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Bit-Fixing in Pseudorandom Sequences
for Scan BIST

Nur A. Touba, Member, IEEE,and Edward J. McCluskey, Life Fellow, IEEE

Abstract—A low-overhead scheme for achieving complete
(100%) fault coverage during built-in self test of circuits with
scan is presented. It does not require modifying the function logic
and does not degrade system performance (beyond using scan).
Deterministic test cubes that detect the random-pattern-resistant
(r.p.r.) faults are embedded in a pseudorandom sequence of bits
generated by a linear feedback shift register (LFSR). This is
accomplished by altering the pseudorandom sequence by adding
logic at the LFSR’s serial output to “fix” certain bits. A procedure
for synthesizing the bit-fixing logic for embedding the test cubes
is described. Experimental results indicate that complete fault
coverage can be obtained with low hardware overhead. Further
reduction in overhead is possible by using a special correlating
automatic test pattern generation procedure that is described for
finding test cubes for the r.p.r. faults in a way that maximizes
bitwise correlation.

Index Terms—Design for testability, digital system testing, logic
circuit testing, self-testing, sequences.

I. INTRODUCTION

A S THE density and complexity of integrated circuits con-
tinue to increase enabling whole systems to be integrated

on a single chip, economical built-in self-test (BIST) approaches
are needed. BIST involves using on-chip hardware to apply test
patterns to the circuit under test and to analyze its output re-
sponse. BIST techniques reduce the burden on external auto-
matic test equipment (ATE) and allow concurrent testing of mul-
tiple modules.

A low-overhead approach for BIST in circuits with scan is
to use a linear feedback shift register (LFSR) to shift a pseu-
dorandom sequence of bits into the scan chain. When a pattern
has been shifted into the scan chain, it is applied to the circuit
under test and the response is loaded back into the scan chain
and shifted out into a serial signature register for compaction
as the next pattern is shifted into the scan chain. Fig. 1 shows
a block diagram for this “test-per-scan” BIST scheme. Unfor-
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tunately, many circuits contain random-pattern-resistant (r.p.r.)
faults [1], which limit the fault coverage that can be achieved
with this approach.

One method for improving the fault coverage for a
test-per-scan BIST scheme is to modify the circuit under test by
either inserting test points [2]–[4] or by redesigning it [5]–[8]
to improve the fault detection probabilities. The drawback of
these techniques is that they generally add extra levels of logic
to the circuit that can degrade system performance. Moreover,
in some cases, it is not possible or not desirable to modify the
function logic (e.g., macrocells, cores, legacy designs).

Another method for improving the fault coverage is to use a
weighted pseudorandom sequence. Logic is added to weight the
probability of each bit in the sequence being a “1” or a “0” in
a way that biases the patterns that are generated toward those
that detect the r.p.r. faults. The weight logic can be placed either
at the input of the scan chain [9] or in the individual scan cells
themselves [10]–[12]. Multiple weight sets are usually required
due to conflicting input values needed to detect r.p.r. faults [13].
The weight sets need to be stored on chip and control logic is
required to switch between them, so the hardware overhead can
be large.

A third method to improve the fault coverage is to use a
“mixed-mode” approach where deterministic patterns are used
to detect the faults that the pseudorandom patterns miss. Storing
deterministic patterns in a read-only memory (ROM) requires a
large amount of hardware overhead. Koenemann [14] proposed
a technique based on reseeding an LFSR that reduces the storage
requirements. The LFSR that is used for generating the pseu-
dorandom patterns is also used to generate deterministictest
cubes(test patterns with unspecified inputs) by loading it with
a computed seed. The number of bits that need to be stored is
reduced by storing a set of seeds instead of a set of determin-
istic patterns. Hellebrandet al.[15]–[17] proposed an improved
technique that uses a multiple-polynomial LFSR for encoding
a set of deterministic test cubes. By “merging” and “concate-
nating” the test cubes, they further reduce the number of bits
that need to be stored. Even further reduction can be achieved
by using variable-length seeds [18] and a special ATPG algo-
rithm [19]. More recently, techniques for generating the deter-
ministic test cubes using BIST control logic have been studied
[20]–[22]. Also, techniques for using special functional hard-
ware (e.g., processors) when possible to generate deterministic
test cubes have been investigated [23], [24].

This paper presents a mixed-mode approach in which deter-
ministic test cubes are embedded in the pseudorandom sequence
of bits itself (preliminary results were presented in [25] and de-
scribed in U.S. Patent #6 061 818). Logic is added at the serial
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Fig. 1. Block diagram for a “test-per-scan” BIST scheme.

Fig. 2. Logic for altering the pseudorandom bit sequence.

output of the LFSR to selectively alter the pseudorandom bit se-
quence so that it will contain patterns that detect the r.p.r. faults.
This is accomplished by “fixing” certain bits in the sequence.
As illustrated in Fig. 2, logic is added to generate a bit-fixing
sequence that alters the pseudorandom sequence by causing cer-
tain bits to be fixed to either a “1” or a “0.” A procedure is de-
scribed for designing the bit-fixing sequence generator in a way
that minimizes area overhead. The procedure can embed any set
of test cubes for the r.p.r. faults; however, the more correlated
the test cubes for the r.p.r. faults are, the less the overhead is.
A special correlating ATPG procedure is presented for finding
test cubes for the r.p.r. faults that can be very efficiently encoded
(preliminary results were presented in [26]).

The test-per-scan BIST scheme presented in this paper is
sort of a hybrid approach. It is different from weighted pattern
testing because it is not based on probability. It guarantees that
certain test cubes will be applied to the circuit under test during a
specified test length. Also, it does not require a multiphase test
in which control logic is needed to switch to different weight
sets for each phase. The control is very simple because there is
only one phase.

In the proposed scheme, no data is stored in a ROM, but rather
a multilevel circuit is used to dynamically fix bits in a way that
exploits bit correlation (same specified values in particular bit
positions) among the test cubes for the r.p.r. faults. Small num-
bers of correlated bits are fixed in selected pseudorandom pat-
terns to make the pseudorandom patterns match the test cubes.
So rather than trying to compress the test cubes themselves, the
proposed scheme essentially compresses the bit differences be-
tween the test cubes and a selected set of pseudorandom pat-
terns. Since there are so many pseudorandom patterns to choose
from, a significant amount of compression can be achieved re-
sulting in reduced overhead.

The approach described here and the “bit-flipping” approach
presented by Kiefer and Wunderlich [20]–[22] share some
similar characteristics in that both alter the serial sequence
generated by an LFSR. However, the procedures for designing
the sequence altering logic differ greatly. Kiefer and Wunder-
lich target a program logic array (PLA) implementation and

use ESPRESSO-like procedures to minimize the number of
minterms [22]. The scheme described here targets a sequential
multilevel logic implementation and inherently factors and
decomposes the sequence altering logic by construction to
minimize the overhead. A special ATPG procedure is also
described here for reducing overhead by maximizing bitwise
correlation in the test cubes for the r.p.r. faults.

Schemes based on reseeding an LFSR require that the LFSR
have at least as many stages as the maximum number of speci-
fied bits in any test cube. A hardware tradeoff that is possible in
the scheme presented in this paper is that a smaller LFSR can be
used for generating the pseudorandom bit sequence. This may
cause some faults to not be detected because of linear depen-
dencies in the patterns that are generated, but deterministic test
cubes for those faults can be embedded at the expense of ad-
ditional logic in the bit-fixing sequence generator. Data is pre-
sented showing how much additional logic is required for dif-
ferent size LFSRs.

The paper is organized as follows. In Section II, the architec-
ture of the bit-fixing sequence generator is described. In Sec-
tion III, the procedure for designing the bit-fixing sequence gen-
erator is presented. In Section IV, the special correlating ATPG
procedure for maximizing bitwise correlation is described. In
Section V, experimental results are shown for benchmark cir-
cuits. Section VI is the conclusion.

II. A RCHITECTURE OFBIT-FIXING SEQUENCEGENERATOR

The purpose of the bit-fixing sequence generator is to alter the
pseudorandom sequence of bits that is shifted into the scan chain
in order to embed deterministic test cubes in the sequence. This
is done by generating a sequence offix-to-1andfix-to-0control
signals that fix certain bits to either “1” or “0.” The architecture
of the bit-fixing sequence generator is shown in Fig. 3. For a
scan chain of length , there is a Mod- Counterthat
counts the number of bits that have been shifted into the scan
chain. After bits, the scan chain is full, so when the counter
reaches the state, the pattern in the scan chain is ap-
plied to the circuit under test and the response is loaded back
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Fig. 3. Architecture of bit-fixing sequence generator.

into the scan chain. At this point, the LFSR contains the starting
state for the next pattern that will be shifted into the LFSR. The
Bit-Fixing Sequence Selection Logicdecodes the starting state
in the LFSR and selects the bit-fixing sequence that will be used
for the next pattern. The selected bit-fixing sequence identifier
is loaded into theSequence ID Register. As the counter counts
through the next bits that are shifted into the scan chain, the
Bit-Fixing Sequence Generation Logicgenerates thefix-to-1and
fix-to-0 control signals based on the bit-fixing sequence iden-
tifier stored in theSequence ID Registerand the value of the
counter (see Fig. 7 for a specific example).

One thing that should be pointed out is that the Mod-
Counteris not additional overhead. It is needed in the control
logic for any test-per-scan BIST technique to generate a con-
trol signal to clock the circuit under test when the scan chain is
full. Thus, this scheme takes advantage of existing BIST control
logic.

For each pattern that is shifted into the scan chain, the bit-
fixing sequence generator is capable of generating one of 2
different bit-fixing sequences, where is the size of theSe-
quence ID Register. A deterministic test cube for an r.p.r. fault
can be shifted into the scan chain by generating an appropriate
bit-fixing sequence for a pseudorandom pattern generated by the
LFSR. The bit-fixing sequence fixes certain bits in the pseudo-
random pattern such that the resulting pattern that is shifted into
the scan chain detects the r.p.r. fault. The bit-fixing sequence
generator must be designed so that it generates enough deter-
ministic test cubes to satisfy the fault coverage requirement. The
key to minimizing the area overhead for this approach is careful
selection of the bit-fixing sequences that are generated.

One characteristic of the test cubes for r.p.r. faults is that sub-
sets of them often have the same specified values in particular
bit positions (this will be referred to as “bit correlation”). For
example, the test cubes , , and , are cor-
related in the first, second, and third bit positions, but not the
fourth and fifth. That is because all of the specified bits in the
first and second bit positions are ones and all the specified bits in
the third bit position are zeros. However, the fourth and fifth bit
positions have conflicts because some of the specified values are
ones and some are zeros. Note that the unspecified values (s)
do not matter. The reason why a significant amount of bit cor-
relation often exists among the test cubes for the r.p.r. faults is
probably due to the fact that several r.p.r. faults may be caused

by a single random pattern resistant structure in the circuit. For
example, if there is a large fan-inAND gate in a circuit, then
that may cause all of the input stuck-at one faults and the output
stuck-at zero fault of the gate to be r.p.r. Many of the specified
values in particular bit positions of the test cubes for these r.p.r.
faults will be the same. Thus, there will be a significant amount
of bit correlation among the test cubes. This phenomenon is seen
in weighted pattern testing, where biasing certain bit positions
results in detecting a significant number of r.p.r. faults.

In the scheme presented in this paper, bit correlation among
the test cubes for the r.p.r. faults is used to minimize both the
number of different bit-fixing sequences that are required and
the amount of decoding logic. A procedure for designing the
bit-fixing sequence generator is described in Section III.

Note that while the scheme is described for a single scan
chain, the extension to multiple scan chains is straightforward.
Fig. 4 shows how the scheme can be applied to the STUMPS
[27] architecture. Multiplefix-to-1andfix-to-0control lines are
generated. The procedure for designing the bit-fixing sequence
generator for multiple short scan chains is exactly the same as
for one long scan chain except that the bit-fixing control lines
would be distributed among the multiple scan chains.

III. D ESIGNINGBIT-FIXING SEQUENCEGENERATOR

For a given LFSR and circuit under test, this section describes
an automated procedure for designing a bit-fixing sequence gen-
erator to satisfy test length and fault coverage requirements. The
bit-fixing sequence generator is designed to alter the pseudo-
random bit sequence generated by the LFSR to achieve the de-
sired fault coverage for the given test length (number of scan
patterns applied to the circuit under test).

A. Obtaining Test Cubes

The first step is to simulate the-stage LFSR for the given
test length to determine the set of pseudorandom patterns
that are applied to the circuit under test. For each of the

patterns that are generated, the starting-bit state of the
LFSR is recorded (i.e., the contents of the LFSR right before
shifting the first bit of the pattern into the scan chain). Fault
simulation is then performed on the circuit under test for the
pseudorandom patterns to see which faults are detected and
which are not. The pattern thatdropseach fault from the fault
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Fig. 4. Bit-fixing sequence generator for STUMPS architecture.

Fig. 5. Design example: obtaining the test cubes.

list (i.e., detects the fault for the first time) is recorded. The
faults that are not detected are the faults that require altering
of the pseudorandom bit sequence. The pseudorandom bit
sequence must be altered to generate test cubes that detect
the undetected faults. An automatic test pattern generation
(ATPG) tool is used to obtain test cubes for the undetected
faults by leaving the unspecified inputs ass.

A simple contrived design example will be used to illustrate
the procedure described in this paper. A bit-fixing sequence gen-
erator will be designed to provide 100% fault coverage for a
test length of 12 patterns generated by a five-stage

LFSR . Fig. 5 shows the 12 patterns that are generated
by the LFSR and applied to the circuit under test through the
scan chain. For each pattern, the starting state of the LFSR is
shown and the number of faults that are dropped from the fault
list is shown. Five of the patterns drop faults while the other
seven do not. The pseudorandom patterns detect 16 out of 20
possible faults giving a fault coverage of 80%. An ATPG tool
is used to obtain test cubes for the four undetected faults. The
bit-fixing sequence generator must be designed so that it alters
the pseudorandom bit sequence in a way that all four test cubes
are generated in the scan chain.
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Fig. 6. Design example: finding decoding function and set of bits to fix for the newSequence ID Registerbit.

B. Embedding Test Cubes

Once the set of test cubes for the undetected faults has been
obtained, the bit-fixing sequence generator is then designed to
embed the test cubes in the pseudorandom bit sequence. The
test cubes are embedded in a way that guarantees that faults that
are currently detected by the pseudorandom bit sequence will
remain detected after the test cubes are embedded. This is done
by only altering patterns that do not drop any faults. As long as
the patterns that drop faults are not altered, the dropped faults are
guaranteed to remain detected. This ensures that fault coverage
will not be lost in the process of embedding the test cubes.

The goal in designing the bit-fixing sequence generator is to
embed the test cubes with a minimal amount of hardware. A
hill-climbing strategy is used in which one bit at a time is added
to theSequence ID Registerbased on maximizing the number
of test cubes that are embedded each time. Bits continue to be
added to theSequence ID Registeruntil a sufficient number of
test cubes have been embedded to satisfy the fault coverage re-
quirement. Complete fault coverage can be obtained by embed-
ding test cubes for all of the undetected faults.

For each bit that is added to theSequence ID Register, the
first step is to determine which patterns the bit will be active
for (i.e., which patterns it will alter). In order not to reduce the
fault coverage, it is important to choose a set of patterns that do
not currently drop any faults in the circuit under test. In order
to minimize theBit-Fixing Sequence Selection Logic, it is im-
portant to choose a set of patterns that are easy to decode. The
set of patterns for which the newSequence ID Registerbit will
be active are decoded from the starting state of the LFSR for
each pattern. Let be a Boolean function equal to the sum of
the minterms corresponding to the starting state for each pat-

tern that drops faults. Then, an implicant in corresponds to
a set of patterns that do not drop faults and can be decoded by
an -input AND gate, where is the number of literals in the
implicant. A binate covering procedure can be used to choose
the largest implicant in (see [28]). The largest implicant re-
quires the least logic to decode and corresponds to the largest
set of pseudorandom patterns that do not drop any faults. These
are the patterns that will activate and, hence, be altered by the
newSequence ID Registerbit.

In the design example, there are five starting LFSR states that
correspond to the patterns that drop faults. They are listed at the
top of Fig. 6. The function is formed and the largest impli-
cant in the complement of is found. The largest implicant is

. Whenever the first two bits in a starting state of the
LFSR are both “0,” then the newSequence ID Registerbit is
activated. Thus, there are four patterns for which the newSe-
quence ID Registerbit will be activated.

After the set of patterns that activate the newSequence ID
Registerbit have been determined, the next step is to determine
which bits in the patterns will be fixed when the newSequence
ID Registerbit is activated. The goal is to fix the bits in a way
that embeds as many test cubes as possible. The strategy is to
find some good candidate sets of bits to fix and then compute
how many test cubes would be embedded if each were used. The
candidate that embeds the largest number of test cubes is then
selected.

The candidate sets of bits to fix are determined by looking
at bit correlation among the test cubes. For example, if the two
test cubes and are to be embedded, then fixing
the second bit position to a “0,” the third bit position to a “1,”
and the fifth bit position to a “1” would help to embed both test
cubes in the pseudorandom bit sequence. However, fixing the
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first bit to a “1” or fixing the fourth bit to a “0” would only help
to embed the first test cube; it would prevent the second test
cube from being embedded. The reason for this is that the two
test cubes have conflicting values in the first and fourth bit. So
given a set of test cubes to embed, the best bits to fix are the ones
in which there are no conflicting values among the test cubes.
The procedure for selecting the set of bits to fix is as follows (the
procedure is illustrated for the design example at the bottom of
Fig. 6).

1) Place all test cubes to be embedded into the initial set of
test cubes.

Begin by considering all of the test cubes that need to
be embedded.

[In the design example in Fig. 6, all 4 test cubes are
initially considered.]

2) Identify bits where there are no conflicting values among
the test cubes.

Look at each bit position. If one or more test cubes has a
“1” and one or more test cubes has a “0” in the bit position,
then there is a conflict. If all of the test cubes have either
a “1” (“0”) or an “ ,” then the bit can be fixed to a “1”
(“0”).

[In the design example in Fig. 6, when all 4 test cubes
are considered, only the last bit position has no con-
flicting values. All 4 of the test cubes have either a “0”
or an “ ” in the last bit position.]

3) Compute the number of test cubes that would be em-
bedded by fixing this candidate set of bits.

For each pattern that activates the newSequence ID
Registerbit, fix the set of bits that was determined in Step
2. Count the number of test cubes that are embedded in
the resulting patterns.

[In the design example in Fig. 6, when the last bit po-
sition is fixed to a “0” in the 4 scan patterns that acti-
vate the newSequence ID Registerbit, it enables the
test cube to be embedded in the
pseudorandom pattern .]

4) If the number of test cubes embedded is larger than that
of the best candidate, then mark this as the best candidate.

The goal is choosing the set of bits to fix is to embed
as many test cubes as possible.

5) Remove the test cube that will eliminate the most con-
flicts.

One test cube is removed from consideration in order to
increase the number of bits that can be fixed. The test cube
that is removed is chosen based on reducing the number
of conflicting bits in the remaining set of test cubes.

[In the design example in Fig. 6, if third test cube is
eliminated from consideration, the three remaining test
cubes have two specified bit positions where there are
no conflicts. The third bit can be fixed to a “1” in addi-
tion to fixing the last bit to a “0.”]

6) If the number of test cubes that are embedded by the best
candidate is greater than the number of test cubes that
remain, then select the best candidate. Otherwise, loop
back to Step 2.

The next candidate set of bits to fix will only help to
embed the remaining set of test cubes and, therefore, has

limited potential. If it is not possible for the next candidate
to embed more test cubes than the best candidate, then the
best candidate is selected as the set of bits to fix.

7) Eliminate as many fixed bits as possible without reducing
the number of embedded test cubes.

In order to minimize hardware area, it is desirable to fix as
few bits as possible. It may be possible to embed the test cubes
without fixing all of the bits in the selected set. An attempt is
made to reduce the number of fixed bits by eliminating one bit at
a time and checking to see if the same test cubes are embedded.

The bit-fixing sequence generator is designed so that when
the newSequence ID Registerbit is activated, the set of bits
selected by the procedure above is fixed. The pseudorandom
patterns that are altered to embed each test cube are added to
the set of patterns that drop faults (one pattern per embedded test
cube). This is done to ensure that those patterns are not further
altered such that they would no longer embed the test cubes. If
the fault coverage is not sufficient after adding the newSequence
ID Registerbit, then anotherSequence ID Registerbit is added
to embed more test cubes.

In the design example in Fig. 6, when all four test cubes are
considered, the only specified bit position in which there are no
conflicts is the last bit position, which can be fixed to a “0.”
Fixing this bit enables one test cube to be embedded. However,
when one of the test cubes is eliminated from consideration then
the three remaining test cubes have two specified bit positions
where there are no conflicts. Fixing these two bits enables all
three of the remaining test cubes to be embedded. Thus, this is
the selected set of bits to fix when the newSequence ID Register
bit is activated. There is still one test cube that has not been em-
bedded. Since complete fault coverage is required, another bit
must be added to theSequence ID Register. The three pseudo-
random patterns in which the three test cubes were embedded
are added to the set of patterns that drop faults and the proce-
dure for adding a newSequence ID Registerbit is repeated.

C. Synthesizing Bit-Fixing Sequence Generation Logic

When enough bits have been added to theSequence ID Reg-
ister to provide sufficient fault coverage, the remaining task is
to synthesize theBit-Fixing Sequence Generation Logic. The
Bit-Fixing Sequence Generation Logicgenerates thefix-to-1and
fix-to-0control signals to fix the appropriate bits in the sequence
depending on whichSequence ID Registerbits are active. For
eachSequence ID Registerbit that is active, control signals are
generated when certain states of the counter are decoded.

The process of constructing theBit-Fixing Sequence Gener-
ation Logic is best explained with an example. TheBit-Fixing
Sequence Generation Logicfor the design example is shown
in Fig. 7. The first bit in theSequence ID Registeris activated
whenever the first two bits in the starting seed for a pattern are
both “0.” This condition is decoded using a two-inputAND gate
and loading theSequence ID Registerright before shifting a new
pattern into the scan chain. When the first bit in theSequence ID
Registeris active, it fixes the first bit shifted into the scan chain
to a “0” and the tenth bit shifted into the scan chain to a “1.”
This is done by generating afix-to-0signal when the counter is
in the “cnt-1” state and afix-to-1 signal when the counter is in
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fig. 7. Design example: bit-fixing sequence generation logic prior to multilevel logic optimization.

“cnt-10” state. The second bit in theSequence ID Registeris ac-
tivated whenever the third and fourth bit in the starting seed for
a pattern are both “1.” When the second bit in theSequence ID
Registeris activated, it fixes the second bit shifted into the scan
chain to a “0.” This is done by generating afix-to-0signal when
the counter is in “cnt-2” state.

When constructing theBit-Fixing Sequence Generation
Logic, the states of the counter can be decoded by simply using

-inputAND gates, where is equal to the number of bits in the
counter. However, once the logic has been constructed, it should
be minimized using a multilevel logic optimization tool. The
don’t care conditions due to the unused states of the counter
can be used to minimize the logic but, more importantly, the
logic can be factored. Because the number of inputs to the logic
is small, factoring is very effective for significantly minimizing
theBit-Fixing Sequence Generation Logic.

IV. CORRELATING ATPG PROCEDURE

One way to reduce the overhead of the bit-fixing sequence
generator is to use a special ATPG procedure to find test cubes
for the r.p.r. faults that maximizes the amount of correlation in
the test cubes. In this section, a special ATPG procedure for
finding correlated test cubes is described. The starting point is
the initial set test cubes for the r.p.r. faults. The correlated bit
positions in the initial set of test cubes are identified. Then the
correlating ATPG procedure is used to find a test cube for each
r.p.r. fault that conflicts with as few of the correlated bit posi-
tions as possible. This allows the test cube to be embedded with
the least amount of bit-fixing. This ATPG task is different from
dynamic compaction[29], where an attempt is made to find a
test cube for a fault by specifying the “don’t cares” (s) in test
cubes for others faults. Dynamic compaction looks for a test
cube for a particular fault that hasno conflictswith other test
cubes, whereas the problem of interest here is to find a test cube
for a particular fault that has thefewest number of conflictswith
other test cubes.

A. Initial Input Assignments

The “Correlating ATPG” procedure presented here uses
a PODEM-based [30] algorithm in which the inputs corre-

sponding to the correlated bit positions are assigned initial
values. Normally, the PODEM algorithm begins with all inputs
having unassigned values (s). However, in the correlating
ATPG procedure, the initial input assignments are made to
begin in the part of the search space that would yield the most
correlated test cube. If the fault can be detected by making
further inputs assignments without backtracking on any of the
initial input assignments (i.e., the correlated bit positions), then
a test cube can be found with no conflicts in the correlated bit
positions. In general, however, some backtracking on the initial
input assignments will be necessary to detect the fault. The key
to maximizing the bit correlation is to carefully select the order
of the backtracking in order to minimize the number of initial
assignments that are reversed.

B. Backtracking

Normally, backtracking in the PODEM algorithm is done in
the reverse order in which the inputs are assigned (i.e., the last
input assignment made is the one that is changed first). Back-
tracking in the correlating ATPG procedure is done in the same
way except for when backtracking on the initial input assign-
ments (i.e., the correlated bit positions). The order in which
backtracking is performed on the initial input assignments is de-
termined by using structural heuristics aimed at minimizing the
number of initial input assignments that need to be reversed.

Backtracking on the initial input assignments is required
when one of the line values implied by the initial input assign-
ments must be complemented in order to allow the fault to be
provoked or sensitized to a primary output by subsequent input
assignments. If the value implied at the fault site is the same
value as the fault polarity [i.e., if a one (zero) is implied at a
stuck-at one (zero) fault site], then one or more initial input
assignments must be reversed in order to either complement
the value implied at the fault site or to imply an at the fault
site such that subsequent input assignment can provoke the
fault. Backtracing is done to determine which initial input
assignments to reverse. When there is a choice on which gate
input to set to a controlling value, decisions are made based
on minimizing the total number of initial input assignments
that need to be reversed. If the fault site cannot be sensitized
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Fig. 8. Controllability and observability values.

Fig. 9. Example of backtracking with controllability and observability values.

to a primary output with additional input assignments (i.e., no
“ path” exists from the “ frontier” to a primary output),
then line justification decisions for creating an path are
again based on minimizing the total number of initial input
assignments that need to be reversed. These decisions can be
made quickly using the controllability and observability cost
functions described in Section IV-C

C. Controllability and Observability Cost Functions

In the correlating ATPG procedure, the goal is to minimize
the number of initial input assignments that are reversed. Thus,
the cost of justifying a line to a particular logic value or ob-
serving a line is the number of initial input assignments that
need to be reversed. Controllability and observability values are
computed to reflect this cost and used to guide line justification
decisions. These values are computed when the initial input as-
signments are made and their implications are determined. The
controllability values are determined by traversing the circuit
from the primary inputs to the primary outputs. If no value is
implied on a line (i.e., it is an ), then both the zero-controlla-
bility and one-controllability values for that line are zero since
it can be justified to either logic value without reversing any of
the initial input assignments. If the value implied on a line is
a zero (one), then the zero-controllability (one-controllability)
is set to zero and the one-controllability (one-controllability) is
set to the number of initial input assignments that need to be
reversed in order to complement the value implied on the line

or to imply an on the line. Once the controllability values
have been computed, then the observability values can be de-
termined by traversing the circuit from primary outputs to pri-
mary inputs and using the controllability values to determine
the number of initial input assignments that need to be reversed
in order to make the line observable. An example of computing
controllability and observability values is shown in Fig. 8.,

, and denote the controllability-zero, controllability-one,
and observability values, respectively, for each line. Note that
there is no initial assignment for the fourth input (i.e., it is an

) so there is no cost for subsequent assignments to that input.
When making line justification decisions in correlating

ATPG, the controllability and observability values based on the
number of initial input assignments that need to be reversed are
the primary criteria. Of course, in many cases, these values will
be zero or multiple decisions will have the same value. In those
cases, the conventional ATPG heuristics (to minimize ATPG
runtime) or the heuristics described in [31] to maximize don’t
cares can be used.

Consider the example in Fig. 9. The fault being targeted is
the output of gate stuck-at one. Conventional ATPG would
begin with all inputs initially unassigned (s). However, in cor-
relating ATPG, the initial input assignments correspond to the
correlated bit positions. Implications based on the initial input
assignments are made and the controllability and observability
values are computed based on the number of initial input assign-
ments that need to be reversed as previously described. Since the
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TABLE I
RESULTS FORBIT-FIXING SEQUENCEGENERATORS

value implied at the fault site is the same as the fault polarity,
one or more of the initial input assignments must be reversed to
justify a zero at the fault site. Backtracing is done to determine
which initial input assignments to reverse. Backtracing can be
done through either gate or gate . Since the zero-control-
lability at the output of gate is less than the zero-controlla-
bility at the output of gate , backtracing is done through gate

. Next, there is a decision whether to backtrace through gate
or gate . The zero-controllability values are equal for gate
and gate because in either case, one input assignment

will need to be reversed. In this case, a secondary criteria can
be used in making the decision. For example, if the secondary
criteria was to maximize the don’t cares (s), then backtracing
would be done through gate since going through gate
would require assigning a value to a currently unassigned input
(in addition to reversing the input assigned to a one).

D. Postprocessing

The last step after a test cube that detects the fault has been
found is to try to complement the value of any bit positions that
conflict with the correlated bit positions. For each bit position
that conflicts with a correlated bit position, the value is com-
plemented and the resulting test cube is simulated to see if the
fault is still detected. If the fault is no longer detected, then the
bit position is returned to its previous value. Unlike the “max-
imal compaction” procedure described in [32], if it is possible
to complement the bit, then the bit is left at the complemented
value rather than making it an. This is done to maximize the
possibility of complementing other bits since the goal is to min-
imize the number of conflicts.

E. Backtracking Limit

The goal of the correlating ATPG procedure is to maximize
correlation as opposed to conventional ATPG procedures whose
goal is to minimize execution time. One potential problem is that
the heuristics used in the correlating ATPG procedure may result
in more backtracking. However, a limit can be placed on the
backtracking based on the minimum amount of correlation that
is acceptable. Note that the correlating ATPG procedure need
only be used for finding test cubes for the r.p.r. faults, not all
faults.

V. EXPERIMENTAL RESULTS

The procedure described in this paper was used to design bit-
fixing sequence generators for some of the ISCAS benchmark
circuits [33], [34] that contain r.p.r. faults. The primary inputs
and flip-flops in each circuit were configured in a scan chain.
The bit-fixing sequence generators were designed to provide
complete fault coverage of all detectable single stuck-at faults
for a test length of 10 000 patterns.

In Table I, results are shown comparing the area of the bit-
fixing generator for different size LFSRs. A conventional ATPG
procedure was used to find the test cubes for the r.p.r. faults. The
size of the scan chain is shown for each circuit followed by the
maximum number of specified bits in any test cube contained in
the test set reported in [19]. Results are shown for the bit-fixing
sequence generator required for different size LFSRs. For each
different size LFSR, the number of bits in theSequence ID Reg-
ister is shown along with the factored form literal count for the
multilevel logic required to implement the bit-fixing sequence
generator. For each circuit, results were shown for an LFSR with
as many stages as the maximum number of specified bits as well
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TABLE II
RESULTSUSING BIT-CORRELATING ATPG

as smaller LFSRs. For smaller LFSRs, extra test cubes must be
embedded in order to detect faults that are missed due to linear
dependencies in the LFSR thereby resulting in an increase in
the area of the bit-fixing sequence generator. As can be seen, in
some cases adding just a small amount of logic to the bit-fixing
sequence generator permits the use of a much smaller LFSR.
Consider C2670, using a 16-stage LFSR instead of a 48-stage
LFSR only requires an additional 6 literals. However, in some
cases there is a large increase in the amount of logic required for
using a smaller LFSR. Consider s5378, using a 12-stage LFSR
instead of a 14-stage LFSR increases the amount of logic in the
bit-fixing sequence generator by more than a factor of two.

Results for the reseeding method presented in [19] are shown
in Table I for comparison. The size of the LFSR and the number
of bits stored in the ROM are shown. Note that the reseeding
method requires that the LFSR have at least as many stages
as the maximum number of specified bits in any test cube. It
is difficult to directly compare the two methods because they
are implemented differently (ROM versus multilevel logic) and
require very different control logic. The reseeding method re-
quires that the LFSR have programmable feedback logic and
parallel load capability as well as additional control logic for
loading the seeds from the ROM.

Results are shown in Table II comparing the overhead
for encoding test cubes generated with conventional ATPG
and those generated using the special bit-correlating ATPG
procedure described in Section IV. Note that both the amount of
combinational logic (i.e., literal count) and more significantly
the number of flip flops required (i.e.,Sequence ID Register
Size) are reduced.

VI. CONCLUSION

A synthesis procedure for generating sequence altering logic
to embed deterministic test cubes in a pseudorandom sequence
has been presented. It constructs a sequential multilevel circuit
that very efficiently encodes the deterministic test cubes. This

approach can achieve any desired fault coverage during BIST by
detecting the r.p.r. faults missed by the pseudorandom patterns.

There are three important features of the mixed-mode scheme
presented in this paper. The first is that test cubes for the r.p.r.
faults are embedded in the pseudorandom bit sequence. Since
there are so many possible pseudorandom patterns in which to
embed each test cube, the bit fixing required to embed a set
of test cubes can be correlated in certain bit positions to min-
imize hardware. The second feature is that a one-phase test is
used. Having only one phase simplifies the BIST control logic.
The third feature is that smaller LFSRs can be used. There is
a tradeoff between the size of the LFSR and the amount of
bit-fixing logic; therefore, the LFSR size can be chosen to min-
imize the overall area. These three features make the scheme
presented in this paper an attractive option for BIST in circuits
with scan.
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