IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 4, APRIL 2001 545

Bit-Fixing in Pseudorandom Sequences
for Scan BIST

Nur A. Toubg Member, IEEEand Edward J. McCluskey.ife Fellow, IEEE

Abstract—A low-overhead scheme for achieving complete tunately, many circuits contain random-pattern-resistant (r.p.r.)

(100%) fault coverage during built-in self test of circuits with faults [1], which limit the fault coverage that can be achieved
scan is presented. It does not require modifying the function logic with this approach.

and does not degrade system performance (beyond using scan). o thod f . . the fault f
Deterministic test cubes that detect the random-pattern-resistant ne metnod ior - improving "the auit “coverage ior a

(rp.r.) faults are embedded in a pseudorandom sequence of bits test-per-scan BIST scheme is to modify the circuit under test by
generated by a linear feedback shift register (LFSR). This is either inserting test points [2]-[4] or by redesigning it [5]-[8]

accomplished by altering the pseudorandom sequence by addingto improve the fault detection probabilities. The drawback of
logic at the LFSR's serial output to *fix” certain bits. A procedure a6 techniques is that they generally add extra levels of logic

for synthesizing the bit-fixing logic for embedding the test cubes L
is described. Experimental results indicate that complete fault to the circuit that can degrade system performance. Moreover,

coverage can be obtained with low hardware overhead. Further iN SOMe cases, it is not possible or not desirable to modify the
reduction in overhead is possible by using a special correlating function logic (e.g., macrocells, cores, legacy designs).

automatic test pattern generation procedure that is described for Another method for improving the fault coverage is to use a
finding test cubes for the rp.r. faults in a way that maximizes yeighted pseudorandom sequence. Logic is added to weight the
bitwise correlation. o o : w9 wn
probability of each bit in the sequence being a “1” or a “0” in
_Index Terms—DPesign for testability, digital system testing, logic a way that biases the patterns that are generated toward those
circuit testing, self-testing, sequences. that detect the r.p.r. faults. The weight logic can be placed either
at the input of the scan chain [9] or in the individual scan cells
|. INTRODUCTION themselves [10]-[12]. Multiple weight sets are usually required
. . . o due to conflicting input values needed to detect r.p.r. faults [13].
S THE density and complexity of integrated circuits ConTaqe weight sets need to be stored on chip and control logic is

t_|nue to Increase er_‘ab"”g. whole systems to be integra uired to switch between them, so the hardware overhead can
on asingle chip, economical built-in self-test (BIST) approach%% arge

are needed. BIST invplves using on-chip hardwarg to apply Sl third method to improve the fault coverage is to use a
patterns to the circuit under test and to analyze its output Wixed-mode” approach where deterministic patterns are used

Sponse. BIST. techniques reduce the burden on ex_ternal AYf03etect the faults that the pseudorandom patterns miss. Storing
matic test equipment (ATE) and allow concurrent testing of mu

. eterministic patterns in a read-only memory (ROM) requires a
tiple modules. o . .large amount of hardware overhead. Koenemann [14] proposed
A Iow—o_verhead approach_ for B.IST In circuts W'th scan I?‘;uechnique based onreseeding an LFSR that reduces the storage
to use a linear feedback shift register (LFSR) to shift a PSelkyuirements. The LESR that is used for generating the pseu-
dorandom sequence of bits into the scan chain. When a patt&ﬁ%andom patterns is also used to generate determitsstic

has been shifted into the scan chain, itis applled to the C'rceﬁbes(test patterns with unspecified inputs) by loading it with
under test and the response is loaded back into the scan C.I?:la%mputed seed. The number of bits that need to be stored is
th t pattern is shifted into th hain. Fig. 1 sh P8duced by storing a set of seeds instead of a set of determin-
asbl ekngx pa e][n 'f'hfs f,te tm 0 the SC;TS(EF amﬁ 9. Usfol‘@ﬁc patterns. Hellebranet al.[15]-[17] proposed an improved
a block diagram for this test-per-scan scheme. Ln 0'E'echnique that uses a multiple-polynomial LFSR for encoding
a set of deterministic test cubes. By “merging” and “concate-
) .)) n[:zlting” the test cubes, they further reduce the number of bits
Manuscript received November 14, 1999; revised June 17, 2000. This W%b d b d furth ducti b hi d
was supported in part by the Ballistic Missile Defense Organization Innovati at n.ee tO. e stored. Even further reduction C_an € achieve
Science and Technology (BMDO/IST) Directorate and administered through thy using variable-length seeds [18] and a special ATPG algo-

Department of the Navy Office of Naval Research under Grant NO0014-92thm [19]_ More recently techniques for generating the deter-
1782, by the National Science Foundation under Grant MIP-9107760, and b '

the Advanced Research Projects Agency under Prime Contract DABT63-94-’Eﬁni5tiC test cubes usi_ng BIST cor_1tro| IOgi(_; have b_een studied
0045. This paper was recommended by Associate Editor K.-T. Cheng. [20]-[22]. Also, techniques for using special functional hard-

N. A. Touba was with the Department of Electrical Engineering, Stanfoigare (e.g., processors) when possible to generate deterministic
University, Stanford, CA 94305 USA. He is now with the Computer Engineeri

n . X
Research Center, Department of Electrical and Computer Engineering, Uni\}%-St C.Ubes have been |nve§t|gated [23], [24]. _ .
sity of Texas, Austin, TX 78712 USA (e-mail: touba@ece.utexas.edu). This paper presents a mixed-mode approach in which deter-

E. J. McCluskey is with the Center for Reliable Computing, Departments ghinistic test cubes are embedded in the pseudorandom sequence

Electrical Engineeri dC ter Science, Stanford University, Stanf o i)
C,§°9§{§"g‘,5 Jg':_ee“”g and Computer Science, Stanford University, Stanfofgy i jtself (preliminary results were presented in [25] and de-
Publisher Item Identifier S 0278-0070(01)01944-3. scribed in U.S. Patent #6 061 818). Logic is added at the serial

0278-0070/01$10.00 © 2001 IEEE

546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 4, APRIL 2001

Circuit Under Test
(CUT)

*
LFSR |—>| Scan Chain |—>| Signature Reg.

Fig. 1. Block diagram for a “test-per-scan” BIST scheme.

LFSR

|
Fix-to-1

Bit-Fixing Sequence
Generator

Scan Chain

Fix-to-0

Fig. 2. Logic for altering the pseudorandom bit sequence.

output of the LFSR to selectively alter the pseudorandom bit sgse ESPRESSO-like procedures to minimize the number of
guence so that it will contain patterns that detect the r.p.r. faultsinterms [22]. The scheme described here targets a sequential
This is accomplished by “fixing” certain bits in the sequencenultilevel logic implementation and inherently factors and
As illustrated in Fig. 2, logic is added to generate a bit-fixingecomposes the sequence altering logic by construction to
sequence that alters the pseudorandom sequence by causingweiaimize the overhead. A special ATPG procedure is also
tain bits to be fixed to either a “1” or a “0.” A procedure is dedescribed here for reducing overhead by maximizing bitwise
scribed for designing the bit-fixing sequence generator in a wagrrelation in the test cubes for the r.p.r. faults.
that minimizes area overhead. The procedure can embed any s&chemes based on reseeding an LFSR require that the LFSR
of test cubes for the r.p.r. faults; however, the more correlathdve at least as many stages as the maximum number of speci-
the test cubes for the r.p.r. faults are, the less the overheadiexl bits in any test cube. A hardware tradeoff that is possible in
A special correlating ATPG procedure is presented for findinge scheme presented in this paper is that a smaller LFSR can be
test cubes for the r.p.r. faults that can be very efficiently encodeded for generating the pseudorandom bit sequence. This may
(preliminary results were presented in [26]). cause some faults to not be detected because of linear depen-
The test-per-scan BIST scheme presented in this papedé&ncies in the patterns that are generated, but deterministic test
sort of a hybrid approach. It is different from weighted patteroubes for those faults can be embedded at the expense of ad-
testing because it is not based on probability. It guarantees ttaional logic in the bit-fixing sequence generator. Data is pre-
certain test cubes will be applied to the circuit under test duringanted showing how much additional logic is required for dif-
specified test length. Also, it does not require a multiphase téstent size LFSRs.
in which control logic is needed to switch to different weight The paper is organized as follows. In Section Il, the architec-
sets for each phase. The control is very simple because theriis of the bit-fixing sequence generator is described. In Sec-
only one phase. tion 111, the procedure for designing the bit-fixing sequence gen-
Inthe proposed scheme, no data is stored in a ROM, but ratkeaitor is presented. In Section 1V, the special correlating ATPG
a multilevel circuit is used to dynamically fix bits in a way thaprocedure for maximizing bitwise correlation is described. In
exploits bit correlation (same specified values in particular Hection V, experimental results are shown for benchmark cir-
positions) among the test cubes for the r.p.r. faults. Small nuouits. Section VI is the conclusion.
bers of correlated bits are fixed in selected pseudorandom pat-
terns to make the pseudorandom patterns match the test cuqu
So rather than trying to compress the test cubes themselves, theé
proposed scheme essentially compresses the bit differences b&he purpose of the bit-fixing sequence generator is to alter the
tween the test cubes and a selected set of pseudorandom jpedudorandom sequence of bits that is shifted into the scan chain
terns. Since there are so many pseudorandom patterns to chamseder to embed deterministic test cubes in the sequence. This
from, a significant amount of compression can be achieved is-done by generating a sequencéoto-1 andfix-to-0 control
sulting in reduced overhead. signals that fix certain bits to either “1” or “0.” The architecture
The approach described here and the “bit-flipping” approadf the bit-fixing sequence generator is shown in Fig. 3. For a
presented by Kiefer and Wunderlich [20]-[22] share sonsean chain of length:, there is a Mod+n + 1) Counterthat
similar characteristics in that both alter the serial sequenceunts the number of bits that have been shifted into the scan
generated by an LFSR. However, the procedures for designiiwain. Afterm bits, the scan chain is full, so when the counter
the sequence altering logic differ greatly. Kiefer and Wundereaches thém + 1) state, the pattern in the scan chain is ap-
lich target a program logic array (PLA) implementation anglied to the circuit under test and the response is loaded back

" ARCHITECTURE OFBIT-FIXING SEQUENCEGENERATOR

TOUBA AND MCCLUSKEY: BIT-FIXING IN PSEUDORANDOM SEQUENCES FOR SCAN BIST 547

LFSR ' J&] Scan Chain (m bits)
v
Bit-Fixing Sequence
Selection Logic

v
Mod-(m+1) Counter Sequence ID Reg.

- v

Bit-Fixing
> Generation
Logic

N

Fix-to-1

Fix-to-0

Fig. 3. Architecture of bit-fixing sequence generator.

into the scan chain. At this point, the LFSR contains the startiby a single random pattern resistant structure in the circuit. For
state for the next pattern that will be shifted into the LFSR. Thexample, if there is a large fan-iknND gate in a circuit, then
Bit-Fixing Sequence Selection Loglecodes the starting statethat may cause all of the input stuck-at one faults and the output
in the LFSR and selects the bit-fixing sequence that will be usstlick-at zero fault of the gate to be r.p.r. Many of the specified
for the next pattern. The selected bit-fixing sequence identifiealues in particular bit positions of the test cubes for these r.p.r.
is loaded into th&Sequence ID RegisteAs the counter counts faults will be the same. Thus, there will be a significant amount
through the nextn bits that are shifted into the scan chain, thef bit correlation among the test cubes. This phenomenon is seen
Bit-Fixing Sequence Generation Logjenerates thiix-to-1and in weighted pattern testing, where biasing certain bit positions
fix-to-0 control signals based on the bit-fixing sequence ideresults in detecting a significant number of r.p.r. faults.
tifier stored in theSequence ID Registend the value of the In the scheme presented in this paper, bit correlation among
counter (see Fig. 7 for a specific example). the test cubes for the r.p.r. faults is used to minimize both the
One thing that should be pointed out is that the Med+ 1) number of different bit-fixing sequences that are required and
Counteris not additional overhead. It is needed in the contréhe amount of decoding logic. A procedure for designing the
logic for any test-per-scan BIST technique to generate a cdit-fixing sequence generator is described in Section .
trol signal to clock the circuit under test when the scan chain isNote that while the scheme is described for a single scan
full. Thus, this scheme takes advantage of existing BIST contiiain, the extension to multiple scan chains is straightforward.
logic. Fig. 4 shows how the scheme can be applied to the STUMPS
For each pattern that is shifted into the scan chain, the Hi#-7] architecture. Multipldix-to-1 andfix-to-0 control lines are
fixing sequence generator is capable of generating oné® of @enerated. The procedure for designing the bit-fixing sequence
different bit-fixing sequences, where is the size of theéSe- generator for multiple short scan chains is exactly the same as
guence ID RegisteA deterministic test cube for an r.p.r. faultfor one long scan chain except that the bit-fixing control lines
can be shifted into the scan chain by generating an appropriadguld be distributed among the multiple scan chains.
bit-fixing sequence for a pseudorandom pattern generated by the
LFSR. The bit-fixing sequence fixes certain bits in the pseudo- |||. D ESIGNING BIT-FIXING SEQUENCEGENERATOR

random pattern such that the resulting pattern that is shifted into _ o . . .
P ap For a given LFSR and circuit under test, this section describes

the scan chain detects the r.p.r. fault. The bit-fixing sequence . e
generator must be designed so that it generates enough d&glgutomated procedure for designing a bit-fixing sequence gen-

ministic test cubes to satisfy the fault coverage requirement. T?l.'@tp ' to satisfy testlength and _fault coverage requirements. The
key to minimizing the area overhead for this approach is careRIf'f'X'ng sequence generator is designed to alter the pseudo-
selection of the bit-fixing sequences that are generated. rgndom bit sequence generat_ed by the LFSR to achieve the de-
One characteristic of the test cubes for r.p.r. faults is that SLm[ed fault coverage for _the given test length (number of scan
sets of them often have the same specified values in partiaﬁ«%ﬂems applied to the circuit under test).
bit positions (this will be referred to as “bit correlation”). For .
example, the test cubad011, 11X00, and1X0X0, are cor- A Obtaining Test Cubes
related in the first, second, and third bit positions, but not the The first step is to simulate thestage LFSR for the given
fourth and fifth. That is because all of the specified bits in thiest lengthZ to determine the set of pseudorandom patterns
firstand second bit positions are ones and all the specified bitslat are applied to the circuit under test. For each of the
the third bit position are zeros. However, the fourth and fifth bit patterns that are generated, the startifjt state of the
positions have conflicts because some of the specified valueslaf&R is recorded (i.e., the contents of the LFSR right before
ones and some are zeros. Note that the unspecified valigs (shifting the first bit of the pattern into the scan chain). Fault
do not matter. The reason why a significant amount of bit cosimulation is then performed on the circuit under test for the
relation often exists among the test cubes for the r.p.r. faultsgseudorandom patterns to see which faults are detected and
probably due to the fact that several r.p.r. faults may be causehich are not. The pattern thdtopseach fault from the fault

548 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 4, APRIL 2001

34| Scan Chain-1 (m bits) >
L ' Scan Chain-2 (m bits) > M
F I
°
S S
R ¢ R
°
Bit-Fixing Sequence n)]
Selection Logic -E & Scan Chain-k (m bits)
Mod-(m+1) Counter Sequence ID Reg.
; (Fix-to-1)-1
(Fix-to-1)-2
B it-Fixing ﬂ:ix-t(.)- D-n
> Generation (Fix-t0-0)-1
Logic (Fix-10-0)-2
(Fix-t0-0)-n
Fig. 4. Bit-fixing sequence generator for STUMPS architecture.
De
De
[Scan Chain |
Starting State Pattern Shifted into Scan Chain Faults Dropped
01011 - 010000101011 7
11010 - 111110011010 5
11000 - 010111011000 2
000O0T1 - 110100100001 0
11100 - 110001111100 1
01110 - 000010101110 0
01001 - 111001101001 0
00011 - 011101100011 0
00101 - 010010000101 0
10011 - 000111110011 1
11011 - 001010111011 0
00100 - 100110100100 0
16/20
Fault Coverage = 80%
Test Cubes for Undetected Faults: 1 1 1 X 00 XX XX 0 0
101 X10XXXX0X
000XX1XXXXO00
01 XX01XXXX10

Fig. 5. Design example: obtaining the test cubes.

list (i.e., detects the fault for the first time) is recorded. TheFSR(r = 5). Fig. 5 shows the 12 patterns that are generated
faults that are not detected are the faults that require alterimg the LFSR and applied to the circuit under test through the
of the pseudorandom bit sequence. The pseudorandom doidn chain. For each pattern, the starting state of the LFSR is
sequence must be altered to generate test cubes that deseotvn and the number of faults that are dropped from the fault
the undetected faults. An automatic test pattern generati@st is shown. Five of the patterns drop faults while the other
(ATPG) tool is used to obtain test cubes for the undetectsdven do not. The pseudorandom patterns detect 16 out of 20
faults by leaving the unspecified inputs &&s. possible faults giving a fault coverage of 80%. An ATPG tool

A simple contrived design example will be used to illustratis used to obtain test cubes for the four undetected faults. The
the procedure described in this paper. A bit-fixing sequence gdit-fixing sequence generator must be designed so that it alters
erator will be designed to provide 100% fault coverage forthe pseudorandom bit sequence in a way that all four test cubes
test length of 12 patternd. = 12) generated by a five-stageare generated in the scan chain.

TOUBA AND MCCLUSKEY: BIT-FIXING IN PSEUDORANDOM SEQUENCES FOR SCAN BIST 549

Starting LFSR state for Patterns that Drop Faults: 01011, 11010, 11000, 11 100, 10011
F’ = (01011 + 11010 + 11000 + 11100 + 1001 1’
Largest Implicant in F": 00XXX

Starting L FSR State Corresponding Scan Pattern

Patterns Decodedby00XXX: 0 0 001 - 1101001060001
00011 - 011101100011
00101 - 010010000101
00100 - 100110100100

Consider all 4 Test Cubes Eliminate One Test Cube

111 X00XXXX00 Test Cubes 111 X00XXXXO00

101 X10XXXX0X 101 X10XXXX0X

000XX1XXXX0O0

01 XX01XXXX10 01 XX01XXXX10
0 Bits to Fix 1 0
{ { \

110100100000 Resulting 111100100000

011101100010 ScanPatterns 011101100010

010010000100 011010000100

100110100100 101110100100

1 Test Cube Embedded 3 Test Cubes Embedded
Fig. 6. Design example: finding decoding function and set of bits to fix for the 8eguence ID Registéit.
B. Embedding Test Cubes tern that drops faults. Then, an implicanthth corresponds to

a set of patterns that do not drop faults and can be decoded by
Once the set of test cubes for the undetected faults has bggn,-input AND gate, wherer is the number of literals in the

obtained, the bit-fixing sequence generator is then designedyflicant. A binate covering procedure can be used to choose
embed the test cubes in the pseudorandom bit sequence. {Heelargest implicant i’ (see [28]). The largest implicant re-
test cubes are embedded in a way that guarantees that faultsgli@es the least logic to decode and corresponds to the largest
are currently detected by the pseudorandom bit sequence Wit of pseudorandom patterns that do not drop any faults. These
remain detected after the test cubes are embedded. This is dgieethe patterns that will activate and, hence, be altered by the
by only altering patterns that do not drop any faults. As long g&gw Sequence ID Registéit.
the patterns that drop faults are not altered, the dropped faults arg, the design example, there are five starting LFSR states that
guaranteed to remain detected. This ensures that fault coverggfespond to the patterns that drop faults. They are listed at the
will not be lost in the process of embedding the test cubes. top of Fig. 6. The functiorF is formed and the largest impli-
The goal in designing the bit-fixing sequence generator is ¢gant in the complement @ is found. The largest implicant is
embed the test cubes with a minimal amount of hardware.o§.X X X. Whenever the first two bits in a starting state of the
hill-climbing strategy is used in which one bit at a time is addeidFSR are both “0,” then the neBequence ID Registdit is
to the Sequence ID Registdased on maximizing the numberactivated. Thus, there are four patterns for which the Sew
of test cubes that are embedded each time. Bits continue toge@nce ID Registebit will be activated.
added to thesequence ID Registentil a sufficient number of After the set of patterns that activate the nSaquence 1D
test cubes have been embedded to satisfy the fault coverageriggistemit have been determined, the next step is to determine
quirement. Complete fault coverage can be obtained by embaghich bits in the patterns will be fixed when the n8gquence
ding test cubes for all of the undetected faults. ID Registerbit is activated. The goal is to fix the bits in a way
For each bit that is added to tf8equence ID Registethe that embeds as many test cubes as possible. The strategy is to
first step is to determine which patterns the bit will be activind some good candidate sets of bits to fix and then compute
for (i.e., which patterns it will alter). In order not to reduce th&ow many test cubes would be embedded if each were used. The
fault coverage, it is important to choose a set of patterns that cendidate that embeds the largest number of test cubes is then
not currently drop any faults in the circuit under test. In ordeselected.
to minimize theBit-Fixing Sequence Selection Logitis im- The candidate sets of bits to fix are determined by looking
portant to choose a set of patterns that are easy to decode. atlgit correlation among the test cubes. For example, if the two
set of patterns for which the neBequence ID Registéit will test cubed010X and00X11 are to be embedded, then fixing
be active are decoded from the starting state of the LFSR tbe second bit position to a “0,” the third bit position to a “1,”
each pattern. LeF be a Boolean function equal to the sum o&nd the fifth bit position to a “1” would help to embed both test
the minterms corresponding to the starting state for each pattbes in the pseudorandom bit sequence. However, fixing the

550 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 4, APRIL 2001

first bit to a “1” or fixing the fourth bit to a “0” would only help limited potential. Ifitis not possible for the next candidate

to embed the first test cube; it would prevent the second test to embed more test cubes than the best candidate, then the
cube from being embedded. The reason for this is that the two best candidate is selected as the set of bits to fix.

test cubes have conflicting values in the first and fourth bit. So 7) Eliminate as many fixed bits as possible without reducing
given a set of test cubes to embed, the best bits to fix are the ones the number of embedded test cubes.

in which there are no conflicting values among the test cubes.in order to minimize hardware area, it is desirable to fix as
The procedure for selecting the set of bits to fix is as follows (ttfew bits as possible. It may be possible to embed the test cubes
procedure is illustrated for the design example at the bottomwithout fixing all of the bits in the selected set. An attempt is

Fig. 6). made to reduce the number of fixed bits by eliminating one bit at
1) Place all test cubes to be embedded into the initial set@time and checking to see if the same test cubes are embedded.
test cubes. The bit-fixing sequence generator is designed so that when
Begin by considering all of the test cubes that need tbe newSequence ID Registduit is activated, the set of bits
be embedded. selected by the procedure above is fixed. The pseudorandom
[In the design example in Fig. 6, all 4 test cubes angatterns that are altered to embed each test cube are added to
initially considered.] the set of patterns that drop faults (one pattern per embedded test
2) Identify bits where there are no conflicting values amongube). This is done to ensure that those patterns are not further
the test cubes. altered such that they would no longer embed the test cubes. If

Look at each bit position. If one or more test cubes haglae fault coverage is not sufficient after adding the 18®guence
“1"and one or more test cubes has a “0” in the bit positiodD Registerbit, then anotheSequence ID Registeéit is added
then there is a conflict. If all of the test cubes have eithéd embed more test cubes.

a“l” (“0") or an “X,” then the bit can be fixed to a “1” In the design example in Fig. 6, when all four test cubes are
(0. considered, the only specified bit position in which there are no
[In the design example in Fig. 6, when all 4 test cubezonflicts is the last bit position, which can be fixed to a “0.”
are considered, only the last bit position has no coffrixing this bit enables one test cube to be embedded. However,
flicting values. All 4 of the test cubes have either a “0When one of the test cubes is eliminated from consideration then

or an “X" in the last bit position.] the three remaining test cubes have two specified bit positions
3) Compute the number of test cubes that would be emvhere there are no conflicts. Fixing these two bits enables all
bedded by fixing this candidate set of bits. three of the remaining test cubes to be embedded. Thus, this is

For each pattern that activates the n8aquence ID the selected set of bits to fix when the n8equence ID Register
Registenit, fix the set of bits that was determined in Stefbit is activated. There is still one test cube that has not been em-
2. Count the number of test cubes that are embeddedoiedded. Since complete fault coverage is required, another bit
the resulting patterns. must be added to th®equence ID Registefhe three pseudo-

[In the design example in Fig. 6, when the last bit porandom patterns in which the three test cubes were embedded

sition is fixed to a “0” in the 4 scan patterns that actiare added to the set of patterns that drop faults and the proce-

vate the newSequence ID Registduit, it enables the dure for adding a ne@equence ID Registeéit is repeated.

test cubed1 X X01.X X X X10 to be embedded in the

pseudorandom pattefi1101100011.] o i : :

If the number of test cubes embedded is larger than tr%t Synthesizing Bit-Fixing Sequence Generation Logic
of the best candidate, then mark this as the best candidaté/Vhen enough bits have been added toSkegquence ID Reg-
The goal is choosing the set of bits to fix is to embet$ter to provide sufficient fault coverage, the remaining task is

4

~

as many test cubes as possible. to synthesize th&it-Fixing Sequence Generation Logithe
5) Remove the test cube that will eliminate the most comit-Fixing Sequence Generation Logjenerates thix-to-1and
flicts. fix-to-0 control signals to fix the appropriate bits in the sequence

One test cube is removed from consideration in order ttepending on whiclsequence ID Registdits are active. For
increase the number of bits that can be fixed. The test cubachSequence ID Registéit that is active, control signals are
that is removed is chosen based on reducing the numigenerated when certain states of the counter are decoded.
of conflicting bits in the remaining set of test cubes. The process of constructing tiBat-Fixing Sequence Gener-

[In the design example in Fig. 6, if third test cube istion Logicis best explained with an example. TB&-Fixing

eliminated from consideration, the three remaining teSiequence Generation Logdior the design example is shown

cubes have two specified bit positions where there aire Fig. 7. The first bit in theSequence ID Registés activated

no conflicts. The third bit can be fixed to a “1” in addi-whenever the first two bits in the starting seed for a pattern are

tion to fixing the last bit to a “0.”] both “0.” This condition is decoded using a two-inpup gate
If the number of test cubes that are embedded by the bastl loading th&equence ID Registaght before shifting a new
candidate is greater than the number of test cubes tipattern into the scan chain. When the first bit in 8egjuence 1D
remain, then select the best candidate. Otherwise, loBggisteiis active, it fixes the first bit shifted into the scan chain
back to Step 2. to a “0” and the tenth bit shifted into the scan chain to a “1.”

The next candidate set of bits to fix will only help toThis is done by generatingfix-to-0 signal when the counter is
embed the remaining set of test cubes and, therefore, rashe “cnt-1" state and éix-to-1 signal when the counter is in

6

~

TOUBA AND MCCLUSKEY: BIT-FIXING IN PSEUDORANDOM SEQUENCES FOR SCAN BIST 551

LFSR] — E

¥y

Mod-(m+1) Counter Bit 1 |Bit 2] Seq. ID Reg.

[\

Fix-to-0]
&\ I

cnt-1

Lgl & lent-2
o
9
o

& lent-10 Fix-to-1

gy S |

fig. 7. Design example: bit-fixing sequence generation logic prior to multilevel logic optimization.

“cnt-10" state. The second bit in ti8equence ID Registerac- sponding to the correlated bit positions are assigned initial
tivated whenever the third and fourth bit in the starting seed fealues. Normally, the PODEM algorithm begins with all inputs
a pattern are both “1.” When the second bit in 8ejuence ID having unassigned valuesy§). However, in the correlating
Registeris activated, it fixes the second bit shifted into the scaATPG procedure, the initial input assignments are made to
chain to a “0.” This is done by generatindie-to-Osignal when begin in the part of the search space that would yield the most
the counter is in “cnt-2” state. correlated test cube. If the fault can be detected by making
When constructing theBit-Fixing Sequence Generationfurther inputs assignments without backtracking on any of the
Logic, the states of the counter can be decoded by simply usiffial input assignments (i.e., the correlated bit positions), then
n-iNPUtAND gates, where is equal to the number of bits in the@ test cube can be found with no conflicts in the correlated bit

counter. However, once the logic has been constructed, it shoBfitions. In general, however, some backtracking on the initial
be minimized using a multilevel logic optimization tool. Thdnput assignments will be necessary to detect the fault. The key

don't care conditions due to the unused states of the cour! maximizing the bit correlation is to carefully select the order
can be used to minimize the logic but, more importantly, tH the backtracking in order to minimize the number of initial

logic can be factored. Because the number of inputs to the Io&%&gnments that are reversed.
is small, factoring is very effective for significantly minimizing ,
the Bit-Fixing Sequence Generation Logic B. Backtracking

Normally, backtracking in the PODEM algorithm is done in
IV. CORRELATING ATPG PROCEDURE the reverse order in which the inputs are assigned (i.e., the last

One way to reduce the overhead of the bit-fixing sequenfeom assignment made is the one that is changed first). Back-

generator is to use a special ATPG procedure to find test cu ré’:gckmg in the correlating ATPG procedure is done in the same

for the r.p.r. faults that maximizes the amount of correlation Hay exgept for when backtra'cklng.c')n the initial mput. assign-
nts (i.e., the correlated bit positions). The order in which

the test cubes. In this section, a special ATPG procedure fBF

finding correlated test cubes is described. The starting point3@ckiracking is performed on the initial input assignments is de-
the initial set test cubes for the r.p.r. faults. The correlated BRrMined by using structural heuristics aimed at minimizing the
positions in the initial set of test cubes are identified. Then tfg/mber of initial input assignments that need to be reversed.
correlating ATPG procedure is used to find a test cube for eachBacktracking on the initial input assignments is required
r.p.r. fault that conflicts with as few of the correlated bit posiwhen one of the line values implied by the initial input assign-
tions as possible. This allows the test cube to be embedded WitRnts must be complemented in order to allow the fault to be
the least amount of bit-fixing. This ATPG task is different fronProvoked or sensitized to a primary output by subsequent input
dynamic compactiof29], where an attempt is made to find aassignments. If the value implied at the fault site is the same
test cube for a fault by specifying the “don’t care(§) in test value as the fault polarity [i.e., if a one (zero) is implied at a
cubes for others faults. Dynamic compaction looks for a testuck-at one (zero) fault site], then one or more initial input
cube for a particular fault that ham® conflictswith other test assignments must be reversed in order to either complement
cubes, whereas the problem of interest here is to find a test ctibe value implied at the fault site or to imply & at the fault

for a particular fault that has tliewest number of conflictgith site such that subsequent input assignment can provoke the

other test cubes. fault. Backtracing is done to determine which initial input
N) assignments to reverse. When there is a choice on which gate
A. Initial Input Assignments input to set to a controlling value, decisions are made based

The “Correlating ATPG” procedure presented here uses minimizing the total number of initial input assignments
a PODEM-based [30] algorithm in which the inputs correthat need to be reversed. If the fault site cannot be sensitized

552 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 4, APRIL 2001

co=1
1 C1=0
0=1 & C0=0
C0=0 =2
= 0=0 |0
0 __._Cé:(l) & | g w=0
Cl=1
co=1 1 0=0
1 Cl=0 +
—] Co=1
0=1
C1=0
C0=0 0=
X C1=0
0=2
Fig. 8. Controllability and observability values.
) Co=1
Cl=0
0=2 & co=1
co=1 o211
I &= at & | -1 Stuck-At 1
co=1 1 2 Fault
: 4&:—3— + go=1 > : & 0 1l1
1=0 =
c0=0 0=2 Cl=0 +
- 0=0 €0=0
X =0 2 _ 1 X ciso
= . 8(1):0 N G5 Cco=0 0=0
—€l=0 | Co=2 ¥ _€1=0
0=2 oz ool G6
co=1 0=1
1_ci=0
= G4

Fig. 9. Example of backtracking with controllability and observability values.

to a primary output with additional input assignments (i.e., nar to imply anX on the line. Once the controllability values
“X path” exists from the D frontier” to a primary output), have been computed, then the observability values can be de-
then line justification decisions for creating ag path are termined by traversing the circuit from primary outputs to pri-
again based on minimizing the total number of initial inputnary inputs and using the controllability values to determine
assignments that need to be reversed. These decisions cathe@umber of initial input assignments that need to be reversed
made quickly using the controllability and observability cosh order to make the line observable. An example of computing
functions described in Section IV-C controllability and observability values is shown in Fig.(8),

C1, andO denote the controllability-zero, controllability-one,

C. Controllability and Observability Cost Functions and observability values, respectively, for each line. Note that
In the correlating ATPG procedure, the goal is to minimizthere is no initial assignment for the fourth input (i.e., it is an
the number of initial input assignments that are reversed. Thu§) so there is no cost for subsequent assignments to that input.

the cost of justifying a line to a particular logic value or ob- When making line justification decisions in correlating
serving a line is the number of initial input assignments th&TPG, the controllability and observability values based on the
need to be reversed. Controllability and observability values axember of initial input assignments that need to be reversed are
computed to reflect this cost and used to guide line justificatidhe primary criteria. Of course, in many cases, these values will
decisions. These values are computed when the initial input &s-zero or multiple decisions will have the same value. In those
signments are made and their implications are determined. Tdases, the conventional ATPG heuristics (to minimize ATPG
controllability values are determined by traversing the circuitintime) or the heuristics described in [31] to maximize don't
from the primary inputs to the primary outputs. If no value isares can be used.

implied on a line (i.e., it is aX), then both the zero-controlla- Consider the example in Fig. 9. The fault being targeted is
bility and one-controllability values for that line are zero sincthe output of gat€75 stuck-at one. Conventional ATPG would

it can be justified to either logic value without reversing any dfegin with all inputs initially unassigned{(s). However, in cor-

the initial input assignments. If the value implied on a line igelating ATPG, the initial input assignments correspond to the
a zero (one), then the zero-controllability (one-controllabilityyorrelated bit positions. Implications based on the initial input
is set to zero and the one-controllability (one-controllability) inssignments are made and the controllability and observability
set to the number of initial input assignments that need to balues are computed based on the number of initial input assign-
reversed in order to complement the value implied on the limeents that need to be reversed as previously described. Since the

TOUBA AND MCCLUSKEY: BIT-FIXING IN PSEUDORANDOM SEQUENCES FOR SCAN BIST 553

TABLE |
RESULTS FORBIT-FIXING SEQUENCE GENERATORS

Circuit Reseeding [19] Bit-Fixing Sequence Generator
Circuit Scan Max. Num. LESR ROM LFSR Seq. ID Literal
Name Size Specified Bits Size Bits Size _Reg. Size Count
s420 34 20 20 250 20 1 27
14 3 70
10 4 70
s641 54 22 22 183 22 2 63
14 4 87
9 6 109
s838 66 36 36 1623 36 5 168
14 7 176
12 7 199
s1196 32 17 17 267 17 4 67
14 4 71
12 8 102
s5378 214 19 27 726 19 3 163
14 4 174
12 9 367
C2670 233 48 60 3412 48 4 328
16 5 334
10 12 427
C7552 207 100 100 5241 100 7 741
36 8 782
17 13 828

value implied at the fault site is the same as the fault polarity, Backtracking Limit

one or more of the initial iqput assignm_ent_s must be reverseq torhe goal of the correlating ATPG procedure is to maximize
justify a zero at the fault site. Backtracing is done to determing,re|ation as opposed to conventional ATPG procedures whose
which initial input assignments to reverse. Backtracing can Bg | is to minimize execution time. One potential problem s that
done through either gat&3 or gate(4. Since the zero-control- \he heyristics used in the correlating ATPG procedure may result
lability at the output of gaté3 is less than the zero-controlla-in mare packtracking. However, a limit can be placed on the
bility at the output of gat€74, backtracing is done through gat€, 5 ckiracking based on the minimum amount of correlation that

G3. Next, there is a decision whether to backtrace through gade,cceptable. Note that the correlating ATPG procedure need
G1 or gate(2. The zero-controllability values are equal for gatg,y pe ysed for finding test cubes for the r.p.r. faults, not all
(1 and gateG2 because in either case, one input assignmegy,jis.

will need to be reversed. In this case, a secondary criteria can
be used in making the decision. For example, if the secondary
criteria was to maximize the don'’t carek §), then backtracing] o))
would be done through gat1 since going through gat&2 The procedure described in this paper was used to design bit-
would require assigning a value to a currently unassigned ingbdnd sequence generators for some of the ISCAS benchmark

(in addition to reversing the input assigned to a one). circuits [33], [34] that contain r.p.r. faults. The primary inputs
and flip-flops in each circuit were configured in a scan chain.

The bit-fixing sequence generators were designed to provide
D. Postprocessing complete fault coverage of all detectable single stuck-at faults
for a test length of 10000 patterns.

The last step after a test cube that detects the fault has beelm Table I, results are shown comparing the area of the bit-
found is to try to complement the value of any bit positions théiking generator for different size LFSRs. A conventional ATPG
conflict with the correlated bit positions. For each bit positioprocedure was used to find the test cubes for the r.p.r. faults. The
that conflicts with a correlated bit position, the value is consize of the scan chain is shown for each circuit followed by the
plemented and the resulting test cube is simulated to see if thaximum number of specified bits in any test cube contained in
fault is still detected. If the fault is no longer detected, then thhe test set reported in [19]. Results are shown for the bit-fixing
bit position is returned to its previous value. Unlike the “maxsequence generator required for different size LFSRs. For each
imal compaction” procedure described in [32], if it is possibldifferent size LFSR, the number of bits in tSequence ID Reg-
to complement the bit, then the bit is left at the complementésteris shown along with the factored form literal count for the
value rather than making it aKi. This is done to maximize the multilevel logic required to implement the bit-fixing sequence
possibility of complementing other bits since the goal is to mirgenerator. For each circuit, results were shown for an LFSR with
imize the number of conflicts. as many stages as the maximum number of specified bits as well

V. EXPERIMENTAL RESULTS

554 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 4, APRIL 2001

TABLE I
RESULTS USING BIT-CORRELATING ATPG
Circuit Bit-Fixing Sequence Generator Bit-Fixing Sequence Generator
with Conventional ATPG with Bit Correlating ATPG
Circuit Scan LESR Seq. ID. Literal LFSR Seq. ID. Literal
Name Size Size Reg Size count Size Reg Size count
s420 34 14 3 70 14 1 36
10 4 70 10 3 59
s641 54 14 4 87 14 2 80
9 6 109 9 5 98
5838 66 14 7 176 14 5 164
12 7 199 12 6 183
s1196 32 14 4 71 14 4 69
12 8 102 12 7 97
$5378 214 14 4 174 14 4 164
12 9 367 12 8 332
C2670 233 16 5 334 16 4 313
10 12 427 10 8 385
C7552 207 36 8 782 36 7 753
17 13 828 17 11 806

as smaller LFSRs. For smaller LFSRs, extra test cubes mustpproach can achieve any desired fault coverage during BIST by
embedded in order to detect faults that are missed due to lindatecting the r.p.r. faults missed by the pseudorandom patterns.
dependencies in the LFSR thereby resulting in an increase inThere are three important features of the mixed-mode scheme
the area of the bit-fixing sequence generator. As can be seemiiasented in this paper. The first is that test cubes for the r.p.r.
some cases adding just a small amount of logic to the bit-fixifgults are embedded in the pseudorandom bit sequence. Since
sequence generator permits the use of a much smaller LF8#re are so many possible pseudorandom patterns in which to
Consider C2670, using a 16-stage LFSR instead of a 48-stagaebed each test cube, the bit fixing required to embed a set
LFSR only requires an additional 6 literals. However, in somaf test cubes can be correlated in certain bit positions to min-
cases there is a large increase in the amount of logic requiredifaize hardware. The second feature is that a one-phase test is
using a smaller LFSR. Consider s5378, using a 12-stage LF8&ed. Having only one phase simplifies the BIST control logic.
instead of a 14-stage LFSR increases the amount of logic in fhge third feature is that smaller LFSRs can be used. There is
bit-fixing sequence generator by more than a factor of two. a tradeoff between the size of the LFSR and the amount of

Results for the reseeding method presented in [19] are shobitifixing logic; therefore, the LFSR size can be chosen to min-
in Table | for comparison. The size of the LFSR and the numbignize the overall area. These three features make the scheme
of bits stored in the ROM are shown. Note that the reseedipgesented in this paper an attractive option for BIST in circuits
method requires that the LFSR have at least as many stagé scan.
as the maximum number of specified bits in any test cube. It
is difficult to directly compare the two methods because they
are implemented differently (ROM versus multilevel logic) and ACKNOWLEDGMENT
require very different control logic. The reseeding method re- The authors would like to thank V. Lo, M. Karkala, and Prof.
quires that the LFSR have programmable feedback logic and j. wunderlich in helping with this paper.
parallel load capability as well as additional control logic for
loading the seeds from the ROM.

Results are shown in Table Il comparing the overhead REFERENCES
for encoding test cubes generated with conventional ATPG 1] E. B. Eichelberger and E. Lindbloom, “Random-pattern coverage en-
and those generated using the special bit-correlating ATPG = hancement and diagnosis for LSSD logic self-te#®M J. Res. De-
procedure described in Section IV. Note that both the amount of __ Velop, vol. 27, no. 3, pp. 265-272, May 1983. o

. . L . L [2] K.-T. Cheng and C. J. Lin, “Timing-driven test point insertion for

combinational logic (i.e., literal count) and more significantly

; - . ’ full-scan and partial-scan BIST,” iRroc. Int. Test ConfOct. 1995, pp.
the number of flip flops required (i.eSequence ID Register 506-514.

Siz§ are reduced. [3] N. A. Touba and E. J. McCluskey, “Test point insertion based on path
tracing,” inProc. VLSI Test Sympl996, pp. 2-8.
[4] N. Tamarapalli and J. Rajski, “Constructive multiphase test point in-
sertion for scan-based BIST,” iRroc. Int. Test Conf.Oct. 1996, pp.
VI. CONCLUSION 649-658.
))] _[5] N. A. Touba and E. J. McCluskey, “Automated logic synthesis of
A synthesis procedure for generating sequence altering logic random pattern testable circuits,” Rroc. Int. Test Conf.Oct. 1994,

to embed deterministic test cubes in a pseudorandom sequence PP- 174-183.

has b d. | ial il i .EG] C.-H. Chiang and S. K. Gupta, “Random pattern testable logic syn-
as been presented. It constructs a sequential multilevel circul thesis,” in Proc. Int. Conf. Computer-Aided DesigNov. 1994, pp.

that very efficiently encodes the deterministic test cubes. This 125-128.

TOUBA AND MCCLUSKEY: BIT-FIXING IN PSEUDORANDOM SEQUENCES FOR SCAN BIST 555

(71

(8]

9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]
(21]
[22]

(23]

[24]

(25]

[26]

[27]
(28]
[29]

(30]

(31]

M. Chatterjee, D. K. Pradhan, and W. Kunz, “LOT: Logic optimiza- [32] |.Pomeranz,L.N.Reddy, and S. M. Reddy, “COMPACTEST: A method

tion with testability—New transformations using recursive learning,” in to generate compact test sets for combinational circUiBEE Trans.
Proc. Int. Conf. Computer-Aided Desighov. 1995, pp. 318-325. Computer-Aided Desigivol. 12, pp. 1040-1049, Jul. 1993.

Z.Zhao, B. Pouya, and N. A. Touba, “BETSY: Synthesizing circuits for [33] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
a specified BIST environment,” iRroc. Int. Test Conf.Oct. 1998, pp. mark circuits and a target translator in fortan,"Rroc. Int. Symp. Cir-
144-153. cuits and System#lay 1985, pp. 663—698.

F. Brglez, C. Gloster, and G. Kedem, “Hardware-based weighted randonfid4] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of se-
pattern generation for boundary scan,Piroc. Int. Test ConfOct. 1989, guential benchmark circuits,” iRroc. Int. Symp. Circuits and Systems
pp. 264-274. May 1989, pp. 1929-1934.

F. Muradali, V. K. Agarwal, and B. Nadeau-Dostie, “A new procedure
for weighted random built-in self-test,” iRroc. Int. Test Conf.Oct.
1990, pp. 660-668.

M. F. AlShaibi and C. R. Kime, “Fixed-biased pseudorandom built-in
self-test for random pattern resistant circuits,'Hroc. Int. Test Conf.
Oct. 1994, pp. 929-938.

“MFBIST: A BIST method for random pattern resistant circuits,” in
Proc. Int. Test Conf.Oct. 1996, pp. 176-185.
H.-J. Wunderlich, “Multiple distributions for biased random test pat;
terns,”|EEE Trans. Computer-Aided Desigvol. 9, pp. 584-593, June
1990.

B. Koenemann, “LFSR-coded test patterns for scan design®tan.
Eur. Test Conf.Mar. 1991, pp. 237-242.

Nur A. Touba (S'88-M'96) received the B.S. degree
in electrical engineering from the University of Min-
nesota at Twin Cities, Minneapolis, MN, in 1990 and
the M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, in 1991 and
1996, respectively.

Since 1996, he has been an Assistant Professor
with the University of Texas, Austin. He serves on
the Technical Program Committees of the Interna-
S. Venkataraman, J. Rajski, S. Hellebrand, and S. Tarnick, “An efficie tional Test Conference, International Conference on
BIST scheme based on reseeding of multiple polynomial linear feedba Computer-Aided Design, International Conference
shift registers,” inProc. Int. Conf. Computer-Aided Desiglov. 1993, on Computer Design, International Test Synthesis Workshop, and International
pp. 572-577. On-Line Test Workshop. His current research interests include very large scale
S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Generation @ftegration testing, computer-aided design, and fault-tolerant computing.
vector patterns through reseeding of multiple-polynomial linear feed- Dr. Touba received the National Science Foundation Early Faculty CAREER
back shift registers,” ifProc. Int. Test ConfOct. 1992, pp. 120-129. Award in 1997.

S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,

“Built-in test for circuits with scan based on reseeding of multiple-poly-

nomial linear feedback shift registerdEEE Trans. Computvol. 44,
pp. 223-233, Feb. 1995.

N. Zacharia, J. Rajski, and J. Tyszer, “Decompression of test data us
variable-length seed LFSRs,” Proc. VLSI Test SympApr. 1995, pp.
426-433.

S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, “Pattern g
eration for a deterministic BIST scheme,”fmoc. Int. Conf. Computer-
Aided DesignNov. 1995, pp. 88-94.

H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” ifProc. Int. Conf.
Computer-Aided DesigiNov. 1996, pp. 337-343.

G. Kiefer and H.-J. Wunderlich, “Using BIST control for pattern gener|

Edward J. McCluskey (S’51-M'55-SM'59-F'65
—LF'94) received the A.B. degree in physics and
math from Bowdoin College, Brunswick, ME,
in 1953 and the B.S., M.S., and Sc.D. degrees
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, in 1953, 1953,
and 1956, respectively.

He was with the Bell Telephone Laboratories
from 1955 to 1959, where he worked on electronic

ation,” in Proc. Int. Test ConfOct. 1997, pp. 347-355. switching systems. In 1959, he became a Professor
——, “Deterministic BIST with multiple scan chains,” Proc. Int. Test of Electrical Engineering and the Director of the
Conf, Oct. 1998, pp. 1057-1064. University Computer Center at Princeton University. In 1966, he joined Stan-

S. Hellebrand, H.-J. Wunderlich, and A. Hertwig, “Mixed-mode BISTford University, where he is currently a Professor of Electrical Engineering and
using embedded processors,”Bmoc. Int. Test Conf.Oct. 1996, pp. Computer Science as well as Director of the Center for Reliable Computing.

195-204. He founded the Stanford Digital Systems Laboratory (now the Computer
R. Dorsch and H.-J. Wunderlich, “Accumulator based deterministi8ystems Laboratory) in 1969 and the Stanford computer engineering program
BIST,” in Proc. Int. Test Conf.Oct. 1998, pp. 412—421. (now the computer science M.S. degree program) in 1970. He was Director

N. A. Touba and E. J. McCluskey, “Altering a pseudorandom bit sesf the Stanford Computer Forum (an industrial affiliates program) until 1978,
quence for scan-based BIST,” Rroc. Int. Test Conf.Oct. 1996, pp. which was founded by Dr. McCluskey and two of his colleagues in 1970.
167-175. He developed the first algorithm for designing combinational circuits—the
M. Karkala, N. A. Touba, and H.-J. Wunderlich, “Special ATPG to corQuine—McCluskey logic minimization procedure—as a doctoral student at the
relate test patterns for low-overhead mixed-mode BISTPiioc. Asian Massachusetts Institute of Technology. At Bell Laboratories and Princeton
Test Symp.Dec. 1998, pp. 492—-499. University, he developed the modern theory of transients (hazards) in logic
P. H. Bardell and W. H. McAnney, “Parallel pseudorandom sequencastworks and formulated the concept of operating modes of sequential circuits.
for built-in test,” in Proc. Int. Test Conf.Oct. 1984, pp. 302—-308. His Stanford University research focuses on logic testing, synthesis, design
N. A. Touba and E. J. McCluskey, “Transformed pseudorandom patterfos testability, and fault-tolerant computing. He and his students at the Center
for BIST,” in Proc. VLSI Test SympApr. 1995, pp. 410-416. for Reliable Computing worked out many key ideas for fault equivalence,
P. Goel and B. C. Rosales, “Test generation and dynamic compactiorpobbabilistic modeling of logic networks, pseudoexhaustive testing, and
tests,” inProc. Int. Test Conf.Oct. 1979, pp. 189-192. watchdog processors. He collaborated with Signetics researchers in developing
P. Goel, “An implicit enumeration algorithm to generate tests for conone of the first practical multivalued logic implementations and then worked
binational logic circuits,"IEEE Trans. Computvol. C-30, no. 3, pp. outa design technique for such circuitry. He has authored or coauthored several
215-222, Mar. 1981. books, including two widely used texts.

B. Reeb and H.-J. Wunderlich, “Deterministic pattern generation for Dr. McCluskey is a Fellow of the AAAS and the ACM and a Member of the
weighted random pattern testing,”roc. Eur. Design Test ConMar. NAE. He is the recipient of the 1996 IEEE Emanuel R. Piore Award and served
1996, pp. 30-36. as the first President of the IEEE Computer Society.

