian motion) is zero (though its Hausdorff dimension is 2 which indicates

that is not far from having positive Lebesgue measure [4]).

The analysis in this paper is a continuum approximation of a large sensor network. Let us

now consider the discrete grid model withn nodes per unit area. As the caching strategy requires

memory corresponding to a strictly positive area in the limiting regime, it follows that for largen,

the memory requirement will need to scalelinearly with the number of nodes per unit area. In other

words, memory inΘ(n) nodes will be used to aid the query.

However, a sticky search uses memory only along the path of the Brownian motion. Thus,

this strategy will require memory to scalemore slowly than the number of nodes per unit area (i.e.,

memory in o(n) nodes will be used to aid the query),as the Lebesgue measure of the Brownian

trajectory is zero. In fact, the average number ofdistinct nodesthat a random walk traverses overn

time-steps scales asn
log(n) (see [15]).

Thus, the above argument indicates that the memory requirement for caching is larger (in an

order-wise sense) than that for sticky searches.

Further, a caching strategy requires a much higher degree of cooperation in the network than to

simply send sticky probes. These arguments indicate that the appropriate strategy for querying over

large sensor networks would be to use multiple sticky probes.

7.2 Spatial Spreading and Memory Requirements

In the previous section, we compared the caching strategy and the sticky search. We showed that

both have polynomial decays, but the amount of memory used was order-wise different. The heuris-

tic reason for such a difference is that a sticky search “spreads” the spatial memory whereas a

caching strategy “concentrates” the spatial memory.

In this section, we consider a strategy that spreads memory over space in a radially symmetric

manner as shown in Figure 9. With such a spreading scheme, the question we are interested in is

the following: How much memory is required in order to result in a failure probability that decays

polynomially?

24

destination

source

angular drift

Figure 9: A radially symmetric drift pointing toward the destination.

The main result in this section is thatby spreading the memory in a radially symmetric and

“uniform” manner, one needs memory that grows only asΘ(
√

n), while maintaining polynomial

decay in failure probability.

We recall from the previous section that a sticky search requires spatial memory that grows

asΘ(n/ log(n)). At first sight, the radial-symmetric drift strategy seems much better as it requires

order-wise less memory. However, note that querying with a radially symmetric drift requiresmuch

more infrastructureas compared to the sticky search. In particular,all the nodes in the networkneed

to have an approximate sense of the location of the destination. On the other hand,a sticky search

requires no additional network support.Thus, comparing querying with a radially symmetric drift

with a sticky search is not a fair comparison. Nevertheless, the results in this section are of interest

as theyquantify the effect of spatially spreading the memory.

As before, we consider a single query generated by a source that is initially located at the

coordinates(1,0) on the x-y plane, and a destination that is located at(0,0). At any point in space

that is a distancer from the origin, we consider a radially symmetric drifta(r) over space that is of

the form

a(r) = −µ− 1
2r

, (22)

for someµ≥ 0. The intuition for such a drift component is the following: The first component,µcor-

responds to a constant “push” toward the origin. The second component,1
2r , corresponds to memory

25

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

destination

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Figure 10: A constant amount of spatial memory is “spread” over each infinitesimal ring about the
destination. Thus, the memory “density” decreases with distance.

0.25

0.25

0.25

0.25

r n

2 n

a(r)

2 n

a(r)

destination

destination

routing with radial drift

routing without drift

0.25

0.25

0.25 −

nodes

0.25 +

Figure 11: Radial drift over the grid network. A distance ofr in the diffusion model corresponds to
a r
√

n hops. With drift, a distance dependent bias,a(r), is introduced. From the diffusion scaling,
this corresponds to aΘ(1/

√
n) bias per node toward the destination.

per node that decay with distance. This decay corresponds to aconstant amount of memory for each

infinitesimal ringabout origin (see Figure 10). This follows from the fact that the area of each ring

of width dx is given by 2πr dx. Thus, the amount of memory per ring is simply(2πr dx)× 1
2r . The

heuristic for such a component is thatfar away from the destination, only an approximate sense of

direction is required.However,close to the destination, more precise information is required.From

a mathematical perspective, such a drift is chosen such that it compensates for the drift component

of the Bessel process (radial distance from the destination) corresponding to the two-dimensional

Brownian motion of the query.

Over the grid network described in Section 2.1, random routing at a node can be represented

26

by means of arouting vectorwith all four components5 (corresponding to the four neighbors) being

0.25. This means that the node will pick any one of the four neighbors with equal probability while

routing a query (see Figure 11).

On the other hand, with the radial drift strategy over the grid network, instead of routing to any

neighbor with equal probabilities of 0.25, there is now a small bias to route toward the destination.

From the diffusion scaling, it can be shown that a drift ofa(r) at a spatial location that is a dis-

tancer (or equivalently, a distance ofr
√

n nodes) from origin corresponds to a bias in the routing

probabilities that is of ordera(r)/
√

n (see Figure 11).

The sticky search strategy requires each node to remember the previous hop node that forwarded

the query to it. This can be represented by each node having a routing vector that has a component

of ’1’ pointing toward the node from which the query first arrived, and ’0’ in other directions. Nodes

through which the querydid notpass through would have a routing vector with all components being

0.25 (corresponding to random routing).

A measure of the spatial memory required at each node for a routing strategy is the deviation

of the routing vector from the corresponding routing vector for the random strategy6. This measure

captures thecertaintywith which a node knows the appropriate routing decision in order to reach

the destination. In other words, suppose that a strategy requires a routing vector[p00 p01 p10 p11], a

measure of the certainty (and thus, the memory required) at the node is computed as∑i, j |pi j −0.25|.

Thus, with a sticky search, the memory required isΘ(1) per node through which a query passed.

This leads to a total memory requirement thatscales as the number of distinct nodes that a query

passes through.From standard results on a random walk [15], this is of orderΘ(n/ log(n)) as

discussed earlier in Section 7.

On the other hand, the radial drift strategy requires memory that is of order|a(r)|/
√

n for each

node,wherer is the distance of the node from the destination. Using an argument analogous to that

in Section 7.1, we can “truncate” the infinite plane to a finite region about the destination (illustrated

in Figure 8). We now compute the memory required with a radial drift strategy be first decomposing

5A routing vector[pup pdown ple f t pright] is vector of non-negative components which sum to 1.
6Such a measure can be also be interpreted as a continuum “spreading” of a fixed amount of routing resource

(memory) as in [7]. Thus, as the author discusses in [7], a practical implementation could consist of a small number
of nodes having precise direction information, and most nodes having no information, resulting in an overalldrift in a
particular direction.

27

a(r) into two components:(i) the constant driftµ, and(ii) the radially decreasing component1
2r . The

memory required for the constant component scales asΘ(1/
√

n) per node. As there aren nodes per

unit area, the memory required due to this component is of orderΘ(
√

n). The radially decreasing

component12r satisfies the property that the amount of memory per unit ring about the destination is

constant (i.e.,Θ(1) per ring). As the discrete grid can be decomposed intoΘ(
√

n) rings, it follows

that the total memory required for the second component scales asΘ(
√

n). Hence, it follows that

the total memory required with the radial drift strategy grows asΘ(
√

n). The above discussion is

summarized in the following Proposition.

Proposition 7.1 The spatial memory requirement to support the radial drift strategy described in

(22) scales asΘ(
√

n), where n is the node density.

Next, we derive the query failure probability with this strategy. With the radial drift strategy in

(22), and with a fixedµ, let us defineprd,µ(t) to be the probability that the query does not locate the

information before time-out.

Proposition 7.2 With the radial drift strategy described in (22), and with µ= 0, we have

lim
t→∞

√
t prd,0(t) = 1. (23)

Further, for any µ> 0, we have

lim
t→∞

t prd,µ(t) =
1
2µ

. (24)

Proof: We consider a two dimensional Brownian motionB(s) = (Bx(s),By(s)), with initial condition

(Bx(0),By(0)) = (1,0). As before, the query is assumed to time-out after an exponentially distributed

interval of timeτ, with E(τ) = t. Let us define

τ̄ = inf{s≥ 0 : (Bx(s),By(s)) = (0,0)}

to be the first time that the planar Brownian motion hits the origin. Fix any times∈ [0, τ̄), and a

radial drift field given by (22). It follows from Ito’s formula (see [11, 7]) that at any times, the radial

distance of the location of the Brownian queryR(s) from destination (located at(0,0)) is described

by the stochastic differential equation

dR(s) =
1

2R(s)
dt+a(R(s))dt+dB̃(s),

28

with R(s) ∈ [0,∞), a(·) given by (22), andB̃(s) is a one-dimensional Brownian motion. Thus, we

have

prd,µ(t) = Pr(τ < τ̄)

= Pr(inf
0≤s≤τ

R(s) > 0)

From standard results on Brownian motion [1, page 251], it follows that

prd,µ(t) = 1−e−µ+
√

µ2+2/t (25)

By taking appropriate limits ast → ∞, (23) and (24) follow.

Remark 7.1 We note that the radially symmetric routing strategy has been studied in [7] in the

context of determining the optimal way of distributing a given amount of memory over space to

minimize the expected hitting time of the destination. The author in [7] showed that a better strategy

than radially distributing memory would be to “concentrate” memory along radial bands (a bicycle

wheel spoke like pattern).

In this paper, we consider only the radially symmetric strategy, as our objective is the quantify

the gain due to spreading. However, using the results in [7] and combining with computations

similar to that in Section 6, we can show that using a spoke-like routing strategy is order-wise

the same as radially symmetric routing (with respect to the large t asymptote). In other words, it

can be shown that a spoke-like routing strategy will result in at best1
t decay in failure probability,

with a memory that grows asΘ(
√

n). As our main motivation in this section is to demonstrate that

spreading is beneficial, and this has been shown using a simpler radially-symmetric scheme, we skip

the details.

8 Simulation Results over a Discrete Grid

In this section, we present simulation results for a grid network. We consider a regular grid withn=

100 nodes per unit area (see Figure 1), and the spacing between neighboring nodes is 1/
√

n = 0.1.

Thus, in this section, we study simulation results for the random walk models described in Section 2

and the scaling described in Section 2.1.

29

Mean Time (t) S-O S S-R S S-P C

1 0.975 0.515 0.659

10 0.826 0.132 0.125

100 0.646 0.016 0.014

Table 1: Comparison of query strategies over a discrete grid. We consider a grid a with density
of 100 nodes per unit area. The queries and advertisements propagate as a random walk with a
geometrically distributed time-out. The numbers in the table represent probabilities of unsuccessful
query. Abbreviations key: Source-Only Search (S-O S), Source-Receiver “sticky” search (S-R S),
Spatially-periodic caching (S-P C)

From the scaling described in Section 2.1, an interval of timeT will correspond to 2nT discrete

time-steps. Thus, exponentially distributed time-out with meant will correspond to a geometrically

distributed random variable with mean 2nt.

In Table 1, we present simulation results for the mean time-outt = 1,10 and 100 respectively,

with the cache radius,ε = 0.15.

We see that for the source-only search, the probability that a query is unsuccessful decays ex-

tremely slowly witht. However, for the source and receiver driven search as well as spatial caching,

the probability that a query is unsuccessful decays much faster. This agrees with the asymptotes

which we have earlier discussed, where-in, we have shown that using spatial memory considerably

increases the decay rate with respect tot, the mean time-out.

On the other-hand, the probability that the destination is not found is approximately the same

for the source and receiver driven search, as well as with spatial caching. It is seen that for large

t, spatial caching only slightly out-performs a sticky strategy. As both are polynomial decays, this

simulation result is not very surprising, given the analytical results in the previous sections. Thus,

the numerical results validate the asymptotic results in this paper.

9 Conclusion

In this paper, we have considered the the problem of a user querying for information over a sensor

network, where the user does not have prior knowledge of the location of the information. We

have shown that for a source-only search, the probability that a query is unsuccessful decays to zero

30

only logarithmically fast (i.e.,(logt)−1). However, for schemes that utilize spatial memory in the

network (the source and receiver driven search as well as spatial caching), this probability decays

polynomially fast (i.e.,t−α, for someα > 0 depending on the scheme).

The sticky search as well as caching utilize memory that isspatially distributedover the net-

work. We have shown thatspreading the memoryover space leads to a decrease in memory re-

quirement, while maintaining a polynomial decay in the query failure probability. In particular, the

memory requirement for the sticky search is smaller (in an order sense) than that for spatial caching,

without requiring much infrastructure support. Thus, the results in this paper make a strong case for

utilizing a source and receiver driven sticky search in a sensor network with little infrastructure.

References

[1] A. N. Borodin and P. Salminen.Handbook of Brownian Motion - Facts and Formulae. Birkhauser, 2002.

[2] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. InFirst Workshop on Sensor
Networks and Applications (WSNA), September 2002.

[3] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying and routing for ad
hoc heterogeneous sensor networks. Technical Report P2001-10113, Xerox PARC, 2001.

[4] J. F. Le Gall. Some properties of planar Brownian motion. Ecole d’ Ete de Probabilites XX-1990,
Lecture Notes in Mathematics 1527. Springer-Verlag, 1990.

[5] I. S. Gradshteyn and I. M. Ryzhik.Table of Integrals, Series and Products. Academic Press, 2000.

[6] M. Grossglauser and M. Vetterli. Locating nodes with EASE: Last encounter routing in Ad Hoc networks
through mobility diffusion. InProceedings of IEEE Infocom, San Francisco, CA, June 2003.

[7] B. Hajek. Minimum mean hitting times of Brownian motion with constrained drift. InProceedings of
the 27th Conference on Stochastic Processes and Their Applications, July 2000.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust communica-
tion paradigm for sensor networks. InProceedings of ACM Mobicom, Boston, MA, August 2000.

[9] R. Jain, A. Puri, and R. Sengupta. Geographical routing using partial information for wireless ad hoc
networks.IEEE Personal Communications, 8(1):48–57, February 2001.

[10] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking for smart dust. InProceedings of ACM
Mobicom, Seattle, WA, August 1999.

[11] I. Karatzas and S. Shreve.Brownian Motion and Stochastic Calculus. Springer, New York, NY, 1996.

[12] B. Karp and H. T. Kung. GSPR: Greedy perimeter stateless routing for wireless networks. InProceed-
ings of the ACM/IEEE International Conference on Mobile Computing and Networking, pages 243–254,
Boston, MA, August 2000.

31

[13] A.-M. Kermarrec, L. Massoulie, and A.J. Ganesh. Scamp: Peer-to-peer lightweight membership service
for large-scale group communication. InProceedings of the Third International Workshop on Networked
Group Communications (NGC 2001), London, UK, November 2001.

[14] G. Kesidis, T. Konstantopoulos, and S. Phoha. Surveillance coverage and communication connectivity
properties of ad hoc sensor networks under a random mobility strategy. preprint, 2002.

[15] H. Larralde, P. Trunfio, S. Havlin, H. Stanley, and G. Weiss. Number of distinct sites visited by N
random walkers.Phys. Rev. A, 45, 1992.

[16] G. F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents I: half-plane
exponents.Acta Mathematica, 187:237–273, 2001.

[17] G. F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents II: plane expo-
nents.Acta Mathematica, 187:275–309, 2001.

[18] G. F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents III: two-sided
exponents.Ann. Inst. Henri Poincare, 38:109–123, 2002.

[19] M. J. Lin, K. Marzullo, and S. Masini. Gossip versus deterministic flooding: Low message overhead
and high reliability for broadcasting on small networks. Technical Report CS1999-0637, University of
California at San Diego, 18 1999.

[20] M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in mobile ad-hoc net-
works. IEEE Network Magazine, 15, November 2001.

[21] N. Sadagopan, B. Krishnamachari, and A. Helmy. The ACQUIRE mechanism for efficient querying
in sensor networks. InIEEE International Workshop on Sensor Network Protocols and Applications
(SNPA’03), May 2003.

[22] S. Shakkottai, R. Srikant, and N. B. Shroff. Unreliable sensor grids: Coverage, connectivity and diame-
ter. InProceedings of IEEE Infocom, San Francisco, CA, June 2003.

[23] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie. Protocols for self-organization of a wireless sensor
network. IEEE Personal Communications, 7(5):16–27, October 2000.

32

