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Abstract—We study throughput-optimal scheduling/routing
over mobile ad-hoc networks with time-varying (fading) chanels.
Traditional back-pressure algorithms (based on the work by
Tassiulas and Ephremides) require instantaneous networktate
(topology, queues-lengths, and fading channel-state) inraer to
make scheduling/routing decisions. However, such instaaheous
network-wide (global) information is hard to come by in practice,
especially when mobility induces a time-varying topology.

With information delays and a lack of global network state,
different mobile nodes have differing “views” of the network,
thus inducing uncertainty and inconsistency across mobil@odes
in their topology knowledge and network state information. In
such a setting, we first characterize the through-optimal rte
region and develop a back-pressure-like scheduling algahm,
which we show is throughput-optimal. Then, by partitioning the
geographic region spatially into disjoint tiles, and sharhg delayed
topology and network state information only among mobile nales
currently within each tile, we develop a localized low-comfexity
scheduling algorithm. The algorithm uses instantaneous tmal
information (the queue length, channel state and current psition
at a mobile node) along with delayed network state informatn
from nodes that were within its tile (i.e., from nodes that wee
within a nearby geographic region as opposed to network-wie
information). The proposed algorithm is shown to be near-
optimal, where the geographic distance over which delayed
network-state information is shared determines the provake
lower bound on the achievable throughput.
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in order to make scheduling/routing decisions. However, in
a mobile network with a time-varying topology, it does not
seem reasonable to expect all nodes to have such instansaneo
network-wide (global) information. Furthermore, in gealer
there is no central controller in mobile ad hoc networks, so
each mobile has to make transmission decisions based on
the information it collects. Thus, a challenging problentas
develop distributed scheduling algorithms with channad an
topology uncertainty.

We consider a network witlv sender-receiver (S-R) pairs,
where the S-R pairs move according to Markovian processes.
We assume that each mobile knows its own current position
and instantaneous channel state, but it only has other esbil
information with delayr. This information delay along with
the lack of global network state induces uncertainty and
inconsistency in the topology knowledge and network state
information (due to the fact that different mobile nodeséav
different “views” of the network). Our focus of this paper is
to first understand the fundamental network throughpubregi
under the information inconsistency and topology uncetyai
and then develop online scheduling algorithms that areragti
or near optimal.

A. Main Contributions
The main contributions of this paper include:

Mobile ad hoc networking is one of the most innovative (1) We first characterize the network throughput region

emerging networking technologies and has broad applitatio

under the information structure that each pair has own

in various domains (e.g., battlefield communications, cear
and rescue operations, range extension for rural networks)
Mobile nodes communicate with each other using wireless
communication, where simultaneous nearby transmissians c (2)
cause significant interference. To develop a high-perfocea
mobile ad hoc network, a key step is to design scheduling
algorithms that selectively activate a subset of links adicg

to the known network state information in order to avoid
excessive interference as well as maximize network threugh
put. In this paper, we study scheduling algorithms for mmbil
ad-hoc networks with time-varying (fading) channels. Most
studies in literature that build on the on the work of Tassul

and Ephremides [1], [2]) (in the context of time-varying
channels and/or topology) require all nodes in the network
to have (globally shared) instantaneous network state, (e.g(3)
topology knowledge, queues-lengths, and fading chartagd)s

instantaneous channel and geographic information, but
only other pairs’ information with a delay of time
slots.

We then propose a back-pressure-like scheduling al-
gorithm where each mobile first computes a location-
based threshold function with the global delayed infor-
mation; and then makes transmission decisions based
on its current position, instantaneous channel state and
the threshold value. We show that the algorithm is
throughput-optimal, i.e., it can stabilize the network as
long as the traffic is within the network throughput
region. Each mobile, however, needs to compute the
threshold function, and the computation complexity is
proportional to the network size.

Finally, we propose a localized scheduling algorithm,
where we partition the geographic region spatially into



disjoint tiles and delayed topology and network state in-
formation are sharednly among mobile nodes currently
within each tile We develop a near-optimal algorithm for
distributed scheduling. The algorithm uses instantaneous
local information along with delayed network state infor-
mation from nodes that were within its tile (i.e., from
nodes that were within a nearby geographic region as
opposed to network-wide information). We show that
this algorithm is near-optimal; more formally, we show
that traffic A[t] is supportable if(1 + €) (A[t] + §) is
supportable under some throughput-optimal algorithm,
where ¢ is the parameter depending on the spatial
scale of the tiles. The computation complexity of the
algorithm is only determined by the size of the tiles and
the corresponding mobile nodes within a tile (as opposed
to all mobile nodes in the network).

A

Fig. 1. N S-R pairs deployed in a square area with side-lerigth

Mobility Model: We consider a discrete-time system. We
assume that the pairs move at the beginning of each time

B. Related Work slot, and stay still within a time slot. The mobility of each

Throughput-optimal routing/scheduling algorithm wastfird 2!l 15 Mar.kowf':ln and over a d|§crete squarg—la_tﬂce ovet th
square region, i.e., the next location of a mobile is deteeahi

proposed in [1], [2]. Assuming that all mobile or static nede’” ™. .
have perfect global knowledge of the queue, channel and—top%y its current location, and does not depend on the other

: : : . history information, and the next location is on a (possibly
ogy state, throughput-optimal routing/scheduling aldpons . . . : :
hegl\);e been develgc])p?ad foFr) different ne%works [3],%4], [5]], [6 fine resolution) grid. We.assume t_hat the Q|stance a mobile
[71, 18], [2], [10], [11]. There has also been much work jcan move at the beginning of a time slot is no more than

developing distributed and low-complexity implementatio Umax- Fl_thhermore, we assume that the_ mob|l|ty processes
[12], [13], [14], [15], [16], [17]. Please see [18], [19] fax are stationary and ergodic, and the stationary distribuiso

survey. uniform over the square area (we abuse notation in that the

There have been some studies in the context of incomplgf%uare':";‘rea.1 acltygtlly mealns the d'scrteﬁeilz;[t'cﬁ (zver Umraq
network state information (missing/delayed channel, guau area). For simplicity, we also assume that the distance

topology state). To the best of our knowledge, the earlie%tSender and its receiver 18, which is fixed for allt. Our

work to consider delayed queue-length information and iESUItS can be easily extended to the case where the distance
impact on stability of back-pressure algorithms is [20]. | etween a sender and its receiver is time-varying, but upper

a down-link/up-link wireless scenario that explore thedé&a and lower bounded. We denote Byl¢] the location of the

off between channel measurements and opportunistic gasiﬁnderl at time slott, and R,[t] the location of receivet at
studies include [21], [22], [23], [24], [25], [26], [27], @, Ume slott. _ o

[29], [30]. With i.i.d. channels and a static network, [38sh Channel Model: We assume that time-varying wireless
developed routing/scheduling algorithms with noisy creinnchannel between each S-R, and each channel can be character-
estimates. In [32], the authors have studied throughptitrap ized with a f|n|Fe-state Markov chain. We denote @)jt] the
scheduling/routing in static ad hoc networks with delayeg@nnel capacity of pairat timet, and assum€[t] < Cinax

network state information (queue length and channel statEﬁr all 1 € £ and allt. Further, the channels are independent

However, to the best of our knowledge, we are not awafs'0SS Sender-receiver pairs.

of (near) throughput-optimal routing/scheduling reswlish ~ Queue Management:We assume that each sender main-
limited and delayed channel/topology knowledge in a mobif@ins @ queue, and the length of the queue at sehaetime

context. t is denoted byQ;[t].
Information Set for Sender I: We assume that at time
Il. MODEL AND NOTATIONS t, senderl has {Ci[s], (Si[s], Ri[s]), Qi[s]} for s < t, and

We consider a wireless network wifki sender-receiver (S- {Cjls], (S;[s], R;[s]), @;[s]} for all otherj € £ and alls <
R) pairs. We us& to denote the set of the S-R pairs. Without — 7, wherer is the delay.
loss of generality, we assume thé S-R pairs are deployed Scheduling-Decision VectorWe define a vectoA[t] to be
in a square area with side-lengthas in Figure 1. the scheduling-decision vector at timsuch that4,[t] = 1 if
Traffic Model: We assume single-hop traffic in this papetthe sendet transmits at time; and A4;[t] = 0 otherwise. Note
i.e., there is a traffic flow from sendérto receiverl for each that A;[t] is a function of the information available to sender
I € L. We denote by\[t] the number of packets arriving at!.
sender! at timet. We assume thaf\[t]};c. are stationary  Location-Based Threshold Scheduling: We study a
random variables, independent across different sendeiver class of scheduling policies which we denote lasation-
pairs, and bounded. based threshold scheduling policies location-based thresh-



old scheduling policy is defined by a real-valued functioNote thatA . (s r); is independent of because botlC[t] and
©,(s1,71), which depends on the mobile’s current location fofS[t], R[t]) are assumed to be stationary random variables.
given delayed channel and queue length information availali-inally, we define

at the sender (please see Section IlI-C for a more precise

description). If sendet is at location(s;, ;) and the channel D B Z -
statec; > ©;((s1,71)), then sendet will transmit. We further 4 ' {e.(s.r)} e, (s.0)}>
define@(s, I‘) = {@l(sl, ’r‘l)}l. {c,(s,r)}

Interference Model: We assume a geographic-based col- Nie,(sr)} € A{c,(s,r)}}, (1)

lision model in this paper. If two links interfere with each h _ h . distribut f
other, simultaneous transmissions on the two links wildled"V€"®  T{ec.sr)} 1S the stationary istribution o

to a collision and no information (packet) can get througl{qﬂ’(s[t]’?[t])} =1{c, (S’r)h}' Hic is within th K
Consider paiti, the transmission of paif will interfere with Given traffic At], we saythe traffic is within the networ

P : throughput region (or the traffic is supportable) if therdstx
the transmission of palrif |S;[t] — R;[t]| < (1+A)D, where ) 3
|S,[t]— Ry[t]| is the Euclidean distance, ardis the a protocol & schhedulmg under whicE[Q,[f]] < Cgmax for all  and all
specified guard-zone to prevent interference. t, where Qmax IS some positive number. _
Note thatC[t] — {Ci[t]}iee, S[f] = {Si[t]}ee andR[f] — . N the following theorem, we prove that, is the network

Rilt d iables, and that they 4p&oughput region.
{7l }ic. are random variables, and we assume that they Theorem 1:Traffic Aft] is supportable if and only if

independent.
P EA[] € A,
[1l. THROUGHPUFOPTIMAL SCHEDULING ALGORITHM Remark: The key idea to prove the theorem above is to
WITH TOPOLOGY UNCERTAINTY show that if there exists a scheduling policy which can suppo

In this section, we first characterize the network throughpti€ traffic, then we can construct a corresponding location-
region under channel and topology uncertainty. based threshold policy under which the mean queue lengths

are also bounded. The theorem then follows since the service
A. Optimal Throughput Region rate vector under any location-based threshold policy thén

It is easy to see that the transmission rates of the pairsS&t A-- The proof is similar to the analysis in [32], and is
time ¢ are determined by the following three parameters: @mitted due to page limitation. .
channel conditiorC|¢], (i) network topology, which is defined ~Next we use a simple example to illustrdig., (s a),a} and
by the mobiles’ positiongS[t], R[]), and (iii) the scheduling throughput-region\.

decisionA¢]. B. An lllustrative Example
Now assume thaC[t] = c, (S[t|,R[{]) = (s,r), and
Aft] = a (we use lower-cases to denote the realizations
of random variables). Under the collision-model defined in 0.4) (44)
Section Il, a maximum link rate; can be achieved over link
1 if there is no other active pairs interfering pajrotherwise,
the link rate is zero. Mathematically, we can define a lintera B -
vector Ly (s,r),a) SUCh that « % &
» » %)
L{c,(s,r),a},l =
if ap, = 0 for any pairh such thats, —r;| < (1+A)|s; —rl;
and ! i |
Lic,(s,d),a},0 =0 i | i
otherwise. ' ! I
Given the delayed information 0.0 (4,0)
{C[t _ T]7 (S[t _ T]7 R[t _ T])} — {c, (57 r)}, Fig. 2. Mobile ad hoc network example
we defineA ¢ s,y such that Consider a simple example with two S-R pairs (S-R-1
A and S-R-2) as in Figure 2, where S-R-1 is not mobile and
{e.(s:)} located at((0,4), (0,1)), and S-R-2 moves between locations
= CHe (E[L{cm,(S[t],R[t]),lcmze@[t],RM) ((3,4),(3,1)) and ((4,4), (4,1)) respectively. Assume that
link capacities are unity for both of the links, i.e0;[t] =
Clt — 7], (S[t — 7, R[t = 7]) = {c, (s,r)}D, Cs[t] = 1 (in other words, there is no channel fading).
where However, the two pairs interfere with each other when S-R-2

is at location((3,4), (3,1)). The mobility of S-R-2 follows a
le>esyRri) = Llayseus o, ml) H- Markov process as shown in Figure 3.
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Fig. 3. Markovian mobility .

Note that when S-R-2 at positiof(3,4), (3,1)), the two
pairs cannot be active (i.e., successfully transmit pagket
simultaneously. Thus, we have

> )y
Loy (0):

Fig. 5. Throughput regiom\ ,—;
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@ i ; - ( ) ' Threshold-Based SchedulingGiven the delayed informa-
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tion Q[t — 7] and
Next we assume that the information delay = 1.
Since both channels are time-invariant and the position J[t = 7]:={Clt - 7], (S[t — 7], R[t = 7])},
of S-R-1 is fixed, the information S-R-1 has is comwhich is available at all senders, the senders make trasgmis
pletely determined by the delayed information from S-Rdecisions according to the following two steps:
2. It is easy to verify that giver{Sz[t — 1], R2[t — 1]) =  Step 1:Each sender computes a set of threshold function
((3,4),(3,1)), A{ 1 ) ( ((0,4), (0,1)) )} is as shown in ©F(S)[i], Ri[t]) (for all | € L) that solves the following

1) (e ) timizati blem.
Figure 4(a); and givexiSslt — 1], Rolt — 1]) = ((4,4), (4, 1)), CPrmzaton probiem

A 1 ((0,4), (0, 1)) is as in shown Figure 4(b). maXZQl[t — T]E[Cl[t]lcl[t]z(al(sl[t],Rl[t]) X
1)\ ((4,4),(4,1) leL
)\1 /\1
1 11 (1—1 15, 1t] = Rit]] < (1+2)D, ) J=7. @
i : AL Cjlt] = ©;(;[t], R;t])
Note that(S[t], R[t]) is random variable in this calculation,
i.e., the instantaneous geographic information is not used
computing the threshold function.
Step 2: Sender! transmits with rateC;[t] if its current
0 113 1 )\2 0 23 1 >\2 |0C61t|0n |S(Sl [t], Rl [t]) and
(a) Case 1 (b) Case 2 Ci[t] = ©7(Si[t], Ri[t]).
Fig. 4. Throughput regions under different delayed infdioma O
Note that The following theorem shows that the algorithm proposed
ote tha above is throughput optimal.
Pr((S2[t], R2[t]) = ((3,4), (3,1))) Theorem 2:Given a trafficA[t] such that(1 + €)E[A[t]] €
A, the network is stochastically stable under the threshold-
= Pr((S:[t], R2[t]) = ((4,4), (4,1 i . .
1r(( 2], Balt]) = ((4,4), (4, 1)) scheduling algorithm.
= 3 Proof: Define a Lyapunov function
so the throughput region,—; is as shown in Figure 5. The Vit => Q7lt].
throughput region without any information delay is alsowho leL

in Figure 5 using the dotted line as a comparison. We can sgge key idea is to prove that
that the throughput region shrinks when we have delays in

topology/channel knowledge. EVIt+1] - V[{]|Q[t — 7]] < —2¢ Z EN[t@ift — 7] + B,
lec
C. Throughput-Optimal Scheduling Algorithm for some positive3. The detail proof is provided in Appendix
In this section, we propose a throughput-optimal schedulir. ]

algorithm which stabilizes the network fox[t] within the Remark:Since the delayed informatid[¢—7] andJ[t—7],
network throughput region. and channel state distributions are available at all mepdach



mobile can solve the optimization problem (2), and maké&his follows directly from (3), and the fact that a mobile can
their transmission decisions based on its current locatianove a distance no more thap,., per time slot.
instantaneous channel state, and the threshold value, ieus We usez to denote the index of a tile;* to indicate the
algorithm is a distributed algorithm. However, the optiatian ~ active-area in tilez, andz* to indicate the inactive-area in tile
problem (2) involves network-wide delay information, sa. Furthermore, let.[¢t] denote the set of senders in the cell
the complexity is at the scale as the network size, which As explained, we have
could be very high when the network size is large. In the Coult] C CuJt —

. . . za — Cz T].
next section, we will develop a low-complexity (where the
decision depends only on “local” delayed information) andhus the senders who are in the same active-area at tiveee

near optimal implementation. in the same tile at timé—7. We also note that since there is no
transmission in the inactive-area, the transmissionsffaréint
IV. Low-COMPLEXITY AND NEAR-OPTIMAL active-areas do not interfere. Thus, we can decompose the
IMPLEMENTATION network-wide optimization problem into those correspagdi

In this section, we propose a scheduling algorithm whoge individual tiles, and the delayed state information ambgds
information and computation complexity is independenthef t to be shared within tiles.
network size. The idea is to partition the geographic regionRecall that mobiles know which tile they are located in.
spatially into disjoint tiles and only share delayed togyland The topology and channel information are exchanged among
network state information among mobile nodes within eadhobile nodes within each tile with delay The queue-length
tile. Then the computation complexity is determined by thi@formation is also assumed to be periodically exchangei wi
size of the tiles. delay7,, and we assume thaf, > 7.

We first assume that each mobile is equipped with a GPS orn this setting, we propose the following localized schedul
appropriate technology (e.g., cell tower based triangagt ing algorithm.
so the mobiles have knowledge of their geographic locations Localized Threshold-Based Scheduling:At tile 2, the
We partition the square area into tiles with side-ler@gjti+Xx  mobiles knowQ, [t — 7] and{C[t — 7], (Si[t — 7], Ri[t — 7])}

as shown in Figure 6, wherd and X are positive numbers for all  such thatS;[t — 7] € C.[t —7]. The senders then make
and transmission decisions according to the following two step

Step 1: Sender! computes a set of threshold function
W 2 max{Tvmax, (1 + A)D}. ©) ©:(S;[t], Ri[t]) that solves the following optimization prob-
Each tile is further separated into two areas as shown irrEigllJem-
6: (i) active-area:a square with side-lengtk’ centered at the 5% Z Q;lt —7]E [Cj [t1c; >0, (s;0,R, 1) ¥
corresponding square-cell; (iipactive-area:the area outside C.:SiHeC, B
the active-area.

4 inactive-area H <1 B 1 ‘Sk[t] - Rj [t” S (1 + A)Dw ) Jz[t - T] ’ (4)

k#j Cklt] > ©r(Sklt], Ri(t])
P active-area Where
J[t = 7] ={C[t — 71, (S5[t — 7], B[t — 7]) }jec..,

and the threshold function needs to satisfy that
Y O(8[t], R;[t]) = oo if Sj[t] ¢ C.. (senderj needs to
keep silent if it is in an inactive-area).

Step 2: Sender! transmits with rateC;[t] if its current
location is(S;[t], R;[t]) and

Ci[t] > 6u(Si[t], Rult]).-

v

Fig. 6. Low complexity implementation

O
Recall that the location of a mobile is uniformly distribdte
Yver the square domain. Thus, the fraction of time a mobile
is positioned in inactive-areas is by

The tile-partition information is assumed to be known b
mobiles so that the mobiles can determine their currenatitd
type (active or inactive). We consider scheduling scheraeb s
that senders (transmitters) within an inactive-area kélepts W+ X)* - Xx* _ ( X >2
(i.e., do not transmit), which guarantees that transmissio W+ X)2 2W+ X
within different active-areas will not interfere with eaother Fyrther, since the link capacity is upper bounded®yax,
(this follows because the inactive area is "wider” than o  the throughput-loss because of a mobile movin3into inaetiv

range).
Also, we observe thahe mobiles in an active-area at time
t must be in the tile containing the active-area at time 7. goes to zero wheml’/X — 0.

which

3

2
areas is upper bounded hy,,.. (1 — (Wlﬂ)



In the next theorem, we prove that given a trafig] such Inequalities (5) and (6) imply value of (2) under the virtual

that network is larger than the one under the original networks Th
2 is the key fact and can be used to prove theorem. The detailed
(146 | EAL] + Crmax [ 1 — (%) cA proof is provided in Appendix B. [ |
2% +1
Xt V. SIMULATIONS

where1 is an V identity vector, then the network is stochas- |n this section, we further study the performance of our
tically stable under the localized threshold-based sciveglu  algorithms using simulations. We consider a network as show

Theorem 3:Given in Figure 7, in which there are four sender-receiver paitts. A
1 2 beginning of each time slot, an S-R pair moves to its left or

(I4+¢€) [ EA[t]] + Cmax | 1 — (T) S right with equal probability if the pair is not at the boungar
2x +1 of the network. Otherwise (at the network boundary), the S-R

the network is stochastically stable under the localiz&Rflr Moves away from the boundary with probabillty2, or
threshold-based scheduling algorithm. stays at the current position with probability2.

Proof: To prove the theorem, the idea is to consider a
. o ; ) (0.0)
virtual network, where when sendeéris in an inactive-area,
the arrivals is\;[t] + Crax, and sendel can transmit with T T T

rate Chax Without causing any interference to other pairs. - o~
Consider a modified localized threshold-based scheduling, f,i

S-R-

which is the same as the original algorithm except that
@l(Sl[t],Rl[t]) = 0 (instead of@l(Sl[t],Rl[t]) = 00). Itis
easy to see that the queue-evolution of the virtual network

@.7)

under the modified algorithm is the same as the original Fig. 7. Network used in simulations
network. Thus, we analyze the virtual network with arrival
Alt]. We assume that two transmissions collide if the senders are

GivenQ[t — 7, and{C[t — 7], (S[t— 7], R[t —7])}, let ®* at the same location or next to each other. We further assume
denote the optimal solution to (2), a@l denote the threshold the link rates are one packet per time slot for all links and
function of the modified algorithm. First, for an active areall time, and the information delay = 1. The arrivals are

C.., we have assumed to be Bernoulli arrivals with rale = Ay = A3 =
>, Qlt- Tq]E[Cl tein>eusia, mi) > M . . .
1:8,[t]€Ca A. Threshold-based scheduling algorithm versus the migmat
algorithm
H (1 -1 |50 - Ri[t)] < (1+ A)D, ) J[t — 7] We first compare the performance of threshold-based
Gl C;[t] > ©,(S;lt], R;[t]) scheduling algorithm with an algorithm where the senders
S B 1 treat the most recent information they have as instantaneou
= Z Quft — 7] [ Ci[t]207 (Su[t] Ralt]) ¥ information (i.e., they ignore the fact that it is delayed)
LSi[t]€Cza and make scheduling decisions based on the back-pressure
algorithm. Note that the back-pressure algorithm is thihqoug
H (1 =1 5,141 - R < (1 + A)D, ) Jit — ]| 5) optimal when global instantaneous information is used. The
i C5lt] 2 ©5(S5[t], Bs[H) algorithm is named as the mismatch scheduling algorithm
Next for an inactive areé.:, we have because the information the senders use is different fran th
for which the algorithm was designed for.
Z Qult — 7]E Cl[t]lcl[t]zél(sl[t],Rz[t]) X Mismatch Scheduling Algorithm: Given the delayed in-
L:Si[t]eC, formationQ[¢t — 7] and
10 (1 oy g <0 s ) Jit—a] N J[t . 7] == {C[t — 7], (S[t — 7], R[t — 7))}, N
J# C;[t] > ©;(S;lt], Ry[t]) which is available at all senders, the senders make traggmis
_ Z Qult — 7] decisions according to the foIIovx_/ir_lg two steps:
. imax Step 1:Senderl computes decision vectax’* that solves
LSt €Cze the following optimization problem:
> Qult — . Loyi=er (st R (1) X M -
lSZZGC [ q] [] L[]f L( l[] l[]) HEXZQé[t]CJl[t]Aél_[ (1_Agﬁl\gk[t]*éﬁ[tﬂﬁ(lJrA)D) 5
J k#j
11 (1 =1 5,00 - Ry < 1+ A)D, ) J[t— ]| (6) where(-)}[t] = (), [{] ifj =1; oth.erwise(-)é. ] = (), [t—7].
j#l Cjlt] > 07 (S;[t], R;[t]) Note that sendel has its own instantaneous channel-state,



location, and queue information, and delayed informatibn o

other pairs (which are all however treated as instantaneous T

information by sendet in this algorithm). -
Step 2:Senderl transmits if A = 1. il

O
We choose\ = 0.20,0,21,0.22,. .., Apax, Where Ay is
the arrival rate under which the network is critically loddeve

oS L

inactivd-area
S-Ri3
inactivg-area

active-area active-area  (7:7)

say the network is critically loaded if the average queugties Fig. 9. Network partition
are larger thanl00). We executed the simulation for0®
iterations under both algorithms, and computed the average 30 : : :
gueue-lengths. The results are shown in Figure 8, which S-R-1 (localized threshold-based) —+— |
. ) S-R-1 (localized mismatch) |
includes the average queue-lengths of S-R-1 for different 25 - i
values of A (similar results hold for other sender-receiver
pairs). g T 17
s
o 151 [
25 T T T - T T 8 b
S-R-1 (throughput optimal) —+— 2 /
S-R-1 (mismatch) T 10 - // b
20 |
| 5| // 4
£ \‘“ S -
® it | - e .
- | 0.2 0.25 0.3 0.35 0.4
3 | A
-] 10 + +
/* Fig. 10. Localized threshold-based algorithma localized mismatch algo-
5F R rithm
,+/+"'*”*/
IO e e e *’*’fAkﬂ(#*l 1
02 025 03 035 04 045 05 From the simulations above, we can see that properly ex-

A ploiting delayed information can improve the network thghu

Fig. 8. Threshold-based algorithos the mismatch algorithm put and reduce the backlogs.

From Figure 8, we can see that the threshold-based schedul- VI. CoNcLUSION
ing algorithm (which is throughput-optimal) has smaller av In this paper, we studied throughput-optimal rout-
erage queue-length. We also have thaf., = 0.49 under ing/scheduling for mobile ad hoc networks with information
the threshold-based algorithm, ang..x = 0.44 under the delays. We characterized the network throughput region un-
mismatch algorithm, i.e., the threshold-based algoritlieidg der channel and topology uncertainty. We also proposed a
more than10% throughput improvement. scheduling algorithm where the scheduling decisions aidema
based each mobile’s instantaneous information and delayed
information from local geographic regions. Future direct
of this research includ€i) considering multi-hop traffic flows
We divide the network into two subnetworks as showimstead of only peer-to-peer communications; éicconsider-
in Figure 9, and compare the performance of the localiz@gy physical interference model and design joint power @dnt
threshold-based scheduling algorithm with a localized-miand scheduling algorithms.
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APPENDIXA: PROOF OFTHEOREM 2
We define a Lyapunov function such that
Vit = Q.
lec
First, it can be shown that there exisi&s > 0, which is
independent of) such that
EVIE+1] = V[t J[t — 7], Q[t — 4]]]
< B+2> Qift— 7] x

lel
(Eult]] — E[G Q7 [t]| I[t — 7], Q[t — 74]) ,

where

7 [] Ley>er (s, rule) X

TI{1—1 s
j#l Cjlt]

and ©7(S;[t], R;[t]) is the optimal solution to problem (2).

Now given that(1 + €)E[A[t]] € A,, according to the
definition of A, there exists a set Ofc (sr)} € Afc,(s,r)}
such that

(1+e)E[A[L] = Z Te,(s,0)} e, (s,r)} -
{c,(s;r)}
Assuming thatT[t — 7] = {c, (s,r)}, we have that

EV[t+1] - V[t]{c,(s,r)}, Q[t — 74]l]
< B2, Qult — 7] (EIN[] = ge sr)})
23 e Qult — Tglnge (s,
=23 e Qult — TE[Ci[t] 27 [t][ {c, (s,T)}].

According to the definition oL, it is easy to see that the
optimization problem (2) can be re-written as

(@)

R <Q+2)D, |>
>

| <
O3 (S5[t], R;[t])

(8)

)
(10)

mgx QT[t - Tq]E[L{C[t],(S[t],R[t])71c[t]ze(s[t],R[t])}‘ J[t —]].
(11)

Also we have that
MNie,(s.0)} € Meysir)} =
CHe (E [L{C[tlv(s[t]»R[t])vlc[t]ze(s[n],mm}‘ J[t - T]}) :

Thus, we have that

Q"[t — ToIMe sy < (11)



which implies that Assuming thatl[t — 7] = {c, (s,r)}, we have that

(9) < (10) E[viE+1-V ‘{c 5,1} Qlt - 7] |
holds for all{c, (s, r)}. Furthermore{C[t—7],S[t—7], R[t— < B+2 Z Qult — 4
7]} is independent of)[t — 7,] sincer < 7,. Thus, we can leL
conclude that (E [Mift] + Caxl sy ec: [Si[t — 7] = s1] — Nge,(s.003)
2 Qult — TgInge,s.r))
EV[E+1] - V[ QL — 7] 2 '
= Y Te@mEVIE+ 1=V e, (s,1)}, Q[ — 7] 23" Qilt - 7JE [Cl[t]ti)l [t]‘ {c,(5,1)}, Qlt — Tq]} .
{e,(sir)} leL
<B+ 22@1 [t — 7] Let ®* denote the optimal decision policy in the original
leL network with the complete delayed network information, we
have that
EAlt - T{e,(s,r)} e, (s,r A
[Ault] {C%)} {e,(s.)} e, (s:0)} > Qult = Tlnge 5.0y
lec
< B-—2¢ t — 7, |E[N[t]], ~ , ~
<B =26 Qilt - mlEN L] < Y@l - rE [Culeilil {e. (5.1} Qlt — 7))
leL
where the last inequality holds due to (8). Now the theorem < ZQl[t —7,]E {Cl[t]él[t]’ {c,(s,1)}, Q[t — Tq]} .
follows from the Foster’s Criterion. el
Furthermore{C[t — 7], S[t — 7], R[t — 7]} is independent of
APPENDIXB: PROOF OFTHEOREM 3 Q[t — 74] sincer < 7,. Thus, we can conclude that
We consider the virtual network and 1Q]] denote the E {V[“'l ‘Q [t =74 }
gueue-lengths of the network system. We define a Lyapunov _
function such that - . (z:)}ﬂ{c’(s’”)}E [V[H_ 11- ’{C 5,1}, Qlt Tq]}
=3 Q3. <B+2) Qilt - 7] (E+
leL lec
~ First, it can be shown that there exists > 0, which is Crmax Y Tes} — D e s} NHelsm)} | -
independent of) such that s eCi {c,(s,0)}
- Note that
E [Vit+ 1] = VIl 31t = 71, Qlt — 7] .
- (X
< B+2) Qit -7y % > Mot} = (2W+X) '
ler {c,(s,r)}:s€C*
(E [)\l [t] — Ci[t) Pyt ]’ It — T]} Q[t — 7). Thus, we can conclude the theorem holds because
) E[viE+1-v ‘Qt—Tq}
where ® is defined similar as (7).
Now given that = . (Z)}Tr{c,(s,r)}E [V[t+ 1 ’{C S, T } Q[t - Tq]}
1 2 §B—262Ql[t—7'q]><
(1 + E) E[A[t]] + Omax 1-— oW o 1 S ATa el
. (E[)\l[t]] + Chax (1 - (m) )) .
there exists a set 0f(c,(s,r)} € Afe,(s,r)} SUCh that

2
1
((1 + E) (E[A[t]] + Omax (1 - <2%ﬁ> ) 1)

= Z ﬂ-{ca(sar)}n{cv(svr)}'
{c,(s;r)}



