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THE AMOUNT OF DATA required to test ICs is growing

rapidly in each new generation of technology. Increasing

integration density results in larger designs with more scan

cells and more faults. Moreover, achieving high test qual-

ity in ever smaller geometries requires more test patterns

targeting delay faults and other fault models beyond stuck-

at faults. Conventional external testing involves storing all

test vectors and test response on an external tester—that

is, ATE. But these testers have limited speed, memory, and

I/O channels. The test data bandwidth between the tester

and the chip is relatively small; in fact, it is often the bot-

tleneck determining how fast you can test the chip. Testing

cannot proceed any faster than the amount of time

required to transfer the test data:

Test time ≥ (amount of test data on tester) / (number

of tester channels × tester clock rate)

Overcoming limited tester-chip
bandwidth
Three general approaches help overcome this bottle-

neck: stand-alone BIST, hybrid BIST, and test data com-

pression.

Stand-alone BIST
Traditional stand-alone BIST involves using on-chip

hardware to perform all test pattern generation and out-

put response analysis. Stand-alone BIST eliminates the

need for tester storage. This is very useful for perform-

ing self-test in the field when there is no access to a

tester. However, achieving high fault cov-

erage with stand-alone BIST generally

requires considerable overhead because

of random-pattern-resistant (RPR) faults,

which have low detection probabilities.

Detecting such faults requires either test

points or deterministic-pattern-embed-

ding logic. Other issues with BIST include

the need for a BIST-ready design, a way to handle false

and multicycle paths, and the need to keep nondeter-

ministic values from corrupting the final signature.

Hybrid BIST
If a particular chip design uses BIST only for manufac-

turing test, then hybrid BIST can be more cost-effective

than stand-alone BIST. Hybrid BIST involves storing some

data on the tester to help detect RPR faults. The simplest

approach is to perform ATPG for RPR faults not detected

by pseudorandom BIST to obtain a set of deterministic test

patterns that “top up” the fault coverage to the desired

level, and then store those patterns directly on the tester.

More efficient hybrid BIST schemes store the deter-

ministic top-up patterns on the tester in a compressed

form, then use the existing BIST hardware to decompress

these patterns. Some schemes embed deterministic pat-

terns by using compressed weight sets or by perturbing

the pseudorandom sequence in some manner.

Test data compression
As Figure 1 illustrates, test data compression involves

adding some additional on-chip hardware before and

after the scan chains. This additional hardware decom-

presses the test stimulus coming from the tester; it also

compacts the response after the scan chains and before

it goes to the tester. This permits storing the test data in a

compressed form on the tester. With test data compres-

sion, the tester still applies a precise deterministic

(ATPG-generated) test set to the circuit under test (CUT).

Survey of Test Vector
Compression Techniques

Test data compression consists of test vector compression on the input side
and response compaction on the output side. Test vector compression has
been an active area of research, yielding a wide variety of techniques. This
article summarizes and categorizes these techniques, explaining how they
relate to one another. The goal is to provide a framework for understanding
the theory and research in this area.
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This process differs from that of hybrid BIST, which

applies a large number of patterns, including both

pseudorandom and deterministic data. Although hybrid

BIST can reduce the amount of test data on the tester

more than test data compression can, hybrid BIST gen-

erally requires longer test application time because you

must apply more patterns to the CUT than with test data

compression (in essence, hybrid BIST trades off more

test application time for less tester storage). The advan-

tage of test data compression is that it generates the

complete set of patterns applied to the CUT with ATPG,

and this set of test patterns is optimizable with respect

to the desired fault coverage. Test data compression is

also easier to adopt in industry because it’s compatible

with the conventional design rules and test generation

flows for scan testing.

Test data compression provides two benefits. First, it

reduces the amount of data stored on the tester, which

can extend the life of older testers that have limited

memory. Second—and this is the more important ben-

efit, which applies even for testers with plenty of mem-

ory—it can reduce the test time for a given test data

bandwidth. Doing so typically involves having the

decompressor expand the data from n tester channels

to fill greater than n scan chains. Increasing the number

of scan chains shortens each scan chain, in turn reduc-

ing the number of clock cycles needed to shift in each

test vector.

Test data compression must compress the test vec-

tors losslessly (that is, it must reproduce all the care bits

after decompression) to preserve fault coverage. The

output response, on the other hand, can use lossy com-

paction (which does not reproduce all data, losing

information) with negligible impact on fault coverage.

Ideally, the output response could be compacted using

just a multiple-input signature register (MISR). However

any unknown (nondeterministic) values in the output

response would corrupt the final signature. Researchers

have developed several schemes to address the prob-

lem of unknown values in the output response, includ-

ing eliminating the source of the unknown values,

selectively masking the unknown values in the output

stream, or using an output compaction scheme that can

tolerate the unknown values. Output compaction is an

entire subject in itself, and I will not discuss it further in

this article.

The subject here is test vector compression tech-

niques. Test vectors are highly compressible because

typically only 1% to 5% of their bits are specified (care)

bits. The rest are don’t-cares, which can take on any

value with no impact on the fault coverage. A test cube

is a deterministic test vector in which the bits that ATPG

does not assign are left as don’t-cares (that is, the ATPG

does not randomly fill the don’t-cares).

In addition to containing a very high percentage of

don’t-cares, test cubes also tend to be highly correlated

because faults are structurally related in the circuit.

Both of these factors are exploitable to achieve high

amounts of compression. Recently, researchers have

proposed a wide variety of techniques for test vector

compression. Here, I summarize and categorize these

techniques and explain how they relate to each other.

The focus is on hardware-based test vector compression

techniques for scan architectures; I do not discuss soft-

ware-based, nonscan, and hybrid BIST techniques.

Test vector compression schemes fall broadly into

three categories:

■ Code-based schemes use data compression codes to

encode test cubes.

■ Linear-decompression-based schemes decompress

the data using only linear operations (that is LFSRs

and XOR networks).

■ Broadcast-scan-based schemes rely on broadcasting

the same values to multiple scan chains.

Code-based schemes
Code-based schemes use data compression codes

to encode the test cubes. This involves partitioning the

original data into symbols, and then replacing each

symbol with a code word to form the compressed data.

To perform decompression, a decoder simply converts
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each code word in the compressed data back into the

corresponding symbol.

Run-length-based codes
The first data compression codes that researchers

investigated for compressing scan vectors encoded runs

of repeated values. Jas and Touba proposed a scheme

based on run-length codes that encoded runs of 0s

using fixed-length code words.1 To increase the preva-

lence of runs of 0s, this scheme uses a cyclical scan

architecture to allow the application of difference vec-

tors where the difference vector between test cubes t1

and t2 is equal to t1 ≈ t2. Careful ordering of the test cubes

maximizes the number of 0s in the difference vectors,

thereby improving the effectiveness of run-length cod-

ing. Chandra and Chakrabarty proposed a technique

based on Golomb codes that encode runs of 0s with

variable-length code words.2 The use of variable-length

code words allows efficient encoding of longer runs,

although it requires a synchronization mechanism

between the tester and the chip. Further optimization is

achievable by using frequency-directed run-length

(FDR) codes3 and variable-input Huffman codes

(VIHC),4 which customize the code based on the dis-

tribution of different run lengths in the data.

Dictionary codes
Another form of coding is dictionary coding, which

partitions the original data into n-bit symbols and uses

a dictionary to store each unique symbol. This tech-

nique compresses data by encoding each n-bits using a

b-bit code word that corresponds to the symbol’s index

in the dictionary (b is less than n when all possible sym-

bols do not occur in the data). Reddy et al. proposed a

scan vector compression scheme, illustrated in Figure

2, that uses a complete dictionary.5 It uses n scan chains,

and stores each distinct scan slice (the n-bits loaded into

the scan chains in each clock cycle) in

the dictionary.

To minimize dictionary size, this tech-

nique modifies the test cubes to mini-

mize the number of distinct scan slices.

The size of each index equals ⎡log2n⎤,
where n is the number of distinct scan

slices.

A drawback of using a complete dic-

tionary is that the dictionary size can

become very large, resulting in too much

overhead for the decompressor. Li et al.

proposed a partial-dictionary coding

scheme that constrains the dictionary size based on the

allocated area for the decompressor.6 If the dictionary

size is 2b, then the 2b scan slices that occur most fre-

quently go into the dictionary. Scan slices that are not

in the dictionary remain unencoded, and the decom-

pressor bypasses the dictionary. An additional extra bit

in each code word indicates whether or not to use the

dictionary.

Würtenberger et al. proposed using a partial dictio-

nary along with a “correction” network that flips bits to

convert a dictionary entry into the desired scan slice.7

Using the correction network reduces the dictionary size.

Statistical codes
Statistical coding partitions the original data into n-

bit symbols and assigns variable-length code words

based on each symbol’s frequency of occurrence. It

assigns shorter code words to symbols that occur more

frequently, and longer code words to those that occur

less frequently. This strategy minimizes the average

length of a code word.

Jas et al. described a scan vector compression

scheme based on selective Huffman coding.8 A

Huffman code is an optimal statistical code, but its

decoder size grows exponentially with symbol size.

Selective Huffman coding encodes only the most fre-

quently occurring symbols, leaving the rest unencoded.

This allows the use of larger symbol sizes, in turn allow-

ing greater compression than what a similarly sized, full-

Huffman decoder (with a smaller symbol size) could

achieve.

Constructive codes
Constructive codes exploit the fact that each n-bit

scan slice typically contains relatively few care bits. Each

code word in a constructive code specifies a subset of

the n bits in the scan slice. It is possible to construct the
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scan slice by incrementally specifying all the care bits

using a sufficient number of code words. Reda and

Orailoglu proposed a scheme that constructs the current

scan slice from the previous scan slice by flipping bits.9

Each code word flips a single bit, so the number of code

words used to construct each scan slice equals the num-

ber of care bits in the current scan slice that differ from

those in the previous scan slice. This technique requires

some control information to indicate when scan slice

construction is complete and the slice is ready to be shift-

ed into the scan chain. Wang and Chakrabarty proposed

a constructive code method that first sets all bits in a

scan slice to either 0 or 1 (whichever matches the largest

number of care bits), and then incrementally loads the

care bits with opposite value using either a single-bit or a

group-copy mode.10

Linear-decompressor-based schemes
A second category of compression techniques is

based on using a linear decompressor. Any decom-

pressor that consists of only wires, XOR gates, and flip-

flops is a linear decompressor and has the property that

its output space (the space of all possible vectors that it

can generate) is a linear subspace spanned by a

Boolean matrix. A linear decompressor can generate

test vector Y if and only if there exists a solution to the

system of linear equations AX = Y, where A is the char-

acteristic matrix for the linear decompressor and X is a

set of free variables shifted in from the tester (you can

think of every bit on the tester as a free variable assigned

as either 0 or 1). The characteristic matrix for a linear

decompressor is obtainable from symbolic simulation

of the linear decompressor; in this simulation a symbol

represents each free variable from the tester.11,12

Encoding a test cube using a linear decompressor

requires solving a system of linear equations consisting

of one equation for each specified bit, to find the free-

variable assignments needed to generate the test cube.

If no solution exists, then the test cube is unencodable

(that is, it does not exist in the output space of the lin-

ear decompressor). In this method, it is difficult to

encode a test cube that has more specified bits than the

number of free variables available to encode it.

However, for linear decompressors that have diverse lin-

ear equations (such as an LFSR with a primitive poly-

nomial), if the number of free-variables is sufficiently

larger then the number of specified bits, the probability

of not being able to encode the test cube becomes neg-

ligibly small. For an LFSR with a primitive polynomial,

research showed that if the number of free variables is

20 more than the number of specified bits, then the

probability of not finding a solution is less than 10−6.11

Researchers have proposed several linear decom-

pression schemes, which are either combinational or

sequential.

Combinational linear decompressors
Researchers described the use of a combinational

linear decompressor in which an XOR of some of the

tester channels drives each scan chain.13,14 This

approach uses simpler hardware and control logic than

approaches based on sequential linear decompressors.

The drawback is that combinational linear decompres-

sors must encode each scan slice using only the free

variables shifted in from the tester in a single clock

cycle, which is equal to the number of tester channels.

The worst-case, most highly specified scan slices tend

to limit the amount of achievable compression because

the number of tester channels must be sufficiently large

to encode the most highly specified scan slices.

Krishna and Touba proposed a method for improv-

ing the encoding efficiency of a combinational linear

decompressor by dynamically adjusting the number of

scan chains loaded in each clock cycle.15

Sequential linear decompressors
Sequential linear decompressors are based on linear

finite-state machines such as LFSRs, cellular automata,

or ring generators.16 Their advantage lies in allowing the

use of free variables from earlier clock cycles to encode

a scan slice in the current clock cycle. This provides

much greater flexibility than combinational decom-

pressors and helps avoid the problem of the worst-case,

most highly specified scan slices limiting the overall

compression.

Static reseeding. The earliest work in this area was

based on static LFSR reseeding, a technique that com-

putes a seed (an initial state) for each test cube. This

seed, when loaded into an LFSR and run in

autonomous mode, will produce the test cube in the

scan chains.11 This technique achieves compression by

storing only the seeds instead of the full test cubes.

One drawback of using static reseeding for com-

pressing test vectors on a tester is that the tester is idle

while the LFSR is running in autonomous mode. One

way around this is to use a shadow register for the LFSR

to hold the data coming from the tester while the LFSR

is running in autonomous mode.17,18

Another drawback of static reseeding is that the
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LFSR must be at least as large as the number of speci-

fied bits in the test cube. One way around this is to only

decompress a scan window (a limited number of scan-

slices) per seed.18-20

Dynamic reseeding. Könemann,21 Krishna et al.,22 and

Rajski et al.23 proposed dynamic reseeding approaches.

Dynamic reseeding calls for the injection of free vari-

ables from the tester into the LFSR as it loads the scan

chains. Figure 3 shows a generic example of a sequen-

tial linear decompressor that uses b channels from the

tester to continuously inject free variables into the LFSR

as it loads the scan chains through a combinational

XOR network. This network expands the LFSR outputs

to fill n scan chains. The advantages of dynamic reseed-

ing compared with static reseeding are that it allows

continuous flow operation in which the tester is always

shifting in data as fast as it can and is never idle, and it

allows the use of a small LFSR.

Rajski et al. described a methodology for scan vec-

tor compression based on a sequential linear decom-

pressor.23 Instead of using an LFSR, this work uses a ring

generator,16 which improves encoding flexibility and

provides performance advantages. A fixed number of

free variables are shifted in when decompressing each

test cube. In this case, the control logic is simple

because this methodology decompresses every test

cube in exactly the same way. Constraining the ATPG

generates test cubes that are encodable using the fixed

number of free variables.

Könemann described a methodology for scan vec-

tor compression in which the number of free variables

used to encode each test cube varies.21 This method

requires having an extra channel from the tester to gate

the scan clock. For a heavily specified scan slice, this

extra gating channel stops the scan shifting for one or

more cycles, allowing the LFSR to accumulate a suffi-

cient number of free variables from the tester to solve

for the current scan slice before proceeding to the next

one. This approach makes it easy to control the num-

ber of free variables that the decompressor uses to

decompress each test cube. However, the additional

gating channel uses some test data bandwidth.

Combined linear and nonlinear decompressors
The amount of compression achievable with linear

decompression is limited by the number of specified

bits in the test cubes. Although linear decompressors

are very efficient at exploiting don’t-cares in the test set,

they cannot exploit correlations in the specified bits.

Hence, they cannot compress the test cubes to less than

the total number of specified bits in the test cubes. The

specified bits tend to be highly correlated, so one strat-

egy to take advantage of this fact is to combine linear

and nonlinear decompression to achieve greater com-

pression than either one can alone.

One method encodes the inputs to a linear decom-

pressor using a statistical code and selects the solution

to the system of linear equations for each test cube in

such a way that they can be effectively compressed by

the statistical code.19 The statistical code reduces the

number of bits that the tester must store for the linear

decompressor.

In another method, Sun, Kinney, and Vinnakota

combine dictionary coding with a linear decompres-

sor.24 This methods either uses the dictionary to gener-

ate each scan slice or, if it is not present in the

dictionary, uses the linear decompressor.

Another method places a nonlinear decompressor

between the linear decompressor and the scan chains to

compress the number of specified bits that the linear

decompress must produce.25 Doing so allows greater com-

pression because the linear decompressor requires fewer

free variables from the tester to solve the linear equations.

Broadcast-scan-based schemes
A third category of techniques is based on the idea of

broadcasting the same value to multiple scan chains (a

single tester channel drives multiple scan chains). This is

actually a special degenerate case of linear decompres-

sion in which the decompressor consists of only fan-out

wires. Given a particular test cube, the probability of

encoding it with a linear decompressor that uses XORs is

higher because it has a more diverse output space with

fewer linear dependencies than a fan-out network.

However, the fact that faults can be detected by many dif-

ferent test cubes provides an additional degree of freedom. 
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The advantage of broadcast scan is that it is easy to

incorporate the decompressor-imposed constraints dur-

ing ATPG to exploit this degree of freedom: Simply tie

dependent inputs together in the circuit description

given to the ATPG so that the ATPG algorithm will pro-

duce only encodable test cubes. It is not easy to do this

for linear decompressors that use XORs, because incor-

porating XOR gates can significantly degrade ATPG per-

formance. For linear decompressors that use XOR gates,

the ATPG first produces a test cube and then must solve

the linear equations to check whether the test cube is

encodable. So each approach has its advantages. Linear

decompressors that use XORs can encode a wider range

of test cubes than broadcast scan, but broadcast scan

can harness the ATPG to search for encodable test

cubes more efficiently. Commercial tools based on both

approaches are available.

Broadcast scan (for independent scan chains)
Lee et al. originally proposed broadcast scan in the

context of testing independent circuits.26 The idea is to

use a single tester channel to load multiple scan chains

that each drive independent circuits. When ATPG tar-

gets a fault in one circuit, it generally leaves many inputs

unassigned. It can then assign the unassigned inputs for

one circuit to target faults in the other circuits. Because

the circuits are independent, the fault coverage of this

broadcast structure will be the same as the original fault

coverage with independent scan chains. If Ti is the num-

ber of scan vectors required by the ith independent scan

chain, then the number of scan vectors with broadcast

scan would be in the range from Max(Ti) to Sum(Ti).

Illinois scan (for dependent scan chains)
Using broadcast scan for multiple scan chains that

drive the same circuit might result in reduced fault cov-

erage because some scan cells always hold identical

values. To address this shortcoming, Hamzaoglu and

Patel proposed a parallel/serial scan architecture that

has come to be known as Illinois scan.27 It has two

modes of operation:

■ broadcast, which broadcasts one tester channel to

multiple scan chains, and

■ serial, which loads the scan chains serially.

For faults undetectable in broadcast mode, testing

can use the serial mode. For multiple tester channels,

you implement Illinois scan by broadcasting each tester

channel to a subset of the scan chains. One methodol-

ogy selects the set of scan chains that each tester chan-

nel broadcasts to based on compatibility analysis.28

Reconfigurable broadcast scan
For multiple tester channels, one way to increase the

number of faults detected by broadcast mode is to

reconfigure the set of scan chains that each tester chan-

nel broadcasts to. This changes the ATPG constraints,

possibly allowing the detection of additional faults with-

out having to resort to serial mode. This reconfiguration

can be either static or dynamic.

Static reconfiguration. In static reconfiguration, the

configuration changes between test cubes (reconfigu-

ration occurs on a per scan, rather than per shift, basis).

Pandey and Patel proposed a static reconfiguration

technique that places multiplexers within the scan

chains to reconfigure their composition and length.29

These changes, in turn, alter the constraints imposed by

the broadcast structure.

Samaranayake et al. described a static reconfigura-

tion technique that places multiplexers only at the scan

chain inputs to reconfigure the set of scan chains that

each tester channel broadcasts to.30 (This technique

does not reconfigure the scan chains themselves.) This

technique uses compatibility analysis to select the set of

configurations. Tang, Reddy, and Pomeranz described

using Omega networks to allow CUT-independent design

of the reconfiguration network.31

Mitra and Kim described a static reconfiguration

methodology that forms the configurations by setting

different subsets of inputs to 0 in an XOR network

instead of using a multiplexer network.14

Dynamic reconfiguration. In dynamic reconfiguration,

the configuration can change for each scan slice (that is,

the reconfiguration occurs on a per-shift basis). This pro-

vides much greater flexibility to detect more faults, but

requires more control information to indicate when to per-

form the reconfiguration. With static reconfiguration, the

reconfiguration only occurs a few times (only after the

tester applies all the test cubes for a particular configura-

tion), whereas dynamic configuration uses multiple

reconfigurations for each test cube, thereby requiring

more control information. Sitchinava et al. proposed a

dynamic reconfiguration scheme in which some tester

channels drive multiplexer control signals, which in turn

establishes the configuration to use in each clock cycle.32

Wang et al. proposed a VirtualScan scheme that gen-

eralizes the dynamically reconfigurable broadcast network
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and permits the use of both multiplexers and XOR gates.33

VirtualScan incorporates the network-imposed constraints

directly into the ATPG backtrace. Another paper describes

a time-division demultiplexing and multiplexing technique

for use with VirtualScan to further reduce test application

time and test pin-point count in situations where the tester

I/O is faster than the scan shift frequency.34

Scan forest
Conventional broadcast scan broadcasts values only

at the scan chain inputs. Miyase et al. proposed the idea

of using a scan forest—that is, a scan architecture that

broadcasts the outputs of scan cells, thereby creating a

tree structure.35 For example, as Figure 4 shows, this

technique would replace a single scan chain of 100

scan cells with a scan tree in which the first 10 scan cells

form the root, and the 10th scan cell broadcasts (fans

out) to three branch scan chains, each having 30 scan

cells. The height of this example scan tree would be 40

(10 for the root plus 30 for the branches), and depen-

dency constraints would exist for only the three branch

scan chains and not the stem. The added flexibility of

using internal broadcasting in the scan chains can be

used to design a scan forest that achieves high fault cov-

erage without reconfiguration. The drawback is that the

scan stitching might not be optimal for layout.

Comparison of schemes
Table 1 summarizes some general qualitative com-

parisons between the different categories of schemes.

The advantage of the nonlinear code-based schemes is

that they can efficiently exploit correlations in the spec-

ified bits and are usable on any set of test cubes (they

do not require ATPG constraints). Hence, they are effec-

tive for IP cores for which no structural information is

available. The drawback is that these schemes are gen-

erally not as efficient in exploiting don’t-cares as linear

techniques. Because industrial test cubes typically have

more than 95% don’t-care bits, linear techniques gen-

erally provide greater compression.

Combinational linear decompressors are simple to

implement, requiring very little control logic. The main

drawback is that the decompressor must produce each

scan slice using only the free variables that come from

the tester in a single clock cycle. Consequently, the most

heavily specified scan slices tend to limit the amount of

compression. Sequential linear decompressors avoid

this obstacle by combining free variables across multi-

ple clock cycles such that the linear equations for the

scan cells have very low linear dependency. This pro-

vides high encoding flexibility, increasing the proba-
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Table 1. General characteristics of different categories of schemes.

Commercial 

Category Pros Cons tools available?

Code based

Exploits correlation in specified bits; Not as efficient in exploiting don’t-cares; No

usable on any set of test cubes more complex control logic

Linear decompressors

Combinational Uses only combinational gates; Each slice encoded independently; Yes

very simple control logic two-step ATPG

Sequential Low linear dependency; More complex decompressor; Yes

very high encoding flexibility two-step ATPG

Broadcast scan

Static Simple decompressor; High linear dependency; Yes

reconfiguration efficient one-step ATPG lower encoding flexibility

Dynamic More encoding flexibility than static More control information than for static Yes

reconfiguration reconfiguration; one-step ATPG reconfiguration; less encoding flexibility than 

sequential linear decompressors



bility of being able to encode a test cube.

Broadcast scan has less encoding flex-

ibility than linear decompressors that use

XOR gates because it has much greater lin-

ear dependency (some scan cells receive

identical values). Thus, the space of

encodable test cubes is smaller. However,

the advantage of broadcast scan is that

the ATPG backtrace can incorporate con-

straints for the decompressor; this way, the

ATPG will produce only encodable test

cubes. With sequential linear decompres-

sors, the constraints are too complex to

incorporate into the ATPG backtrace,

requiring a two-step process: generate the

test cube, and then solve the linear equa-

tions to see whether or not the test cube is

encodable. Both schemes have advan-

tages, and commercial tools based on

both approaches are available.

Broadcast scan can also employ

either static or dynamic reconfiguration.

The static approach requires less control

information, but has less encoding flexi-

bility. The dynamic approach requires

control information to select the config-

uration for each clock cycle, but pro-

vides greater encoding flexibility.

RESEARCHERS HAVE PROPOSED a wide

variety of techniques for test vector com-

pression, and vendors have developed

and successfully deployed commercial

tools based on these techniques. As the

ratio of test data volume to I/O pins con-

tinues to grow rapidly, industry will

require further advances in test com-

pression technology to keep pace.

Future avenues for increasing com-

pression might include developing new

ATPG procedures better optimized for

the compression scheme, using adaptive

techniques that adjust for different por-

tions of the circuit or test set, and moving

toward hybrid BIST schemes. ■
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Glossary
Broadcast scan. Using a fan-out network to broadcast the same value to mul-

tiple scan chains.
Constructive code. Fixed-to-variable code in which each code word speci-

fies a subset of the bits in a symbol. The code constructs a symbol by using
a sufficient number of code words to specify all of the symbol’s care bits.
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