
Context-centric Security
Mohit Tiwari Prashanth Mohan Andrew Osheroff Hilfi Alkaff Elaine Shi1 Eric Love Dawn Song Krste Asanović

University of California, Berkeley University of Maryland, College Park1

Abstract. Users today are unable to use the rich collection of
third-party untrusted applications without risking significant privacy
leaks. In this paper, we argue that current and proposedapplications
anddata-centric security policies do not map well to users’ expec-
tations of privacy. In the eyes of a user, applications and periph-
eral devices exist merely to provide functionality and should have
no place in controlling privacy. Moreover, most users cannot han-
dle intricate security policies dealing with system concepts such as
labeling of data, application permissions and virtual machines. Not
only are current policies impenetrable to most users, they also lead
to security problems such as privilege-escalation attacksand implicit
information leaks.

Our key insight is that users naturally associate data with real-
world events, and want to control access at the level of humancon-
tacts. We introduceBubbles, acontext-centric security system that
explicitly captures user’s privacy desires by allowing human contact
lists to control access to data clustered by real-world events. Bub-
bles infers information-flow rules from these simplecontext-centric
access-control rules to enable secure use of untrusted applications
on users’ data.

We also introduce a new programming model for untrusted appli-
cations that allows them to be functional while still upholding the
users’ privacy policies. We evaluate the model’s usabilityby port-
ing an existing medical application and writing a calendar app from
scratch. Finally, we show the design of our system prototyperun-
ning on Android that uses bubbles to automatically infer alldanger-
ous permissions without any user intervention.Bubbles prevents
Android-style permission escalation attacks without requiring users
to specify complex information flow rules.

1 Introduction
Mobile application distribution mediums, such as Apple’s

“App Store” and Google “Play”, have been instrumental in
the adoption of mobile computing devices, allowing other-
wise unknown publishers to sell apps to millions of smart-
phone and tablet users around the world. Today, these ex-
tremely personal devices are used to perform telephony, mes-
saging, financial transactions, gaming, and many other func-
tions. While the popularity of the app store model attests to
the benefit and utility of allowing third-party apps, these ap-
plications introduce a host of privacy and security risks [6].

A number of different security mechanisms have been used
to provide data privacy. For instance, Android’s permissions
model [1] is an example ofapplication-centricsecurity. An-
droid has a static capability-based system where users must
decide at installation time whether to grant permissions (in-
cluding network and device access) or not (and forgo use of
the application).

As an alternative, information-flow tracking systems [4,
19] are more expressive than static capabilities and provide
data-centricsecurity, but require considerable sophistication
on the user’s part to translate security policies into a lattice of
labels. Moreover, they often require applications to be modi-
fied with security label assignments so that they do not crash
with security exceptions. TaintDroid [5] is an example of an

Flu’09

Asthma’11

Calendar Sana Medical Doc Editor

Files Camera Microphone Wifi

Apps

Contexts

System

resources

Users

Flu

Figure 1: Traditionally, security policies are expressed in terms of
permissions on applications or security labels on system-level fea-
tures. This makes it hard to capture users’ intentions that stem from
high-level, real-world contexts, and lead to either static, inflexible
permissions as in Android or sophisticated policies and implicit in-
formation leaks as with TaintDroid.

Calendar
Sana

Medical

Flu’09

Calendar
Sana

Medical

Asthma’11

Figure 2: Bubbles represent real-world contexts that are potentially
shared among multiple users, and around which users’ data au-
tomatically clusters. Users’ privacy policies can then be directly
represented as an access-control list on bubbles. Applications and
low-level peripherals then exist solely to provide functionality and
cannot affect who sees the contents of a bubble. Bubbles are thus
implemented as tightly constrained execution environments (like a
virtual machine, but much lighter weight), and require applications
to be partitioned to provide the functionality associated with legacy
applications.

information-flow tracking system for Android, which modi-
fies the Dalvik virtual machine to propagate taint through pro-
gram variables, files, and IPC messages. While it can track
some unmodified Android apps, it cannot track applications
which use their own native libraries. Further, information
leakage through implicit flows [12] cannot be restricted.

We believe security systems can only be effective if they
present a security model that matches the way users’ reason
about privacy in their real-world interactions. In this paper,
we propose a new system,Bubbles, which allows a user to
define a digital boundary (called abubble) around the data

1

associated with a real-world event. For example, the event
might be a meeting for a work project or a birthday party.
Goffman [9] proposed that people present differentfacesof
themselves depending upon the social context.Bubbles im-
plements this sociological aspect of privacy in a digital set-
ting. Similar to attaching access control (ACLs) permissions
to files in a file system, the user specifies her privacy require-
ments for the bubble as a list of people, taken from her con-
tacts list, who have access to the bubble. Different sets of
people might have access to different work projects, or to dif-
ferent birthday parties.Bubbles preserves this privacy model
across all the user’s multiple devices and the cloud.Bubbles
thus providescontext-centricsecurity which isolates all data
between bubbles.Bubbles translates these simple user-centric
access control rules into the more complex information-flow
rules in the underlying system. We have also developed a
simple application design model to enable app developers to
provide extensive functionality for the user without requiring
either the user or the app developer to worry about privacy
enforcement.Bubbles effectively factors out privacy features
from applications, and puts privacy control into the hands of
the user in a natural way.

2 Motivation for Bubbles
This paper focuses on the threat to users’ privacy posed by

untrusted applications and assumes that applications can ex-
ecute arbitrary code to leak sensitive data to malicious recip-
ients. Bubbles relies on operating system and network level
security primitives of isolation, encryption, and anonymized
network traffic being implemented correctly.

2.1 Android Permissions Considered Harmful
Android is an operating system that includes a modified

Linux kernel together with standard user space sub-systems,
and is targeted toward mobile devices such as smartphones
and tablets. Android provides more than 100 permissions that
an application can request at installation time, which a user
must explicitly approve or deny. Although, Android warns
users by marking some permissions as dangerous, “93% of
free and 82% of paid applications request at least one dan-
gerous permission” [7]. The sheer number of permissions
being requested causes users to be indifferent about secu-
rity. Moreover, we find that Android exposes permissions
that are foreign to even sophisticated computer users, such
asMOUNT FORMAT FILESYSTEMS (which allows applica-
tions to format file systems on removable storage). By ask-
ing users questions at the wrong level of abstraction, Android
leaves users’ privacy in the hands of untrusted applications.
Finally, since permissions in Android are statically enforced
during installation, applications have these permissionsfor-
ever. Static permissions allow any application with micro-
phone access, for example, to record a user’s voice without
her explicit confirmation.

2.2 Many Applications fit Bubbles
We analyzed 750 of the top free and the top paid (375 of

each) Android applications from the Google Play store to de-
termine how their functionality relates to users’ privacy.On
one end, from a privacy point of view, are applications that
provide functionality that is not tied to a user’s real-world

identity. Examples of such applications include flashlights,
games, wallpapers, dictionaries, news sites, and browsingfor
reviews and recipes among others. Such applications can run
inside an “anonymous” bubble where the users are expected
to not enter sensitive information, and can move data to and
from arbitrary locations into the anonymous bubble. We find
that 45.6% of the free and 45.3% of the paid applications fit
this model.

The second category of applications are where users ac-
tively create data (we assume this data is sensitive) and then
explicitly share this data with other users. Applications that
allow storing, editing, and sharing of documents (in formats
that range from simple text and images to even audio and
video), and real-time communication applications that use
SMS, MMS, voice, or video fit this category and account for
47.4% of the free and 52.3% of the paid applications. The
common feature of these applications is that users can spec-
ify for a given blob of data who they want to share it with –
in essence an Access Control List (ACL) for each data blob
– and the key insight behindBubbles is to tie these arbitrary
blobs of data to a real-world context.

The remaining 7% free and 2.4% paid applications perform
what we termapplication-initiated sharing, where function-
ality such as a recommendation service requires that users
give up their personal data to the application and the applica-
tion mixes information from multiple users to generate new
suggestions or insights. ACLs do not capture the privacy
requirement here, because a user has to give up her data to
the application, and alternate definitions of anonymity such
as differential privacy are required to guarantee that a user
cannot be singled out from a dataset by an untrusted appli-
cation. Most social networking applications include features
that implement explicit communication of data, which can be
integrated intoBubbles, while features that initiate sharing
through aggregate analytics require an anonymizing proxy to
enforce privacy through differential privacy. Integrating such
a proxy is out of scope of this paper. Note that we only discuss
a client-side implementation of the applications; the server
side ofBubbles can be assumed to extend the abstraction of a
bubble across the network. We defer the discussion of server-
side optimizations that access data from multiple users (like
deduplication) to a future paper.

3 User Abstraction
Bubbles. Our core hypothesis is that users want to work

in contexts, where a context encapsulates information of ar-
bitary types— be it audio, video, text, or application-specific
data— and is often tied to a real-world event involving other
people. We call such light-weight contexts that have data and
people associated with themBubbles. Applications just exist
in each bubble to provide functionality, and any data that a
user accesses will trigger its corresponding application.

We also propose that users’ privacy policies are inherently
tied to such contexts and thus are best stated in terms of Ac-
cess Control Lists (ACLs) of contacts for each bubble, In one
extreme case, if the users are effectively broadcasting infor-
mation (as when they browse websites or public forum) they
want to be aware of this and act accordingly. In the other

2

extreme case, and by default, users require all informationre-
lated to a certain context to be private.

On creating new bubbles.A bubble is effectively the min-
imum unit of sharing, because when all apps that act on data
inside a bubble are untrusted, they can mix data arbitrarily
among files that exist within a bubble. The implication of this
is that sharing even a part of the data in a bubble is equivalent
to sharing any data from the bubble.

As a result, we recommend that bubbles be tied to very
light-weight contexts in order to facilitate flexibility infuture
re-sharing decisions. A coarse classification of all personal
data into, say, a “Home ” bubble and a “Work” bubble will
lead to violation of privacy guarantees when the user moves
even a single file across this Home-Work boundary. On the
other hand, a light-weight event could be simply a single
meeting, or even only a part of a meeting (e.g. the technical
discussion as opposed to financial discussions), and putting
these light-weight contexts into separate bubbles allows auser
to share these smaller units of data independently. In the ex-
ample above, all developers may be included in the technical
discussion, but only the program managers may have access
to the financial details of the project.

Navigating the foam. We call the collection of bubbles
visible to a user, theirfoam, which replaces the conventional
user-visible file system. TheBubbles system only supports
a flat foamof bubbles without hierarchical order. The sys-
tem executes bubbles inside independent, mutually isolated
containers, and does not support nested bubbles, in order to
prevent complications that arise in constraining untrusted ap-
plications. Since untrusted applications can operate on the
data in an arbitrary manner inside a bubble, they can mix in-
formation among all data items in sub-bubbles. Sharing any
data item to a new person will thus leak information from
potentially all sub-bubbles to the person. Traditional systems
propose fine-grained information flow analysis to control how
applications mix information, but tracking implicit flows at
run-time leads to considerable performance penalties. As a
result, we eschew fine-grained information flow tracking in
Bubbles, and buildBubbles around the basic primitive of an
isolated container.

While bubbles cannot be nested, users can assign an arbi-
trary tag to a collection of bubbles, e.g., to group bubbles as
belonging to some longer-term project, and can even overlay
a hierarchy on the underlying foam of bubbles. Further, the
system tags bubbles with time, location, nearby contacts, and
other contextual information that may help the user identify
or index the bubble for future reference. For instance, a user
can view her bubbles as a time-line to give a calendar view,
or by geographic coordinates overlaid on a map view.

Staging Area. Users often create data that is not immedi-
ately associated with any existing bubble or tag, for example,
a phone-camera photo or a web-page downloaded for future
reading. In such cases, instead of forcing the user to assign
this data to a bubble, the system automatically assigns the
data item to a new bubble and assign location and time-based
tags to the bubble. This ensures that the user has flexibility
of copying such data items into any (even multiple) bubbles
later on. This can be used to implement a Photo Gallery ap-

plication for example, allowing browsing of images without
mixing information from one image to another. One fallout of
the staging area is that the system will have alot of bubbles,
motivating the need for a very light-weight implementationof
containers inBubbles.

Usage Flow. We now use the example shown in Figure 3
to illustrate how a user works in a context-driven rather than
application-driven manner. We argue this adds little cognitive
overhead to regular operation and that it is worth the price of
privacy.

One usage flow could be to start with the trustedViewer
application that allows a user to browse data from her entire
foam within a single bubble, classified either by application,
such as Sana or Calendar in Figure 3, or by data type, such
as images. Clicking on Sana takes the user to a listing of
all medical records classified by bubble name (each patient is
stored in a separate bubble). The Viewer app is discussed in
more detail in Section 5.

Clicking on the New Procedure then takes the user to the
staging area, where the user can enter data related to a pa-
tient’s visit. At the end of the procedure, and before the user
moves back to the viewer mode,Bubbles prompts the user to
enter a new name and tag for the bubble and other contacts
who this bubble is shared with (e.g. a remote doctor). In case
of an existing patient, the record can be assigned to an existing
bubble. The last image on the right shows that a user, while
she is in a bubble, can switch among applications (from Sana
to the Calendar here) while staying within the same bubble.

Apart from the Viewer, the two trusted applications that a
user interacts with inBubbles are the Bubbles and Contacts
managers. Both the Bubbles and Contacts applications are
available on the Home screen (which can also include some
recent and favorite bubbles for easy navigation) to navigate
to an existing bubble or to create a new bubble and invite
contacts into it.

4 System Design
In this section, we describe the design of ourBubbles pro-

totype implemented on top of Android. All applications are
available to each bubble, with all but a few permissions (ex-
plained in Section 4.3). Applications effectively executeas
though each bubble was an entire OS installation.

4.1 Isolation between Bubbles
In order to provide file-system state isolation between each

bubble, we choose an approach similar to Cells [2]. We mount
a unioning file system that uses the base operating system files
as a read-only copy, and a read-write scratch directory to hold
any file system modification created by applications in a bub-
ble. Note that OS files cannot be modified by any application
running inside a bubble, and that scratch directories are main-
tained on a per-bubble basis to prevent sharing of file-system
state between bubbles.

Control groups [14], supported on both Linux and its
smartphone fork Android, are used to provide UTS, PID, IPC
and mount namespace isolation, to further ensure that appli-
cations cannot communicate with each other apart from via
the Binder IPC mechanism. We also make use of the same
techniques used in the Cells system [2] to provide device iso-

3

Figure 3: Usage Flow in a Bubbles System: User’s Home screen shows trusted system applications to manageBubbles and to launch
the Viewer. The Viewer allows a user to see all installed applications, such as a Calendar or the Sana medical application. Clicking an
application in this mode takes the user to browse cross-bubble data, i.e. all data attached to Sana or the Calendar. Within the View mode of
an application, the user can initiate new data creation; either in a Staging area (i.e. for which the system assigns a unique bubble), or by
first using the Bubble service to transition into a bubble andthen going to the edit screens for Sana or the Calendar (the last two screens
on the right).

lation, i.e., because we could potentially have multiple appli-
cations accessing the same device resources, it is important
that devices understand the namespace abstractions.

We also enable all Android middleware services that
allow persistent state to separate data between differ-
ent bubbles. For instance,SQLiteOpenHelpers
respond to getReadableDatabase() or
getWritableDataBase() calls from applications
with a bubble-specific instance of a database. The SD card
and preferences are also virtualized in a similar manner.

4.2 Copying Data between Bubbles
A user may copy data from one bubble to another, e.g.,

when an image from the staging area is copied into an exist-
ing bubble. Such copying requires applications in the receiv-
ing bubble to be able to assimilate the incoming data structure
instances with existing ones. Because theBubbles system is
agnostic of application data structures, the applicationsregis-
ter call-back functions for handling inter-bubble data transfer.

The Android IPC mechanism is modeled upon the Open-
Binder functionality in BeOS [3] wherein aBinder de-
vice mediates communication between different processes.
In Android, this communication can be effected by using the
Context.registerReceiver() routine to register for
incoming messages (calledIntents in Android).Bubbles’s
modifiedBinder driver implementation automatically mod-
ifies theIntentFilter to restrict messages sent to the ap-
plication.

The source bubble initiates data transfer by sending a mes-
sage to theSharing Service implemented as part of
Bubbles. In our prototype, this generates a trusted prompt
asking for user confirmation about the application-initiated
data share. (This prompt can potentially be removed by re-
placing theSharing Service with trusted and isolated
widgets similar to the access control gadgets [16] architec-
ture). Finally, the applications can transfer data in any serial-
ized format it prefers such as Google Protocol Buffers.

4.3 Intuitive Permissions Model
In Bubbles, instead of the applications statically request-

ing resource permissions at install time, permissions are auto-
matically inferred from the access control rules placed on the
bubble within which the application is executing. To achieve
this, Bubbles relies on explicit user input and on virtualizing
the Android resources among different bubbles. Most permis-
sions fall intothreebroad categories and of the remaining 5
dangerous permissions, 3 have been deprecated already and 2
(writing to contacts and to APN settings) are not allowed for
any untrusted application.
Explicit User Decision. Users are provided with a trusted
UI to explicitly enable 7 permissions, in order to input audio,
video, location, and contacts into a bubble. These resources
have the common feature that users are familiar with these
concepts outside of a computing device context and can thus
make intelligent decisions about when to share them within a
bubble. Writing to the contact list is however limited to the
trusted address book application.

Per-Bubble Resources. Internal and external storage, logs,
calendar, application caches, history, various settings like ani-
mation scale and process limit are all low-level resources that
need not be exposed to users.Bubbles allows all applications
to have access to the 27 permissions that control these re-
sources, while maintaining a unique, per-bubble copy of each
resource (e.g. isolated folders in storage).

Concurrently Shared Resources. Communication re-
sources like telephony, wifi, and internet access are all shared
among various bubbles. HenceBubbles enables all 17
communication-related permissions to all applications ina
bubble, but with firewall rules to ensure that all communi-
cation follows ACL rules specified by a user. Hence appli-
cations in a private bubble can only communicate withBub-
bles servers (or only send SMS messages to a contact who
can access the bubble), while an application in an anonymous
bubble can talk to arbitrary servers. While not relevant for

4

Sana Calendar

Calendar

layout

Sana

layout

Calendar

developer

Sana

developer

Calendar

updates

Sana

updates

Asthma ‘11

Flu ‘09

Trusted Viewer Developer Zone

User

Sana Calendar

Trusted View

Cale

layo

Sana

layoutr out

Figure 4: Applications inBubbles: Most application function-
ality is included in itseditor component with one editor instance
inside each bubble (e.g., inside Flu’09 and Asthma’11 bubbles).
A Viewer bubble provides cross-bubble functionality by combining
trusted code that receives and processes data from multiplebubbles
and a layout file specified by the application statically thatdeter-
mines how such data is laid out. Finally,Bubbles provides devel-
opers with their own bubble to send in application updates that a
user’s personal bubble can only read from and never write to.

privacy, additional rules can be imposed to prohibit commu-
nications that cost money.

5 Applications
Simple Programming Model for Developers. As shown

in Figure 4, legacy application functionality can be parti-
tioned into two components:Editor andViewermodes. The
editor mode includes most user-facing functionality that one
typically associates with a legacy application, e.g., adding and
editing patient records in Sana or new events in the Calendar.
Bubbles then ensures that there is a unique editor instance for
each bubble so that untrusted editor code will only ever see
data from one bubble.

The viewer mode of an application is required for the user
to be able to browse data from multiple bubbles, e.g. medical
records for all patients in Sana. There is thus only one viewer
instance on a client device (or one per user). The viewer is
responsible for capturing the user’s intentions when she uses
the application’s interface (e.g. clicking a patient record or
searching for a particular illness), and forwarding the result-
ing query to individual bubbles. This requires a message to be
passed from the viewer to one or more editors to convey, for
example, a specific data item to be opened or a specific term to
be searched for. Since the viewer accesses cross-bubble data
and then generates this message, an untrusted viewer can en-
code information in the message. Thus, we only allow fixed
builtin trusted viewersto prevent information leaks among
different bubbles.

Cross-bubble Functionality. To enable application-
specific functionality in the viewer mode, an application spec-
ifies a layout file and a call-back function at install time. Ap-
plications register themselves with the trusted Viewer Ser-
vice by sending an intent containing 2 XML files:ui.xml,
which informs the Viewer Service how to display the lay-
out of the application’s viewer mode (our current prototype
supports the LinearLayout ViewGroup and so far the only

supported Views areImageView,TextView,GridView,
ListView andEditText.); andapp data.xml, which
contains basic application information (name, icon, etc) to-
gether with a callback to be called whenever any entry in the
viewer mode is acted on by the user. Sana enables a user
search (for any text string) by registering a “search” button
as an action item inapp data.xml and using the call-back
function to receive the search string as a message. The user
can control which bubbles the message is sent to.

We have so far ported two applications— Calendar and
Sana —without requiring substantial code changes. The edi-
tor mode had to be changed to callBubbles wrappers around
Android services (e.g. SQLiteOpenHelper replaced by DB-
Swapper), a call-back function implemented to parse mes-
sages from the viewer component, and XML files that in-
dicates how the viewer should display calendar or medical
records from multiple bubbles. We needed 500 lines of code
to port Sana, including all wrapper classes, and implemented
the Calendar app in about 800 lines of code.

Developer Zone for Ads and Updates. We introduce De-
veloper Zone as a storage area to support advertisements and
software updates (Figure 4). Its key feature is that it can be
written to by developers, but only read by application editor
instances in each bubble.

Bubbles is complementary to several prior works on
privacy-preserving advertising [18, 10, 8] – basically,Bub-
bles can be readily used to provide a secure client-side imple-
mentation for these privacy-preserving advertising systems.
A dedicated ad retrieval bubble retrieves a set of ads from the
ad network, based on information (e.g., a broad interest cat-
egory) a user explicitly shares with the ad retrieval bubble.
An ad selection bubble (i.e., a viewer service) can potentially
perform user profiling on sensitive, fine-grained personal in-
formation or behavioral traces of the user; it reads the ads
retrieved by the ad retrieval bubble, and selects and displays
the most relevant ad.

Software updates, as shown in Figure 4, requires new in-
formation from the developer to be made available to the ap-
plication. The server conducting the updates (e.g., Google
Play) will be able to write and read from the Developer Zone,
but for the applications’ editor instances, this will be a read-
only area. An application can provide a button for the user
to indicate when she wants to check for updates and then, the
application just uses theBubbles API to check, read and apply
the updates from the DevZone.
6 Related Work

The idea of isolating applications and data on a mobile
based on the user context has been widely explored in litera-
ture [17, 11].Bubbles extends existing literature by providing
developers with an easy to use design pattern for developing
fully functional applications that abide by the users’ privacy
policies at the same time.

Helen Nissenbaum argues that privacy is closely linked to
prevailing social, economic, and judicial norms, i.e. the pre-
vailing social context [15]. We agree with this premise; in
fact,Bubbles system allows a user to be clear about what she
has shared with whom, and thus will form a basic primitive
for the system Nissenbaum envisions. We use the term con-

5

text to mean any small event (a meeting, a browsing session)
that generates some arbitrary data.

MobiCon is a system that provides context detection ser-
vices to context-aware applications and implements the de-
tection algorithms in energy-efficient ways [13]. However,
Bubbles uses the term contexts to indicate a real-world event
that creates data that has some access control attached to it.
Bubbles could, in addition to user input, use MobiCon as an
underlying service to better infer automatic tags, or even the
start/end of a bubble’s lifetime.

The Cells [2] system maintains parallel Android execu-
tion environments running unmodified Android applications,
where it creates “virtual phones” that are completely isolated
from each other. It makes devices namespace-aware by in-
troducing wrappers around drivers, as well as modifying the
device subsystem and the device driver itself.Bubbles uses
the concept of ‘virtual phones’ proposed in the paper to gen-
erate bubbles since they serve the same purpose. In addition
to the Cells infrastructure,Bubbles also performs permission
inference using the peripheral device virtualization and pro-
vides an API for untrusted applications. In contrast to Cells,
where a few virtual phones are envisioned to execute all the
time,Bubbles will create a large number of bubbles that need
to be managed using trusted indexing services.

There has also been work to reduce access permission
prompts by providing trusted widgets called ‘Access Control
Gadgets’ that an untrusted application can insert to get access
to privileged resources [16]. These gadgets are isolated from
the application and their integrity ensured. ACGs can thus be
used inBubbles for the user to convey a carefully chosen set
of permissions. UnlikeBubbles, once an application has ac-
cess to the data, ACGs do not allow a user to enforce context
specific privacy policies on the data.

TaintDroid [5] is closest in spirit toBubbles. As explained
earlier, TaintDroid ensures that private sensitive data sources
are not exposed by propagating taint through files, variables
and IPC messages. However, information leakage is possible
in TaintDroid through implicit flows. Further, because infor-
mation flow control requires source code to be annotated with
security labels, TaintDroid disallows application-specific na-
tive libraries.Bubbles guards against both of this by isolating
all state between bubbles.
7 Conclusions and Challenges

We proposeBubbles, a new context-centric security
paradigm that empowers users to retain control of their data
while still benefitting from the broad spectrum ofuntrusted
third-party applications on mobile devices.Bubbles provides
end users with an intuitive interface through which users can
configure their privacy policies with respect tocontexts. Bub-
bles transparently translates these simple access control rules
into information flow policies. If the application developers
inadvertently creates a privacy breach, the application func-
tionality will be curtailed, but the privacy policy will still be
enforced. There is thus a strong incentive for the developer
to follow the suggested design pattern to ensure the full func-
tionality of their applications running onBubbles.

Bubbles poses several important technical challenges and
opens up several directions for future research. One important

challenge is how to realize a framework for light-weight con-
tainers that incurs low run-time overhead, and how to spawn
and destroy containers extremely rapidly. Another important
task for future work is to conduct user studies to evaluate the
user-friendliness ofBubbles.

Acknowledgments
The authors would like to thank the anonymous reviewers

for providing useful comments on this paper. This material
is based upon work supported by the AFOSR under MURI
award FA9550-09-1-0539, by the National Science Founda-
tion under Grant #1136996 to the Computing Research As-
sociation for the CIFellows Project, by NSF awards CPS-
0932209 and CPS-0931843, and by Intel through ISTC for
Secure Computing.

References
[1] Android security overview.http://source.android.

com/tech/security/.
[2] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: a

virtual mobile smartphone architecture. InSOSP, 2011.
[3] M. Brown. BeOS: porting UNIX applications. Morgan Kauf-

mann, 1998.
[4] D. E. Denning. A lattice model of secure information flow.

Commun. ACM, 19(5):236–243, May 1976.
[5] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-

Daniel, and A. N. Sheth. TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smart-
phones. InOSDI, 2010.

[6] A. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A
survey of mobile malware in the wild. InSPSM, 2011.

[7] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness of
application permissions. InWebApps, 2011.

[8] M. Fredrikson and B. Livshits. Repriv: Re-imagining content
personalization and in-browser privacy. InS & P, 2011.

[9] E. Goffman. The presentation of self in everyday life. Garden
City, NY: Doubleday Anchor Books, 1959.

[10] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in
online advertising. InNSDI, 2011.

[11] M. Johnson and F. Stajano. Implementing a multi-hat pda. In
Security Protocols, pages 295–307. Springer, 2007.

[12] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows:
Can’t live with ’em, can’t live without ’em. volume 5352 of
Lecture Notes in Computer Science. Springer, 2008.

[13] Y. Lee, S. S. Iyengar, C. Min, Y. Ju, S. Kang, T. Park, J. Lee,
Y. Rhee, and J. Song. Mobicon: a mobile context-monitoring
platform. Commun. ACM, 55(3):54–65, Mar. 2012.

[14] P. B. Menage. Adding Generic Process Containers to the Linux
Kernel. InLinux Symposium, June 2007.

[15] H. Nissenbaum. Privacy in context: Technology, policy, and
the integrity of social life. 2009.

[16] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. InIEEE S&P, 2012.

[17] J. Seifert, A. De Luca, B. Conradi, and H. Hussmann. Trea-
surephone: Context-sensitive user data protection on mobile
phones.Pervasive Computing, pages 130–137, 2010.

[18] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted advertising.
In NDSS, 2010.

[19] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazi`eres.
Making information flow explicit in histar. InOSDI, 2006.

6

