
Test Vector Decompression via Cyclical Scan Chains and Its Application to Testing
Core-Based Designs

c. Test Data
Bandwidth

Abhijit Jas and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084
E-mail: {jas, touba} @ece.utexas.edu

Abstract

A novel test vector compressioddecompression
technique is proposed for reducing the amount of test
data that must be stored on a tester and transferred to
each core when testing a core-based design. A small
amount of on-chip circuitry is used to reduce both the test
storage and test time required for testing a core-based
design. The fully specified test vectors provided by the
core vendor are stored in compressed form in the tester
memory and transferred to the chip where they are
decompressed and applied to the core (the compression is
lossless). Instead of having to transfer each entire test
vector from the tester to the core, a smaller amount of
compressed data is transferred instead. This reduces the
amount of test data that must be stored on the tester and
hence reduces the total amount of test time required for
transferring the data with a given test data bandwidth.

1. Introduction

Testing systems-on-a-chip containing multiple cores is
a major challenge due to limited test access to each core
[Chandramouli 961, [Zorian 971. The test vectors for each
core must be applied to the core’s inputs and internal
scan, and the test response of the core must be observed
at the core’s outputs and shifted out of its internal scan.
Some means for getting the test data from the tester to
each core and getting the test response from each core to
the tester is required. The best possible situation is to
have full parallel access to the inputs and outputs of the
cores [Immaneni 901. However, this requires
multiplexing all of the core I/Os to the chip pins. The
routing complexity and overhead for this can be
enormous. A more efficient means for providing test
access to the cores is to use scan chains. The number of
scan chains that are used and the way in which they are
organized determines the test data bandwidth for each
core (i.e., rate at which test vectors can be scanned in and

test response scanned out). The number of scan chains
and their organization typically depend on the capabilities
of the tester being used and on the scan routing costs.
The total test time required for testing a core-based
design depends on the amount of test data that must be
transferred between the tester and the chip and the test
data bandwidth for transferring the data.

Figure 1 shows a general block diagram for how test
data is transferred from the tester to the cores. The
amount of test data that must be transferred from the
tester to a particular core is equal to the number of test
vectors (7) for the core times the number of input bits and
internal scan elements for the core (m), i.e., T x m. For
systems-on-a-chip that contain many complex cores, both
the amount of test data and the test time can become very
large.

Storage

Tester

Figure 1. Block Diagram for Transferring Test Data
between Tester and Embedded Cores

One solution to this problem is to use built-in self-test
(BIST) where on-chip hardware is used to test the cores.
However for logic cores, this is only practical if the core is
made “BISTable” by the core vendor. Currently, there are
few cores that include BIST features. Usually, only a set

Paper 18.2
458

INTERNATIONAL TEST CONFERENCE
0-7803-5092-8/98 $1 0.00 0 1998 IEEE

mailto:ece.utexas.edu

of test vectors for the core is given. The amount of BIST
hardware required to apply a large set of specified test
vectors is generally prohibitive.

This paper piresents an efficient compression/
decompression scheme to reduce the amount of test data
that must be stored on the tester and transferred to a core.
A small amount of on-chip circuitry is used to reduce both
the test storage and test time required for testing a core-
based design. The 1ully specified test vectors provided by
the core vendor are stored in compressed form in the
tester memory and Iransferred to the chip where they are
decompressed and applied to the core (the compression is
lossless). Instead of having to transfer each entire test
vector from the tester to the core, a smaller amount of
compressed data is transferred instead. This reduces the
amount of test data that must be stored on the tester and
hence reduces the total amount of test time required for
transferring the data with a given test data bandwidth.
Thus, the technique presented in this paper can be used to
reduce the test timi: required for testing a system-on-a-
chip given a tester’s limited memory and channel capacity.

Test vector compression/decompression techniques can
be classified based on the amount of information they
require. Four general classifications are described below:
Schemes Recluirine, ATPG - These are schemes that
involve using special ATPG procedures in generating the
test set. This includes techniques that try to compact test
sets [Tromp 911, [Pomeranz 931, [Kajihara 931, or to find
easy to encode test vectors [Reeb 961, [Hellebrand 95al.
Schemes Reauirinv Fault Simulation - These are schemes
that do not decompress a particular test set, but rather use
pseudo-random generators (e.g., LFSRs) to apply a large
number of vectors to detect most of the faults, thereby
reducing the number of deterministic test vectors that are
required. These teclhniques require fault simulation of the
circuit-under-test (CUT) to verify fault coverage.
Schemes Reauiring Test Cubes - These are schemes that
compress test cubes, which are ATPG generated vectors in
which the unspecified inputs are left as don’t cares. These
schemes include LFSR reseeding [Koenemann 9 11,
[Hellebrand 95b], [:Zacharia 961, and width compression
[Chakrabarty 971.
Schemes for Fullv SDecified Test Vectors - These are
schemes that are arble to compress fully specified test
vectors. These schemes were developed for compressing
test vectors stored in on-chip ROM’s [Agarwal 811,
[Aboulhamid 831, [Dandapani 841, [Edirisooriya 921,
[Dufaza 931, [Iyengiu 981.

For intellectual property cores where no information is
given about the internal structure of the core, test vector
compression/decom~~ression techniques that require either
ATPG or fault siniulation cannot be used. The core

integrator must test the cores with the set of test vectors
given by the core vendor. Furthermore, in most cases, the
test vectors that are given are fully specified. Thus,
techniques which require test cubes also cannot be used.
For this reason, compression/decompression techniques
for fully specified test vectors are needed. Previous work
in this area has been focused on reducing the size of an
on-chip ROM needed to store the test vectors.

The cyclical scan chain decompression technique
described in this paper can be used for fully specified test
vectors and thus is applicable for intel tual property

it takes advantage of the fact that existing scan chains on
the chip can be configured as cyclical decompressors.

A test data compression/decompression scheme for
reducing the time for downloading test data from a
workstation to a tester has recently been proposed by
Yamaguchi, et al., [Yamaguchi 971, [Ishida 981. Note
that this is a software based approach which targets a
different problem then the one addressed here. It would
be too complex and slow for an on-chip implementation as
described here.

The paper is organized as follows: The basic idea of
cyclical scan chain decompression is explained in Sec. 2.
Section 3 describes how the tester transfers encoded data
to cyclical scan chain decompressors. Section 4 discusses
ways in which cyclical scan chain decompression can be
implemented in systems-on-a-chip containing many cores.
Experimental results indicating the amount of compression
that can be achieved are shown in Sec . 5. Section 6 is a
conclusion.

cores. It requires very little additional hlec ardware. Rather

2. Cyclical Scan Chain Decompression

The section describes the basic idea of test vector
decompression via cyclical scan chains. Practical issues
on how to implement it in a core-based design will be
described in subsequent sections. Cyclical scan chain
decompression involves the use of two scan chains as
shown in Fig. 2. One is the “test scan chain” where the
test vector will be applied to the circuit-under-test (CUT),
and the other is the “cyclical scan chain” where the
decompression will take place. The serial output of the
cyclical scan chain feeds the serial input of the test scan
chain and also loops back and is XORed in with the serial
input of the cyclical scan chain. There are two
requirements for the cyclical scan chain:
1. It must have the same number of scan elements as the

test scan chain.
2. Its contents must not be overwritten when the system

clock for the CUT is applied.
When the system clock for CUT is applied, the test vector
in the test scan chain is applied to the CUT and its

Paper 18.2
459

response is loaded back into the test scan chain. However,
the contents of the cyclical scan chain must not be
overwritten. The cyclical scan chain can be configured
using the chip boundary scan, or using the boundary scan
around a core, or using a scan chain in a different system
clock domain. Note that if the test scan chain is a
boundary scan that is driving the primary inputs of the
CUT and is not capturing test response, then its contents
are not lost when the system clock is applied and thus it
can act as its own cyclical scan chain. This is illustrated
in Fig. 3.

Circuit-Under-Test
----______------i___-

Internal Scan _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ -

Cyclical Scan Chain Test Scan Chain 4- _-___- -__- - - - (mbits)

Figure 2. Cyclical Scan Chain Decompression Architecture

Figure 3. Cyclical Scan Chain Decompression Using
Boundary Scan

The cyclical scan chain has the property that if it
contains test vector t, then the next test vector that is
generated in the cyclical scan chain will be the XOR of t
and the “difference vector” that is shifted in. So generating
a test set consisting of n test vectors, t l , t2, ..., tn, in a
cyclical scan chain would involve first initializing the
scan chain to all O’s, and then shifting tl into the scan
chain followed by the difference vector tl 6’ t2, followed by
tZ@ t3, and so on up to 69 t,,.

The difference vectors that need to be shifted in to the
cyclical scan chain depend on the way in which the test
set is ordered. By carefully ordering the test vectors in the
test set, the number of 0’s in the difference vectors can be
maximized. Test vectors tend to be very correlated.
Faults in the CUT that are structurally related require
similar input value assignments in order to be provoked
and sensitized to an output. Thus, many pairs of test
vectors in the test set will have similar input combinations
such that the difference vectors have a lot of 0’s.
Ordering the test vectors in the test set such that
correlated test vectors follow each other results in
difference vectors with many more 0’s than 1’s.

Data which is skewed such that the probability of one
value exceeds that of another can be efficiently
compressed with a run-length code. An example of a
variable-to-block run-length code is shown in Fig. 4. A
variable number of bits is encoded by a fixed number of
bits. In this example, the fixed number of bits is 3. If a
difference vector was 0000010000001 100001, then the
encoded vector would be 101 1 io 000 100.

Note that if the last few bits at the very end of the
difference vector bit stream (all difference vectors
concatenated together) cannot be encoded, extra bits can
be added to solve the problem. For example, if the last
two bits were 00, then the codeword 111 could be used to
encode the bits even though it generates 000000. The
extra bits would simply be ignored.

000 1
00 1 01
010 00 1
01 1 000 1
100 00001
101 ooo001
110 0000001
111 0000000

Figure 4. Example of Run-Length Code

The hardware required for decompressing an encoded
vector for a run-length code is very simple. Each three bit
block of encoded data is just a count of the number of 0’s
in the run, so a three bit counter can be used to
decompress the data. The counter is loaded with a three
bit block and counts down to zero. When it reaches a
count of zero, it outputs a 1 (unless the initial state was
1 11) and then is reloaded with the next three bit block.

Ordering the test set to minimize the run-length
encoding corresponds to forming a complete weighted
graph and finding the minimum cost Hamiltonian path.
Each node in the graph corresponds to a test vector and is
connected by a weighted edge to every other node. The
weight on the edge between two nodes is computed by
forming the difference vector between the two
corresponding test vectors and computing the number of
bits needed to encode the difference vector. The
minimum cost path through the graph that does not repeat
any vectors corresponds to the optimum ordering of the
test vectors to maximize the compression. Many efficient
heuristic procedures for finding a good ordering exist.

So the basic idea of cyclical scan chain decompression
can be summarized as follows. Given a test set that needs
to be applied to a CUT, a cyclical scan chain is formed
where the number of stages is equal to the number of bits
in the test vectors. The test vectors are then ordered to

Paper 18.2
460

minimize the run-length encoding of the difference
vectors. Rather than storing the full test vectors
themselves, the compressed difference vectors (encoded
with the run-length code) can be stored instead. To test
the CUT, the compressed difference vectors are shifted in
to a run-length decoder which decompresses them into the
original difference vector bit stream one bit at a time
which is fed into the cyclical scan chain to generate the
test vectors.

This is the blasic theory of cyclical scan chain
decompression. There are many ways in which it can be
implemented and used in different applications. The
remainder of this paper will focus on its application for
testing core-based designs. There are a number of
practical issues related to how the tester transfers encoded
data to cyclical scan chain decompressors, and how a
core-based design can be configured during testing to
allow cyclical scan chain decompression.

run-length code shown in Fig. 4 which provides some
useful advantages. In our experiments, we found that in
most cases it allows more compression because it is not as
inefficient when runs of 1’s occur. The other major
advantage is that it takes no more than 6 clock cycles to
decompress each encoded block of 3 bits. Thus, a single
tester channel can shift in 6 bits of encoded data, 3 bits for
each decompressor, and then load both decompressors at
once (this is illustrated in Fig. 6). The decompressors can
then start decompressing the encoded data while the tester
takes 6 cycles to shift in the next 6 bits of encoded data.
By the time the tester is ready to load the next block of
encoded data, the decompressors are guaranteed to be
finished decoding the previous block of encoded data.
While the code in Fig. 5 is slightly more complicated to
decode than the one in Fig. 4, it can still be decoded by a
small finite state machine (FSM).

3. Transferring; Data to Cyclical Scan Chain
Decompressors

Because a variable length code is used, the number of
encoded bits transferred to the run-length decoder is less
than the number of decoded bits that are transferred out.
Since the run-length decoder shifts only one bit of data
into the scan chain each clock cycle, there will be clock
cycles when it will not be ready to receive data from the
tester. These clock cycles can be overlapped with the
clock cycles requirled to transfer data to another cyclical
scan chain decompressor in order to reduce test time. One
way to accomplish this is to use a single channel from the
tester to transfer encoded data to multiple cyclical scan
chain decompressors.

Consider the simplest case where a single tester
channel is used to lransfer data to two cyclical scan chain
decompressors using the three bit code shown in Fig. 5.
The code in Fig. 5 is a slight modification to the

Channel
from
Tester

3-Bit
Run-Length

Decoder

OOO 10
001 11
010 01
01 1 00 1
100 0001
101 00001
110 00000 1
111 000000

Figure 5. Modified 3-Bit Run-Length Code

When the decompressor is loaded with a 3 bit block of
encoded data, it generates the appropriate sequence of
decoded bits and advances the cyclical scan chain and test
scan chain for each bit of the sequence. For the code in
Fig. 5, the length of the decoded sequence varies from 2 to
6 bits. A scan counter is used to count the number of bits
that are shifted into the test scan chain. When the test
scan chain is full, the system clock is activated to apply
the test vector to the CUT.

h Cyclical Scan Chain 1

Figure 6. Tester Shifts in 6 Bits of Encoded Data and Loads Two Run-Length Decoders

Paper 18.2
461

This approach has a number of attractive features.
One tester channel is used to load two scan chains through
the decompressors. The test program is simple. The
tester just shifts in 6 bits of encoded data and applies a
control signal to load the decompressors. The
decompressors and related control circuitry are very
simple. In effect, the decompressors allow the tester to
load two scan chains with compressed test vectors in close
to the time normally required to load one scan chain with
uncompressed test vectors. This increases the effective
bandwidth of a single tester channel and reduces the
amount of data that needs to be stored in tester memory.

4. Application to Testing Core-Based Designs

Cyclical scan chain decompression can be used for
testing core-based designs. No knowledge of the internal
structure of the cores is required. The test vectors given
by core vendors can be encoded and stored on the tester
and then decompressed with cyclical scan chains on-chip.
There are typically many different scan chains in a core-
based design. Each core may have an internal scan as
well as a boundary scan collar, the user-defined logic
(UDL) may contain scan chains, and the chip may have a
boundary scan around its pins. The length of the internal
scan chains in the cores cannot be changed, but the other
scan chains are designed by the core integrator and thus
can be configured in different ways.

The requirement for cyclical scan chain decompression
as described in Sec. 2 is that a cyclical scan chain of equal
length to the test scan chain is needed and the cyclical
scan chain must not lose its contents during the test
session. The simplest case for using cyclical scan chain

decompression is for the boundary scan around the cores
since the boundary scan can be configured as its own
cyclical scan chain (assuming that it is not simultaneously
used to capture the response of the logic surrounding the
core). Using scan chain decompression in the internal
scan of the core requires a separate cyclical scan chain of
equal length. This cyclical scan chain can be configured
in many different ways. Perhaps the simplest way is to
use the boundary scan around the chip pins if one exists.
If the chip boundary scan is longer than the internal scan
of the core, it can of course be looped back at an
intermediate point to form a cycle of the necessary length.
In the same manner, the boundary scan around another
core could also be used (as illustrated in Fig. 7). The
internal scan in a different core whose system clock can be
controlled independently from the core-under-test can also
be configured as part of the cyclical chain provided it is
the same length or shorter than the test scan chain. If it is
shorter, than it can be configured with other boundary
scan elements or scan elements in the UDL to form the
correct length chain (as illustrated in Fig. 8).

There are many options for configuring the cyclical
scan chain decompressors. There is a lot of flexibility for
developing a test schedule that tests all the cores in a
system-on-a-chip using cyclical scan chain decompression
to maximize the test data bandwidth of the tester. The
run-length decoders and scan counters can be reused in
different test sessions for different cyclical scan chain
configurations. The output of a run-length decoder need
not directly connect to the cyclical scan chain, there can be
any number of scan chain elements between the XOR at
the input of the cyclical scan and the run-length decoder.

Internal Scan . Internal Scan _ _ _ _ _ - - - - - _ - - - _ _ _ _ _ _ - - - U%
Figure 7. Configuring Boundary Scan as Cyclical Scan Chain for Internal Scan in Core

Scan Elements Core-Under-Test
. _ _ _ _ _ _ _ _ - - _ - _ _ _ _ _ _ _ _ - - - -

Internal Scan _ - - - - Internal Scan _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - _ - - - -

Figure 8. Using Internal Scan of a Core Plus Scan Elements in the UDL to Form Cyclical Scan Chain for the Internal
Scan of the Core-Under-Test

Paper 18.2
462

5. Experimental Results

Experiments were performed for the ISCAS 85
[Brglez 851 and large ISCAS 89 [Brglez 891 circuits. The
test set for each circuit was ordered to minimize the run-
length encoding of the difference vectors, and then was
encoded. Two diffixent codes were tried. Code 1 is the
2-bit code shown in Fig. 9. Code 2 is the 3-bit code
shown in Fig. 5 . Table 1 shows the size of the scan chain
for each circuit (for the ISCAS 85 circuits, it is assumed
that their primary inputs are controlled by a scan chain).
The original amount of test data is shown followed by the
amount of compressed data for each code. The percentage
of compression is computed as:

As can be seen, the 3-bit code provided better compression
than the 2-bit code for most circuits. Results for codes
having more than 3 bits were found to have much worse
compression and thus are not shown.

When the test vectors are ordered, we noticed that
some of the difference vectors require many fewer bits to
encode with a run-length code than if they were not
encoded while others required more bits to encode with a

(Original Bits - Compressed Bits)/(Original Bits)

run-length code than if they were not encoded. Some test
vectors are not very correlated with the others. Thus, one
option for improving the compression would be to use the
cyclical scan chain decompressor to generate all the test
vectors that it is efficient for, and then shift in the
remaining test vectors normally. We tried this for the
large ISCAS 89 circuits and the results are shown in
Table 2. On average, it increased the amount of
compression by about 5%.

Figure 9. 2-Bit Run-Length Code

Note that the compression that is achieved is a two-fold
advantage. Not only does it result in less test storage
requirements, but it also results in less test time which
translates directly into lower test costs. The amount of
compression could be much greater if test cubes were
compressed instead of fully specified test vectors.

Table 1. Compression Results for Compressing Whole Test Set

Name

c432
c499
c880

cl355
c1908
c2670
c3540
c5315
c6288
c7552
s9234
~13207
~15850
~38417

Table 2. Compression Results with Turning Off Compression for Part of Test Set

Paper 18.2
463

6. Conclusions
This paper presents a new approach for

compression/decompression of test vectors. Several key
ideas are proposed:
1.

2.

3.

4.

5.

Using existing scan chains on the chip to from a cycle
to generate test vectors by shifting in a difference
vector.
Ordering the test vectors in the test set to maximize
the 0’s in the difference vectors.
Encoding the difference vectors with a run-length
code.
Using a single channel from the tester to load multiple
run-length decoders which in effect increases the
“effective” bandwidth of the channel.
Configuring scan chains in a core-based design to act
as decompressors for other scan chains.
These ideas lay a ground work for further advancement

in test vector compressioddecompression. Some areas for
further research would be to study the use of variable-to-
variable length encoding for the difference vectors as well
as other codes, and to look at ways to combine cyclical
scan chain decompression with BIST.

Acknowledgements

This material is based on work supported in part by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. DAJ3T63-94-C-0045, in
part by the National Science Foundation under Grant No.
MIP-9702236, and in part by the Texas Advanced
Research Program under Grant No. 1997-003658-369.

References
[Aboulhamid 831 Aboulhamid, M.E., and E. Cerny, “A Class of

Test Generators for Built-In Testing,” IEEE Transactions
on Computers, Vol. C-32, No. 10, pp. 957-959, Oct. 1983.

[Agarwal81] Agarwal, V.K., and E. Cerny, “Store and Generate
Built-In Testing Approach,” Proc. of FTCS-II, pp. 35-40,
1981.

[Brglez 851 Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator
in Fortan,” Proc. of International Symposium on Circuits
and Systems, pp. 663-698, 1985.

[Brglez 891 Brglez, F., D. Bryan, and K. Kozminski,
“Combinational Profiles of Sequential Benchmark
Circuits,” Proc. of International Symposium on Circuits
and Systems, pp. 1929-1934, 1989.

[Chakrabarty 971 Chakrabarty, K., B.T. Murray, J. Liu, and M.
Zhu, “Test Width Compression for Built-In Self-Testing,”
Proc. of International Test Conference, pp. 328-337, 1997.

[Chandramouli 961 Chandramouli, R., and S . Pateras, “Testing
Systems on a Chip,” IEEE Spectrum, pp. 42-47, Nov. 1996.

[Dandapani 841 Dandapani, R., J. Patel, and J. Abraham,
“Design of Test Pattern Generators for Built-In Test,” Proc.
of International Test Conference, pp. 315-319, 1984.

[Dufaza 931 Dufaza, C., C. Chevalier, and L.F.C. Lew Yan
Voon, “LFSROM: A Hardware Test Pattern Generator for
Deterministic ISCAS85 Test Sets,” Proc. of Asian Test
Symposium, pp. 160-165, 1993.

Wirisooriya 921 Edirisooriya, G., and J.P. Robinson, “Design of
Low Cost ROM Based Test Generators,” Proc. of V U 1
Test Symposium, pp. 61-66, 1992.

[Hellebrand 95a] Hellebrand, S . , B. Reeb, S . Tarnick, and H.4.
Wunderlich, ”Pattern Generation for a Deterministic BIST
Scheme,” Proc. of International Conference on Computer-
Aided Design (ICCAD), pp. 88-94, 1995.

Hellebrand, S . , J. Rajski, S . Tarnick, S .
Venkataraman and B. Courtois, ”Built-In Test for Circuits
with Scan Based on Reseeding of Multiple-Polynomial
Linear Feedback Shift Registers,” IEEE Transactions on
Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995.

[Immaneni 901 Immaneni, V., and S . Raman, “Direct Access
Test Scheme -Design of Block and Core Cells for Embedded
ASICS,” Proc. of Int. Test Conference, pp. 488-492, 1990.

[Ishida 981 Ishida, M., D.S. Ha, T. Yamaguchi, “COMPACT: A
Hybrid Method for Compressing Test Data,” Proc. of VLSI
Test Symposium, pp. 62-69, 1998.

[Iyengar 981 Iyengar, V., K. Chakrabarty, and B. T. Murray,
“Built-in Self Testing of Sequential Circuits Using
Precomputed Test Sets,” Proc. of VLSI Test Symposium,

[Kajihara 931 Kajihara, S . , I. Pomeranz, K. Kinoshita, S.M.
Reddy, “Cost-Effective Generation of Minimal Test Sets
for Stuck-at Faults in Combinational Logic Circuits,” Proc.
of the 30th Design Automation Con.., pp. 102-106, 1993.

[Koenemann 911 Koenemann, B., “LFSR-Coded Test Patterns
for Scan Designs,” Proc. of European Test Conference, pp.

[Pomeranz 931 Pomeranz, I., L.N. Reddy, and S.M. Reddy,
“COMPACTEST A Method to Generate Compact Test
Sets for Combinational Circuits,” IEEE Trans. Computer-
Aided Design, Vol. 12, No. 7, pp. 1040-1049, Jul. 1993.

[Reeb 961 Reeb, B., H.-J. Wunderlich, “Deterministic Pattern
Generation for Weighted Random Pattern Testing,” Proc.
of European Design & Test Conference, pp. 30-36, 1996.

rromp 911 Tromp, G., “Minimal Test Sets for Combinational
Circuits,” Proc. of Int. Test Conference, pp. 204-209, 1991.

[Yamaguchi 971 Yamaguchi, T., M. Tilgner, M. Ishida, and D.
S . Ha, “An Efficient Method for Compressing Test Data,”
Proc. of International Test Conference, pp. 191-199, 1997.

Zacharia, N., J. Rajski, J. Tyszer, and J.A.
Waicukauski, “Two-Dimensional Test Data Decompressor
for Multiple Scan Designs,” Proc. of International Test
Conference, pp. 186-194, 1996.

[Zorian 971 Zorian, Y., “Test Requirements for Embedded Core-
based Systems and IEEE P1500,” Proc. of International
Test Conference, pp. 191-199, 1996.

meliebrand 95b]

pp. 418-423, 1998.

237-242,1991.

[Zacharia 961

Paper 18.2
464

