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Abstract

In the presence of multiple delay faults, automated diagnostic procedures that make a single
fault assumption may give an incorrect diagnosis.  In this paper, a systematic approach is
proposed for delay fault diagnosis under a multiple fault assumption.  Information from the
failing test vectors are used to construct a list of single and multiple fault suspects that may
have caused all of the observed faulty response.  The list of suspects is then pruned and ranked
in a novel way by using information from the passing test vectors combined with static timing
information.

1.  Introduction

A digital logic circuit must meet both functional as well as timing specifications.  Delay
testing is required to verify the temporal correctness of manufactured circuits.  Two fault models
are commonly used for timing defects:  the gate delay fault model [1], [2], and the path delay
fault model [3]-[5].  With the advent of deep submicron technology, delay faults are becoming
more prevalent.  With ever increasing clock frequencies, small delay defects that were previously
harmless, are now starting to cause timing failures.  Not only is delay fault testing needed but
also delay fault diagnosis to improve yield and quality of integrated circuits. Some direct probing
mechanisms exist (e.g., E-Beam probing), but their effectiveness is limited by such factors as
multiple layers of metals, CMP (chemical mechanical polishing), long test lengths, and new
package types like flip-chip.  Most importantly, with shrinking device sizes, the search space for
any direct probing technique has increased tremendously.  Automated tools are needed for failure
analysis to significantly prune down the search space for direct probing.

2.  Previous Work

 Most of the work in diagnosis has been based on the classical single stuck-at fault model.
Fault dictionaries have commonly been used for fault diagnosis [6].  Test generation techniques
have also been developed to generate test vectors to distinguish pairs of faults [7]-[9].  De and
Gunda [10] proposed a scheme to handle multiple stuck-at faults by ranking the faults according
to the likelihood of being present in the defective part.

Delay fault diagnosis is significantly more difficult than stuck-at fault diagnosis as a delay
fault model has to consider the size of delay defects and is often harder to define.  Cox and
Rajski [8] have proposed a method that uses a sixteen-valued algebra for both stuck-at fault and
delay fault diagnosis.  Girard, et al. [12], have developed an efficient procedure based on critical



path tracing [11] from a six-valued simulation.  The advantage of the method in [12] is that it
requires no delay size based fault models and only considers the fault-free circuit.  The drawback
is that it assumes a single point fault.
 Here we briefly describe the scheme presented in [12].  Any line that is a potential cause of an
observed incorrect output value will be termed a suspect.  For each failing test vector pair, a 6-
valued simulation is done to ascertain the signal values on each line.  From each primary output
having an incorrect value, critical path tracing is done to identify the suspects (i.e., the critical
lines) that may have caused the incorrect value.  Heuristics are used to reduce the number of
critical paths traced.  Then the set intersection of the suspect lists for all failing vectors is
computed.  This is the set of suspects that could have caused all the observed faulty behavior.
Note that this method can be invalidated in the presence of multiple faults as the set intersection
of the suspect lists can eliminate the actual faults from the suspect list. In deep submicron
technology, where even small delay defects can cause timing problems, multiple point faults are a
more realistic assumption.  Also, for a manufacturing process that has not fully matured, a
multiple point fault model will be more valuable to diagnose the defects to improve the quality of
the process.

We propose a method for delay fault diagnosis under a multiple fault assumption.  In our
proposed method we not only derive information from the failing vectors to identify the possible
suspects, but also use the passing vectors in a systematic way to further refine the set of
suspects.  We also use a novel approach based on static timing information to rank the faults
according to their likelihood of being present in the defective part.

3.  Proposed Method

Diagnosis under a multiple fault assumption is much more complex as many of the
simplifying assumptions for single faults no longer hold good.  In our proposed method, we
develop a systematic approach to tackle this problem.  Our method is capable of handling a
multiple number of faults up to a certain extent.  We rank the faults according to their likelihood
of being the cause of the observed behavior of the circuit being diagnosed.  Here we describe our
method which consists of two main steps:  suspect list generation and suspect list refinement.

3.1  Generating the Suspect List

For a test sequence, we collect all the test vector pairs for which the circuit-under-test has
failed and associate with each pair the set of outputs that have registered a faulty value for that
pair.  We also collect the test vector pairs for which the circuit has produced no errors.  The
circuit is initially preprocessed to obtain a levelized order.  We then use a 6-valued algebra for
our simulation purposes based on the H6 algebra [13] as is used in [12].  The symbols used are
the following:  S0 for static zero, S1 for static one, R1 for a rising transition, F0 for a falling
transition, X0 for static-0 hazard, and X1 for a static-1 hazard.  The advantage of using this
6-valued algebra is that it does not depend on any gate propagation delay or delay fault size.

A pair of vectors is required to detect a delay fault.  We take a vector pair {v1, v2} from the
set of collected vector pairs for which the circuit failed.  6-valued simulation is done for v1 with
all the inputs either S0 or S1. Then 6-valued simulation is done for v2 to obtain the signal values
on each line.  We already have the information about which outputs have registered a faulty
value for this test vector pair.  From each such primary output we do critical path tracing.  For
each failing vector pair v, we form a set Cv, j of suspects (i.e. critical lines) obtained by critical
path tracing from each failing output j.  For all the other outputs that have fault-free values, we
do not carry out critical path tracing.  We define a set of prime suspects, PS, which is computed



as the intersection of all suspects Cv, j, (i.e., PS = Π Cv, j for all v and j).  It is evident that the set
PS contains all the suspects whose presence alone can explain all the failing primary outputs for
each vector pair v that failed.  If the set PS is empty, we can immediately conclude the presence
of multiple faults.  It is important to note here that if PS is not empty we cannot eliminate the
possibility of multiple faults.

We also define a set MS, whose members are the suspects for multiple faults.  MS is
calculated by the set union of all Cv, j minus PS, (i.e., MS = ∪ Cv, j - PS for all v and j).  We also
associate with each element in PS or MS the primary outputs that might have failed because of it.
We repeat the above steps for all the failing vectors.  If the number of suspect lines in PS and MS
are small enough for our purposes we stop.  But normally that is not expected to happen, so we
need to refine this scheme to further eliminate suspects.

In the example in Fig. 1, gates G1 and G3 have delay faults.  The primary outputs O1 and O2

have faulty values on application of the test vector pair (01001,11000).  Using critical path
tracing starting from O1, we  have C1 = {O1 , L3 , I1 }.  Critical path tracing starting from O2

results in C2 = {O2 , L10  , I5 }.  So the intersection of sets C1 and C2 gives PS = {}.  The set union
of C1 and C2 gives MS = {O1 , L3 , I1 , O2 , L10 , I5 }.  Note that MS contains the actual faulty lines
L3 and L10 whereas PS is empty signifying the presence of multiple faults.
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   Figure 1. Signal values at Different Lines after Application of Vector Pair (01001,11000)
Faulty Gates:  G1 and G3
C1 = {O1 , L3 , I1 };  C2 = {O2 , L10 , I5 };  PS = {};  MS = {O1 , L3 , I1 , O2 , L10 , I5 }

3.2  Refining the Suspect List

The refinement we propose is to make use of the vectors that have not produced any faulty
output values.  These vectors are already available as part of the test sequence applied on the
circuit under test.  So we can use them to refine our scheme without having to spend any effort
on their generation or application to the circuit.  In our scheme, we obtain information about the
possible likelihood of a suspect causing an observed behavior without explicitly enumerating all
possible paths passing through a suspect.

There can be a large number of paths passing through a suspect.  Among the paths passing
through a node, all of the paths, some of the paths, or none of the paths could have been robustly
tested during the test sequence.  If the normal delay through a path, added with the delay defect
size (amount of delay over the specified delay) is longer than the clock period, then a faulty
output will be observed when the path is robustly tested.  So depending on the delay defect size, a



suspect can cause a delay fault along all paths, some paths, or none of the paths passing through
it.  The possible delay defect size can range from zero to gross defect sizes.  Our approach
examines what delay defect size for a suspect can explain the observed behavior during the test
sequence.  For each suspect in the suspect list, we obtain two bounds:  a lower bound and an
upper bound whenever possible.  The lower bound is the minimum possible delay defect size at a
suspect that can explain the observed faulty behavior.  The upper bound is the maximum
possible delay defect size at a suspect that, when added to the normal delay of a path passing
through the suspect, can explain the fault-free behavior when that path has been robustly tested.
If for all the test vectors in the test sequence there exists no path through a suspect which, when
robustly tested, has produced a fault-free output, then no upper bound is obtained.  Suspects with
no upper bound are ranked at the top of the suspect list and are ranked by the ascending order of
their lower bounds.  We now discuss the necessary steps to obtain the lower and upper bounds.

Looking at the paths that are robustly tested by a test vector pair, we obtain the upper bound
for a suspect by finding the shortest path, in terms of delay, from a primary input to the suspect,
and the longest path from the suspect to a fault-free primary output.  The shortest path to the
suspect gives the earliest arrival time for a transition at the suspect, and the longest path gives
the most stringent timing requirement that was satisfied (since the observed output was fault-
free). So the difference between the clock period and the sum of these two times is the largest
possible delay at the suspect that would still be consistent with the observed fault-free response
(i.e., the largest delay at the suspect that has been tested to be fault-free).

Looking at the paths that are tested by a two-pattern test, we obtain the lower bound for a
suspect by finding the longest path, in terms of delay, from a primary input to the suspect, and
the shortest path from the suspect to a faulty primary output.  The longest path to the suspect
gives the latest arrival time for a transition at the suspect, and the shortest path gives the least
stringent timing requirement that was not satisfied (since the observed output was faulty). So the
difference between the clock period and the sum of these two times is the smallest possible delay
at the suspect that would still be consistent with the observed faulty response (i.e., the smallest
delay at the suspect that has been tested to be faulty).

When obtaining the upper and lower bounds on the delay defect size, we use the specified
min-max delays for each gate.  We are always conservative in choosing the delay value.  When
considering the fault-free paths, we assume the minimum delay for each gate (i.e., assume the
largest timing slack).  When considering the faulty paths, we assume the maximum delay for
each gate (i.e., assume the smallest timing slack).

If the smallest possible delay defect for a suspect that could have caused an observed faulty
output (i.e., the lower bound), is greater than the largest delay defect for which a suspect has
been robustly tested and observed to be fault-free (i.e., the upper bound), we eliminate that
suspect from the suspect list.  Otherwise we rank it according to the relative delay values in the
upper and lower bounds.  At the end of this procedure, we have a ranked list of final suspects.
The suspects at the top of the list are the prime candidates for causing the observed behavior of
the circuit under test.

4.  Experimental Results

Delay fault diagnosis is heavily dependent on the defect size and the test set used.  Here some
experimental results are shown for a test set that was generated by the tool Soprano [14].  Table
1 summarizes the results obtained for the ISCAS 85 [15] benchmark circuits C432 and C880.
Random faults of varying size were injected.  The propagation delay for 2-input AND and OR
gates was 2 units, and for inverters it was 1 unit.  In the second column in Table 1, the fault



locations are shown with their corresponding defect sizes in the third column.  The fourth column
shows the initial number of suspects before any elimination or ranking has been done.  The fifth
column shows the number of suspects after all the suspects having lower bound greater than
upper bound have been eliminated.  The last column shows the individual rank of each suspect in
the final suspect list.  As can be seen, in most cases the elimination and ranking are able to
significantly narrow the search space.  Note that this improvement comes at no cost in terms of
addition test generation and test application.  By simply extracting additional information from
the passing tests, the diagnosis is improved.

Table 1.  Experimental Results for Fault Diagnosis of Multiple Faults

Circuit Fault
Location

Defect
Size

Initial Suspects Suspects after
Elimination

Rank

C432 Gate:  [438]
Gate:  171

2 units 25 18 8
15

C432 Gate:  63
Gate:  82

3 units 23 16 13
16

C432 Gate:  174
Gate:  63

3 units 23 16 11
15

C880 Gate:  [379]
Gate:  851

3 units 127 111 10
30

C880 Gate:  632
Gate:  541

3 units 110 95 18
20

C880 Gate:  466
Gate:  543

4 units 98 89 6
61

C880 Gate:  830
Gate:  146

5 units 37 36 2
21

5.  Summary and Conclusions

In the presence of multiple delay faults, automated diagnostic procedures that make a single
fault assumption may give an incorrect diagnosis.  In this paper, a systematic approach has been
proposed for delay fault diagnosis under a multiple fault assumption.  Information from the
failing test vectors is used to construct a list of single and multiple fault suspects that may have
caused the faulty responses.  The list of suspects is then pruned and ranked in a novel way by
using information from the passing test vectors combined with static timing information.  The
end result is a suspect list that can be used to guide physical probing of the part.

The approach described here also provides a framework for improving the multiple delay fault
diagnosis.  If further diagnostic resolution is required, additional test generation can be
performed to eliminate more suspects by tightening the upper and lower bounds.  This narrows
down the list of suspects and ranks them more appropriately thereby reducing the search space
for hard-to-diagnose multiple delay faults.
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