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Abstract 

A novel test vector compressioddecompression 
technique is proposed for reducing the amount of test 
data that must be stored on a tester and transferred to 
each core when testing a core-based design. A small 
amount of on-chip circuitry is used to reduce both the test 
storage and test time required for testing a core-based 
design. The fully specified test vectors provided by the 
core vendor are stored in compressed form in the tester 
memory and transferred to the chip where they are 
decompressed and applied to the core (the compression is 
lossless). Instead of having to transfer each entire test 
vector from the tester to the core, a smaller amount of 
compressed data is transferred instead. This reduces the 
amount of test data that must be stored on the tester and 
hence reduces the total amount of test time required for 
transferring the data with a given test data bandwidth. 

1. Introduction 

Testing systems-on-a-chip containing multiple cores is 
a major challenge due to limited test access to each core 
[Chandramouli 961, [Zorian 971. The test vectors for each 
core must be applied to the core’s inputs and internal 
scan, and the test response of the core must be observed 
at the core’s outputs and shifted out of its internal scan. 
Some means for getting the test data from the tester to 
each core and getting the test response from each core to 
the tester is required. The best possible situation is to 
have full parallel access to the inputs and outputs of the 
cores [Immaneni 901. However, this requires 
multiplexing all of the core I/Os to the chip pins. The 
routing complexity and overhead for this can be 
enormous. A more efficient means for providing test 
access to the cores is to use scan chains. The number of 
scan chains that are used and the way in which they are 
organized determines the test data bandwidth for each 
core (i.e., rate at which test vectors can be scanned in and 

test response scanned out). The number of scan chains 
and their organization typically depend on the capabilities 
of the tester being used and on the scan routing costs. 
The total test time required for testing a core-based 
design depends on the amount of test data that must be 
transferred between the tester and the chip and the test 
data bandwidth for transferring the data. 

Figure 1 shows a general block diagram for how test 
data is transferred from the tester to the cores. The 
amount of test data that must be transferred from the 
tester to a particular core is equal to the number of test 
vectors (7) for the core times the number of input bits and 
internal scan elements for the core (m), i.e., T x m. For 
systems-on-a-chip that contain many complex cores, both 
the amount of test data and the test time can become very 
large. 

Storage 

Tester 

Figure 1. Block Diagram for Transferring Test Data 
between Tester and Embedded Cores 

One solution to this problem is to use built-in self-test 
(BIST) where on-chip hardware is used to test the cores. 
However for logic cores, this is only practical if the core is 
made “BISTable” by the core vendor. Currently, there are 
few cores that include BIST features. Usually, only a set 
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of test vectors for the core is given. The amount of BIST 
hardware required to apply a large set of specified test 
vectors is generally prohibitive. 

This paper piresents an efficient compression/ 
decompression scheme to reduce the amount of test data 
that must be stored on the tester and transferred to a core. 
A small amount of on-chip circuitry is used to reduce both 
the test storage and test time required for testing a core- 
based design. The 1ully specified test vectors provided by 
the core vendor are stored in compressed form in the 
tester memory and Iransferred to the chip where they are 
decompressed and applied to the core (the compression is 
lossless). Instead of having to transfer each entire test 
vector from the tester to the core, a smaller amount of 
compressed data is transferred instead. This reduces the 
amount of test data that must be stored on the tester and 
hence reduces the total amount of test time required for 
transferring the data with a given test data bandwidth. 
Thus, the technique presented in this paper can be used to 
reduce the test timi: required for testing a system-on-a- 
chip given a tester’s limited memory and channel capacity. 

Test vector compression/decompression techniques can 
be classified based on the amount of information they 
require. Four general classifications are described below: 
Schemes Recluirine, ATPG - These are schemes that 
involve using special ATPG procedures in generating the 
test set. This includes techniques that try to compact test 
sets [Tromp 911, [Pomeranz 931, [Kajihara 931, or to find 
easy to encode test vectors [Reeb 961, [Hellebrand 95al. 
Schemes Reauirinv Fault Simulation - These are schemes 
that do not decompress a particular test set, but rather use 
pseudo-random generators (e.g., LFSRs) to apply a large 
number of vectors to detect most of the faults, thereby 
reducing the number of deterministic test vectors that are 
required. These teclhniques require fault simulation of the 
circuit-under-test (CUT) to verify fault coverage. 
Schemes Reauiring Test Cubes - These are schemes that 
compress test cubes, which are ATPG generated vectors in 
which the unspecified inputs are left as don’t cares. These 
schemes include LFSR reseeding [Koenemann 9 11, 
[Hellebrand 95b], [:Zacharia 961, and width compression 
[Chakrabarty 971. 
Schemes for Fullv SDecified Test Vectors - These are 
schemes that are arble to compress fully specified test 
vectors. These schemes were developed for compressing 
test vectors stored in on-chip ROM’s [Agarwal 811, 
[Aboulhamid 831, [Dandapani 841, [Edirisooriya 921, 
[Dufaza 931, [Iyengiu 981. 

For intellectual property cores where no information is 
given about the internal structure of the core, test vector 
compression/decom~~ression techniques that require either 
ATPG or fault siniulation cannot be used. The core 

integrator must test the cores with the set of test vectors 
given by the core vendor. Furthermore, in most cases, the 
test vectors that are given are fully specified. Thus, 
techniques which require test cubes also cannot be used. 
For this reason, compression/decompression techniques 
for fully specified test vectors are needed. Previous work 
in this area has been focused on reducing the size of an 
on-chip ROM needed to store the test vectors. 

The cyclical scan chain decompression technique 
described in this paper can be used for fully specified test 
vectors and thus is applicable for intel tual property 

it takes advantage of the fact that existing scan chains on 
the chip can be configured as cyclical decompressors. 

A test data compression/decompression scheme for 
reducing the time for downloading test data from a 
workstation to a tester has recently been proposed by 
Yamaguchi, et al., [Yamaguchi 971, [Ishida 981. Note 
that this is a software based approach which targets a 
different problem then the one addressed here. It would 
be too complex and slow for an on-chip implementation as 
described here. 

The paper is organized as follows: The basic idea of 
cyclical scan chain decompression is explained in Sec. 2. 
Section 3 describes how the tester transfers encoded data 
to cyclical scan chain decompressors. Section 4 discusses 
ways in which cyclical scan chain decompression can be 
implemented in systems-on-a-chip containing many cores. 
Experimental results indicating the amount of compression 
that can be achieved are shown in Sec .  5. Section 6 is a 
conclusion. 

cores. It requires very little additional hlec ardware. Rather 

2. Cyclical Scan Chain Decompression 

The section describes the basic idea of test vector 
decompression via cyclical scan chains. Practical issues 
on how to implement it in a core-based design will be 
described in subsequent sections. Cyclical scan chain 
decompression involves the use of two scan chains as 
shown in Fig. 2. One is the “test scan chain” where the 
test vector will be applied to the circuit-under-test (CUT), 
and the other is the “cyclical scan chain” where the 
decompression will take place. The serial output of the 
cyclical scan chain feeds the serial input of the test scan 
chain and also loops back and is XORed in with the serial 
input of the cyclical scan chain. There are two 
requirements for the cyclical scan chain: 
1. It must have the same number of scan elements as the 

test scan chain. 
2. Its contents must not be overwritten when the system 

clock for the CUT is applied. 
When the system clock for CUT is applied, the test vector 
in the test scan chain is applied to the CUT and its 
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response is loaded back into the test scan chain. However, 
the contents of the cyclical scan chain must not be 
overwritten. The cyclical scan chain can be configured 
using the chip boundary scan, or using the boundary scan 
around a core, or using a scan chain in a different system 
clock domain. Note that if the test scan chain is a 
boundary scan that is driving the primary inputs of the 
CUT and is not capturing test response, then its contents 
are not lost when the system clock is applied and thus it 
can act as its own cyclical scan chain. This is illustrated 
in Fig. 3. 

Circuit-Under-Test 
----______------i___- 

Internal Scan _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ -  

------------- 
Cyclical Scan Chain Test Scan Chain 4- _-___- -__- - - -  (mbits )  

Figure 2. Cyclical Scan Chain Decompression Architecture 

Figure 3. Cyclical Scan Chain Decompression Using 
Boundary Scan 

The cyclical scan chain has the property that if it 
contains test vector t, then the next test vector that is 
generated in the cyclical scan chain will be the XOR of t 
and the “difference vector” that is shifted in. So generating 
a test set consisting of n test vectors, t l ,  t2, ..., tn, in a 
cyclical scan chain would involve first initializing the 
scan chain to all O’s, and then shifting tl into the scan 
chain followed by the difference vector tl 6’ t2, followed by 
tZ@ t3, and so on up to 69 t,,. 

The difference vectors that need to be shifted in to the 
cyclical scan chain depend on the way in which the test 
set is ordered. By carefully ordering the test vectors in the 
test set, the number of 0’s in the difference vectors can be 
maximized. Test vectors tend to be very correlated. 
Faults in the CUT that are structurally related require 
similar input value assignments in order to be provoked 
and sensitized to an output. Thus, many pairs of test 
vectors in the test set will have similar input combinations 
such that the difference vectors have a lot of 0’s.  
Ordering the test vectors in the test set such that 
correlated test vectors follow each other results in 
difference vectors with many more 0’s than 1’s. 

Data which is skewed such that the probability of one 
value exceeds that of another can be efficiently 
compressed with a run-length code. An example of a 
variable-to-block run-length code is shown in Fig. 4. A 
variable number of bits is encoded by a fixed number of 
bits. In this example, the fixed number of bits is 3. If a 
difference vector was 0000010000001 100001, then the 
encoded vector would be 101 1 io 000 100. 

Note that if the last few bits at the very end of the 
difference vector bit stream (all difference vectors 
concatenated together) cannot be encoded, extra bits can 
be added to solve the problem. For example, if the last 
two bits were 00, then the codeword 111 could be used to 
encode the bits even though it generates 000000. The 
extra bits would simply be ignored. 

000 1 
00 1 01 
010 00 1 
01 1 000 1 
100 00001 
101 ooo001 
110 0000001 
111 0000000 

Figure 4. Example of Run-Length Code 

The hardware required for decompressing an encoded 
vector for a run-length code is very simple. Each three bit 
block of encoded data is just a count of the number of 0’s 
in the run, so a three bit counter can be used to 
decompress the data. The counter is loaded with a three 
bit block and counts down to zero. When it reaches a 
count of zero, it outputs a 1 (unless the initial state was 
1 11) and then is reloaded with the next three bit block. 

Ordering the test set to minimize the run-length 
encoding corresponds to forming a complete weighted 
graph and finding the minimum cost Hamiltonian path. 
Each node in the graph corresponds to a test vector and is 
connected by a weighted edge to every other node. The 
weight on the edge between two nodes is computed by 
forming the difference vector between the two 
corresponding test vectors and computing the number of 
bits needed to encode the difference vector. The 
minimum cost path through the graph that does not repeat 
any vectors corresponds to the optimum ordering of the 
test vectors to maximize the compression. Many efficient 
heuristic procedures for finding a good ordering exist. 

So the basic idea of cyclical scan chain decompression 
can be summarized as follows. Given a test set that needs 
to be applied to a CUT, a cyclical scan chain is formed 
where the number of stages is equal to the number of bits 
in the test vectors. The test vectors are then ordered to 
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minimize the run-length encoding of the difference 
vectors. Rather than storing the full test vectors 
themselves, the compressed difference vectors (encoded 
with the run-length code) can be stored instead. To test 
the CUT, the compressed difference vectors are shifted in 
to a run-length decoder which decompresses them into the 
original difference vector bit stream one bit at a time 
which is fed into the cyclical scan chain to generate the 
test vectors. 

This is the blasic theory of cyclical scan chain 
decompression. There are many ways in which it can be 
implemented and used in different applications. The 
remainder of this paper will focus on its application for 
testing core-based designs. There are a number of 
practical issues related to how the tester transfers encoded 
data to cyclical scan chain decompressors, and how a 
core-based design can be configured during testing to 
allow cyclical scan chain decompression. 

run-length code shown in Fig. 4 which provides some 
useful advantages. In our experiments, we found that in 
most cases it allows more compression because it is not as 
inefficient when runs of 1’s occur. The other major 
advantage is that it takes no more than 6 clock cycles to 
decompress each encoded block of 3 bits. Thus, a single 
tester channel can shift in 6 bits of encoded data, 3 bits for 
each decompressor, and then load both decompressors at 
once (this is illustrated in Fig. 6). The decompressors can 
then start decompressing the encoded data while the tester 
takes 6 cycles to shift in the next 6 bits of encoded data. 
By the time the tester is ready to load the next block of 
encoded data, the decompressors are guaranteed to be 
finished decoding the previous block of encoded data. 
While the code in Fig. 5 is slightly more complicated to 
decode than the one in Fig. 4, it can still be decoded by a 
small finite state machine (FSM). 

3. Transferring; Data to Cyclical Scan Chain 
Decompressors 

Because a variable length code is used, the number of 
encoded bits transferred to the run-length decoder is less 
than the number of decoded bits that are transferred out. 
Since the run-length decoder shifts only one bit of data 
into the scan chain each clock cycle, there will be clock 
cycles when it will not be ready to receive data from the 
tester. These clock cycles can be overlapped with the 
clock cycles requirled to transfer data to another cyclical 
scan chain decompressor in order to reduce test time. One 
way to accomplish this is to use a single channel from the 
tester to transfer encoded data to multiple cyclical scan 
chain decompressors. 

Consider the simplest case where a single tester 
channel is used to lransfer data to two cyclical scan chain 
decompressors using the three bit code shown in Fig. 5. 
The code in Fig. 5 is a slight modification to the 

Channel 
from 
Tester 

3-Bit 
Run-Length 

Decoder 

OOO 10 
001 11 
010 01 
01 1 00 1 
100 0001 
101 00001 
110 00000 1 
111 000000 

Figure 5. Modified 3-Bit Run-Length Code 

When the decompressor is loaded with a 3 bit block of 
encoded data, it generates the appropriate sequence of 
decoded bits and advances the cyclical scan chain and test 
scan chain for each bit of the sequence. For the code in 
Fig. 5,  the length of the decoded sequence varies from 2 to 
6 bits. A scan counter is used to count the number of bits 
that are shifted into the test scan chain. When the test 
scan chain is full, the system clock is activated to apply 
the test vector to the CUT. 

h Cyclical Scan Chain 1 

Figure 6. Tester Shifts in 6 Bits of Encoded Data and Loads Two Run-Length Decoders 
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This approach has a number of attractive features. 
One tester channel is used to load two scan chains through 
the decompressors. The test program is simple. The 
tester just shifts in 6 bits of encoded data and applies a 
control signal to load the decompressors. The 
decompressors and related control circuitry are very 
simple. In effect, the decompressors allow the tester to 
load two scan chains with compressed test vectors in close 
to the time normally required to load one scan chain with 
uncompressed test vectors. This increases the effective 
bandwidth of a single tester channel and reduces the 
amount of data that needs to be stored in tester memory. 

4. Application to Testing Core-Based Designs 

Cyclical scan chain decompression can be used for 
testing core-based designs. No knowledge of the internal 
structure of the cores is required. The test vectors given 
by core vendors can be encoded and stored on the tester 
and then decompressed with cyclical scan chains on-chip. 
There are typically many different scan chains in a core- 
based design. Each core may have an internal scan as 
well as a boundary scan collar, the user-defined logic 
(UDL) may contain scan chains, and the chip may have a 
boundary scan around its pins. The length of the internal 
scan chains in the cores cannot be changed, but the other 
scan chains are designed by the core integrator and thus 
can be configured in different ways. 

The requirement for cyclical scan chain decompression 
as described in Sec. 2 is that a cyclical scan chain of equal 
length to the test scan chain is needed and the cyclical 
scan chain must not lose its contents during the test 
session. The simplest case for using cyclical scan chain 

decompression is for the boundary scan around the cores 
since the boundary scan can be configured as its own 
cyclical scan chain (assuming that it is not simultaneously 
used to capture the response of the logic surrounding the 
core). Using scan chain decompression in the internal 
scan of the core requires a separate cyclical scan chain of 
equal length. This cyclical scan chain can be configured 
in many different ways. Perhaps the simplest way is to 
use the boundary scan around the chip pins if one exists. 
If the chip boundary scan is longer than the internal scan 
of the core, it can of course be looped back at an 
intermediate point to form a cycle of the necessary length. 
In the same manner, the boundary scan around another 
core could also be used (as illustrated in Fig. 7). The 
internal scan in a different core whose system clock can be 
controlled independently from the core-under-test can also 
be configured as part of the cyclical chain provided it is 
the same length or shorter than the test scan chain. If it is 
shorter, than it can be configured with other boundary 
scan elements or scan elements in the UDL to form the 
correct length chain (as illustrated in Fig. 8). 

There are many options for configuring the cyclical 
scan chain decompressors. There is a lot of flexibility for 
developing a test schedule that tests all the cores in a 
system-on-a-chip using cyclical scan chain decompression 
to maximize the test data bandwidth of the tester. The 
run-length decoders and scan counters can be reused in 
different test sessions for different cyclical scan chain 
configurations. The output of a run-length decoder need 
not directly connect to the cyclical scan chain, there can be 
any number of scan chain elements between the XOR at 
the input of the cyclical scan and the run-length decoder. 

Internal Scan . . . . . . . . . . . . . . . . . . . . . . . .  Internal Scan _ _ _ _ _ - - - - - _ - - - _ _ _ _ _ _ - - -  U% 
Figure 7. Configuring Boundary Scan as Cyclical Scan Chain for Internal Scan in Core 

Scan Elements Core-Under-Test 
. . . . . . . . . . . . . . . . . . . . . . . .  _ _ _ _ _ _ _ _ - - _ - _ _ _ _ _ _ _ _ - - - -  

Internal Scan _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - -  Internal Scan _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - _ - - - -  

Figure 8. Using Internal Scan of a Core Plus Scan Elements in the UDL to Form Cyclical Scan Chain for the Internal 
Scan of the Core-Under-Test 
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5. Experimental Results 

Experiments were performed for the ISCAS 85 
[Brglez 851 and large ISCAS 89 [Brglez 891 circuits. The 
test set for each circuit was ordered to minimize the run- 
length encoding of the difference vectors, and then was 
encoded. Two diffixent codes were tried. Code 1 is the 
2-bit code shown in Fig. 9. Code 2 is the 3-bit code 
shown in Fig. 5 .  Table 1 shows the size of the scan chain 
for each circuit (for the ISCAS 85 circuits, it is assumed 
that their primary inputs are controlled by a scan chain). 
The original amount of test data is shown followed by the 
amount of compressed data for each code. The percentage 
of compression is computed as: 

As can be seen, the 3-bit code provided better compression 
than the 2-bit code for most circuits. Results for codes 
having more than 3 bits were found to have much worse 
compression and thus are not shown. 

When the test vectors are ordered, we noticed that 
some of the difference vectors require many fewer bits to 
encode with a run-length code than if they were not 
encoded while others required more bits to encode with a 

(Original Bits - Compressed Bits)/(Original Bits) 

run-length code than if they were not encoded. Some test 
vectors are not very correlated with the others. Thus, one 
option for improving the compression would be to use the 
cyclical scan chain decompressor to generate all the test 
vectors that it is efficient for, and then shift in the 
remaining test vectors normally. We tried this for the 
large ISCAS 89 circuits and the results are shown in 
Table 2. On average, it increased the amount of 
compression by about 5%. 

Figure 9. 2-Bit Run-Length Code 

Note that the compression that is achieved is a two-fold 
advantage. Not only does it result in less test storage 
requirements, but it also results in less test time which 
translates directly into lower test costs. The amount of 
compression could be much greater if test cubes were 
compressed instead of fully specified test vectors. 

Table 1. Compression Results for Compressing Whole Test Set 

Name 

c432 
c499 
c880 

cl355 
c1908 
c2670 
c3540 
c5315 
c6288 
c7552 
s9234 
~13207 
~15850  
~38417 

Table 2. Compression Results with Turning Off Compression for Part of Test Set 
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6. Conclusions 
This paper presents a new approach for 

compression/decompression of test vectors. Several key 
ideas are proposed: 
1. 

2. 

3. 

4. 

5. 

Using existing scan chains on the chip to from a cycle 
to generate test vectors by shifting in a difference 
vector. 
Ordering the test vectors in the test set to maximize 
the 0’s in the difference vectors. 
Encoding the difference vectors with a run-length 
code. 
Using a single channel from the tester to load multiple 
run-length decoders which in effect increases the 
“effective” bandwidth of the channel. 
Configuring scan chains in a core-based design to act 
as decompressors for other scan chains. 
These ideas lay a ground work for further advancement 

in test vector compressioddecompression. Some areas for 
further research would be to study the use of variable-to- 
variable length encoding for the difference vectors as well 
as other codes, and to look at ways to combine cyclical 
scan chain decompression with BIST. 
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