
396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Short Papers
LFSR-Reseeding Scheme Achieving Low-Power

Dissipation During Test

Jinkyu Lee and Nur A. Touba

Abstract—This paper presents a new low-power test-data-compression
scheme based on linear feedback shift register (LFSR) reseeding. A draw-
back of compression schemes based on LFSR reseeding is that the unspec-
ified bits are filled with random values, which results in a large number of
transitions during scan-in, thereby causing high-power dissipation. A new
encoding scheme that can be used in conjunction with any LFSR-reseeding
scheme to significantly reduce test power and even further reduce test
storage is presented. The proposed encoding scheme acts as the second
stage of compression after LFSR reseeding. It accomplishes two goals.
First, it reduces the number of transitions in the scan chains (by filling the
unspecified bits in a different manner). Second, it reduces the number of
specified bits that need to be generated via LFSR reseeding. Experimental
results indicate that the proposed method significantly reduces test power
and in most cases provides greater test-data compression than LFSR
reseeding alone.

Index Terms—Reseeding, test-data compression, test power.

I. INTRODUCTION

Power dissipation during test is a significant problem as the size
and complexity of systems-on-chip (SOCs) continue to grow. During
scan shifting, more transitions occur in the flip-flops compared to
what occurs during normal functional operation. This problem is
further compounded when pseudorandom filling of the unassigned
input values is employed. Excessive power dissipation during test can
increase manufacturing costs by requiring the use of a more expensive
chip packaging or causing unnecessary yield loss. In this paper, a new
test-data-compression scheme based on linear feedback shift register
(LFSR) reseeding that significantly reduces power consumption during
test is proposed.

Test-data volume has also increased dramatically as the size and
the complexity of chips grow. Consequently, there has been a lot of
work on test-data-compression schemes that can be used to reduce
tester storage and bandwidth requirements. Commercial tools for test-
data compression, which are based on LFSR reseeding including
TestKompress by Mentor Graphics [1], SOC BIST by Synopsys, and
ELT-Comp by LogicVision, have been introduced.

The basic idea in LFSR reseeding is to generate deterministic test
cubes by expanding seeds. A seed is an initial state of the LFSR that
is expanded by running the LFSR. Given a deterministic test cube,
a corresponding seed can be computed by solving a set of linear
equations (one equation for each specified bit) based on the feedback
polynomial of the LFSR. Since typically only 1%–5% of the bits in
a test vector are specified, most bits in a test cube do not need to

Manuscript received August 17, 2005; revised January 11, 2006. This work
was supported in part by Intel Corporation and in part by the National Science
Foundation under Grant CCR-0306238. This paper was recommended by
Associate Editor S. M. Reddy.

The authors are with the Computer Engineering Research Center, Depart-
ment of Electrical and Computer Engineering, University of Texas, Austin, TX
78712-1084 USA (e-mail: jlee2@ece.utexas.edu).

Digital Object Identifier 10.1109/TCAD.2006.882509

be considered when a seed is computed because they are don’t care
bits. Therefore, the size of a seed is much smaller than the size of a
test vector. Consequently, reseeding can significantly reduce test-data
storage and bandwidth.

Several reseeding schemes have been proposed to reduce test stor-
age. The first was introduced in [3], where it was shown that if smax is
the largest number of specified bits in any test cube, then for an LFSR
of length smax + 20 bits, the probability of not being able to find a seed
for some test cube is less than 10−6. Several techniques were proposed
to improve the encoding efficiency of the basic scheme in [3] including
using multiple-polynomial LFSRs [4], test cube concatenation [5], and
variable-length seeds [6]. More recent work has focused on dynamic
LFSR reseeding where the seed is incrementally modified as the LFSR
runs [1], [2], [7]. In dynamic LFSR reseeding, the size of a seed does
not depend on smax and thus can be even smaller than the size of
an LFSR.

While reseeding is a very powerful method for test-data compres-
sion, it is not good for power consumption. The don’t care bits in each
test cube get filled with random values, thereby resulting in excessive
switching activity when they are shifted into a scan chain. During
normal operation, typically, only a small percentage of flip-flops make
transitions during each clock cycle. However, when scanning test
vectors whose 95%–99% of the bits have been filled with random
values, a very large percentage of the flip-flops will make transitions,
thereby resulting in excessive power consumption during test. The chip
may be designed to only handle the power consumption during normal
operation, and thus the excessive power consumption during test can
result in overheating. One solution to this problem is to simply reduce
the scan frequency; however, this results in longer test times.

Many techniques for reducing power consumption during scan
testing have been presented and are summarized in [8]. It was only
recently that work has been done on considering together the problems
of test-data compression and low-power test. Research in this direction
has been presented in [9]–[12] and is summarized in Section II.

In this paper, we present a new encoding algorithm that can be
used in conjunction with any LFSR-reseeding scheme to significantly
reduce power consumption during test (preliminary results were pre-
sented in [13]). A key feature of the proposed approach is that it
reduces the number of specified bits and the number of transitions at
the same time. Since the amount of compression for LFSR reseeding
depends on the number of specified bits, the proposed approach
exploits this property.

In Section II, we review the related work. In Section III, we
introduce the new encoding scheme. Section IV explains a hardware
implementation for the proposed scheme. Section V shows the experi-
mental results, and Section VI concludes this paper.

II. RELATED WORK

The idea of considering together the problems of test-data com-
pression and low-power test has been previously investigated in a few
papers. In [9], a procedure for directing the static compaction process
in a manner that reduces test power and test data was described. In
[10], an encoding algorithm that reduces both test storage and test
power was presented. The test cubes are encoded using a Golomb
code, which is a run-length code. All don’t care bits are mapped to
0, and the Golomb code is used to encode runs of 0s. The Golomb
code compresses the test data, and the mapping of the don’t cares to

0278-0070/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007 397

Fig. 1. Example of encoding test data.

all 0s reduces the number of transitions during scan-in and thus power.
One drawback of a Golomb code is that it is very inefficient for runs
of 1s; thus, an extension based on an alternating run-length code was
described in [11].

While both Golomb codes and alternating run-length codes are good
for reducing test power, they are not as efficient as LFSR reseeding for
compressing test data. With LFSR reseeding, only the specified bits,
which generally account for only 1%–5% of the test data, need to be
considered.

One previous method has been proposed in [12] for reducing test
power for LFSR reseeding. Two LFSRs are used. The main LFSR
generates the test cube through conventional reseeding. An extra
“masking” LFSR is used to generate a set of mask bits. If the number
of 1s in a test cube is less than the number of 0s, then the outputs of
the two LFSRs are ANDed together, and the mask cube will have a 1
for each specified 1 in the test cube and an X for each specified 0 or
X in the test cube. If the number of 0s in the test cube is less than the
number of 1s, then the outputs of the two LFSRs are ORed together,
and the mask cube will have a 0 for each specified 0 in the test cube
and an X for each specified 1 or X in the test cube. A seed is computed
for the extra masking LFSR so that it generates the mask cube. Thus,
the effective number of specified bits that must be generated using this
method is equal to the original number of specified bits in the test cube
plus the number of specified bits in each mask cube (which is equal
to the minimum of the number of 0s or 1s in each test cube). The size
of the main LFSR is the same as that for conventional reseeding, and
the size of the extra masking LFSR depends on the maximum number
of specified bits in any mask cube. Test power is reduced because the
outputs of the two LFSRs are ANDed or ORed, thus reducing the transi-
tion probability. However, the test-data compression for this scheme is
greatly reduced compared with conventional LFSR reseeding because
it requires storing an extra set of seeds for the extra masking LFSR.
Results in this paper indicate that the test storage was increased by
21%–54% compared with conventional LFSR reseeding, while the
transition count was reduced by about 24%. The proposed method
addresses the problem of reducing test power for LFSR reseeding.
However, a different approach that does not compromise the amount of
test-data compression is taken. Moreover, the number of transitions is
reduced much more significantly than in [12]. The experimental results
for the proposed method are compared with the previous methods in
Section V.

The proposed scheme has some similarity to the dynamic-scan
scheme presented in [14]; however, there are a number of significant
differences. Both schemes use the fact that different test cubes have
compatible values for a significant number of scan elements. The
dynamic-scan scheme identifies scan-chain segments that have com-
patible values across a set of test cubes and bypasses those segments
in order to reduce test time and test storage. This approach also serves
to reduce power, although this is not the focus of this paper. The
proposed scheme also takes advantage of compatible scan segments
but in a different way. The proposed scheme exploits the property that
the number of transitions in a test cube is smaller than the number of
specified bits. By dividing the scan chains into blocks and identifying
blocks that do not contain transitions, the proposed approach is able
to fill those blocks with constant values. The compatibility of blocks
across different test cubes is exploited by reducing control information

and not through bypassing. In [14], scan-chain reconfiguration is
necessary, which requires inserting design for test (DFT) logic in the
scan chains themselves to provide the bypass capability, whereas for
the proposed scheme, the DFT logic is inserted only at the inputs
of the scan chains and is thus compatible with conventional scan
chains. The proposed scheme can be used for hard cores and firm cores.

III. ENCODING ALGORITHM

Let a transition in a test cube be defined as a specified 0 (1), followed
by 0 or more Xs and then by a specified 1 (0). The key idea of the
proposed encoding algorithm is to take advantage of the fact that the
number of transitions in a test cube is always less than the number of
specified bits in a test cube. Thus, rather than using LFSR reseeding to
directly encode the specified bits as in conventional LFSR reseeding,
the proposed encoding algorithm divides the test cube into blocks
and only uses LFSR reseeding to produce the blocks that contain
transitions. For the blocks that do not contain transitions, the logic
value fed into the scan chain is simply held constant. This approach
reduces the number of transitions in the scan chains and in most cases
also reduces the total number of specified bits that must be generated
by the LFSR as compared with conventional LFSR reseeding.

A. Basic Concepts

The proposed encoding scheme encodes each test cube with two
kinds of data: “hold flags” and “data bits.” Each test cube is divided
into several blocks, and each block has a 1-bit hold flag. The hold flag
indicates whether a transition occurs in a block. There are three types
of blocks.

1) Transition block (hold flag = 0).
One or more transitions exist in the block. Either both 0 and 1

are present in the block (e.g., XX1X0X) or only 0 or 1 is present,
but the last specified bit from a previous block was the opposite
value.

2) Nontransition block (hold flag = 1).
No transition occurs in the current block. Only 0 or 1 is

present in the block, and the last specified bit from a previous
block is same (e.g., X0XX0X).

3) Don’t care block (hold flag = X).
No specified bits occur in the block; all are don’t cares.

If the hold flag for a block is 1, then the data bits in the block are
simply held constant from the last data bit in the previous block. If the
hold flag is 0, then the data bits are loaded directly from the LFSR.
If the hold flag is X, then it can be treated either as a nontransition
block or as a transition block with all X data. Both the hold flags
and the data bits are generated from a single LFSR using reseeding.
An example of the proposed encoding is shown in Fig. 1. The test
sequence in the example is composed of four blocks, and each block
has one hold flag and four data bits. The hold flags are shown in bold
along the “Encoded” bit sequence row. In Fig. 1, the original test cube
contains seven specified bits. However, using the proposed encoding
scheme, the encoded data only has three specified hold flags and two
specified data bits, giving a total of only five specified bits. Thus,
the proposed encoding scheme reduces the number of specified bits
that need to be generated using LFSR reseeding. As shown in Fig. 1,

398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 2. Example of conversion procedure (the last bit of blocks 1 and 3 are specified to convert blocks 2 and 4 into nontransition blocks).

the 1s in blocks 2 and 3 do not need to be generated directly by the
LFSR but are rather generated as a by-product of the fact that the hold
flags keep the input to the scan chain constant at 1. Thus, test-data
compression can be achieved in this way. Moreover, no transitions will
occur when generating blocks 2 and 3 because the hold flags are 1, thus
keeping all the bits in the blocks constant. This would not be the case
in conventional LFSR reseeding, where the Xs in blocks 1 and 2 get
filled with random data, which may result in many more transitions.
Thus, a reduction in the number of transitions can be achieved in
this way.

B. Conversion Procedure

It is possible to increase the number of nontransition blocks by
converting some transitions blocks into nontransition blocks. There are
two requirements that must be satisfied in order to convert a transition
block into a nontransition block. The first is that it cannot contain
both specified 0s and specified 1s. The second is that the last bit of
the previous block must be an X. Two examples of this are shown
in Fig. 2. Block 2 is initially a transition block even though it only
contains specified 0s because the last specified bit in block 1 was a 1.
However, the very last bit of block 1 is a don’t care, so a “conversion
procedure” can be used to specify that don’t care as a 0 and thereby
convert block 2 into a nontransition block. Even though this conversion
required adding an extra specified data bit, the net result is still a
reduction in the total number of specified bits because now block 2 is a
nontransition block; thus, none of its data bits need to be generated by
the LFSR. This same conversion procedure can also be used to convert
block 4 in Fig. 2 into a nontransition block.

By increasing the number of nontransition blocks, the conversion
procedure can help to reduce both test storage (since it can reduce
the total number of specified bits) and test power (since it can reduce
the number of transitions by enabling all the Xs in the converted
nontransition block to be filled with the same logic value).

C. Partitioning Into Hold Cube Partitioning Sets

The test storage for LFSR reseeding depends on the number of
specified bits. For each block that is not a don’t care block, the hold
flag for that block is specified. If the number of specified hold flags
becomes larger than the number of the specified test-data bits that are
reduced by using the proposed encoding scheme, then the encoding
scheme would be reducing test-power dissipation at the cost of the
test storage. The test storage would increase because the total number
of specified data bits plus specified hold bits would exceed the total
number of specified bits in the original test cubes. However, in this
section, a method for reducing the number of specified hold flags is
introduced.

The key idea is to take advantage of the fact that many test cubes
may have compatible assignments in their corresponding hold flags.
We will denote the set of hold flags for one test cube as a “hold cube”
since each hold flag can be either 1, 0, or don’t care (X). If several
consecutive test cubes have the same hold cube, it is not necessary
to change any of the hold flags. Thus, the hold flags could be loaded
once and then reused when applying subsequent test cubes. The hold
cubes for a pair of test cubes are compatible if they do not conflict
in any specified bit positions. In other words, for every bit position
where one hold cube has a specified value, the other hold cube has

Fig. 3. Hold-cube regeneration and reordering. (a) Hold cube before parti-
tioning. (b) Hold cube after partitioning.

Fig. 4. Hardware implementation of the proposed scheme.

Fig. 5. Data format.

either the same specified value or a don’t care (and vice versa). Let
a “hold-cube-compatible” set be defined as a set of test cubes with
mutually compatible hold cubes. Since typically only around 1%–5%
of the data bits in a test cube are specified, the corresponding hold cube

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007 399

TABLE I
RESULTS FOR THE PROPOSED ENCODING SCHEME

will typically have a large number of don’t cares. Thus, the test cubes
can be generally partitioned into a relatively small number of hold-
cube-compatible sets. The test cubes can then be ordered so that the
test cubes in each hold-cube-compatible set will occur in succession.
Thus, the hold flags only need to be loaded once for each hold-cube-
compatible set. One extra bit per test cube is required to indicate if the
hold flags for the current test cube needs to be updated or not.

Fig. 3 shows an example of partitioning a test set into hold-cube-
compatible sets. The original hold cubes for each test cube are shown
in Fig. 3. Originally, they require 16 specified bits. They are then
grouped into two hold-cube-compatible sets. The first set contains test
cubes 1, 3, and 4, and the second contains test cubes 2 and 5. As
shown in Fig. 3, the test cubes are reordered so that the hold-cube-
compatible sets are grouped together. An extra update flag bit is added
to each test cube to indicate if the hold flags need to be updated. This
is set only for the first test cube in each hold cube compatible set. In
this example, the total number of specified bits (including the added
update flag bits) is reduced to 14. In a typical circuit, the number of
test cubes and the number of don’t care bits are much larger than those
in the example shown in Fig. 3. Thus, the reduction in specified bits
using this approach will be sizable. In fact, in our experiments (shown
in Section V), we found that in most cases, this encoding scheme
was capable of reducing the total number of specified bits (including
data bits, hold flags, and update flags) to below that of the original
test cubes.

IV. HARDWARE IMPLEMENTATION

The hardware implementation of the proposed scheme is shown in
Fig. 4. Each scan chain is divided into one or more blocks. Let B be
the number of blocks per scan chain. Each scan chain has a “hold-flag
shift register (HF-SR)” whose size is equal to B. LFSR reseeding is
used to generate all of the data for each test cube, which consists of
three components, namely: 1) update flag; 2) hold flags; and 3) test
data. The format for the data coming out of the LFSR for each test
cube is shown in Fig. 5.

There is a small finite-state machine (FSM) controller that controls
where the data coming out from the LFSR is stored. In the first clock
cycle, the LFSR generates a single bit, which is the update flag. If the
update flag is 1, then in the next B clock cycles, the LFSR generates
the hold flags for each of the scan chains that are shifted into the HF-
SRs. If the update flag is 0, then the HF-SRs are not loaded. Let the
length of each scan chain be L. Then, for the next L clock cycles,
the LFSR generates the test data. For each L/B clock cycle, if the
corresponding hold flag for a scan chain is 0, then the scan chain
is loaded from the LFSR. If the corresponding hold flag is a 1, then
the last value shifted into the scan chain is repeatedly shifted into the
scan chain, and the data from the LFSR is ignored. After each L/B
clock cycle, the HF-SR is shifted so that the next hold flag becomes
active for its corresponding block and is used as the control signal to
a multiplexer (MUX, as shown in Fig. 4). After the scan chains have

400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

been filled, the scan vector is applied to the circuit under test, and
the response is loaded back into the scan chain. The process is then
repeated to generate the next scan vector.

The hardware overhead consists of one 2-to-1 MUX and an
HF-SR per scan chain, one 1-bit update flag flip-flop, and a small
FSM controller. The FSM controller consists of a bit counter (which is
present for LFSR reseeding anyway) and some small combinational
logic. The size of the HF-SR dominantly determines the hardware
overhead in this scheme. It depends on the number of scan chains and
the total number of blocks.

V. EXPERIMENTAL RESULTS

Experimental results for the proposed scheme for the largest
ISCAS’89 benchmark circuits are shown in Table I. Results for
dividing each test cube into different numbers of blocks are shown
(note that there is one hold flag for each block). The test cubes were
partitioned into hold-cube-compatible sets, and the number of such
sets is shown in each case. The total number of specified bits required
for the proposed encoding scheme is shown (including update flags,
hold flags, and data bits). The total number of specified bits and the
total number of transitions (computed as described in [9]) for the
proposed encoding scheme are compared with those for the original
test cubes. When computing the number of transitions, the final values
of the don’t care blocks are taken into consideration. In most cases,
the total number of specified bits is reduced, which will result in less
test-data bits in the test data and hold flags. The more blocks used,
the less specified bits in the test data but the more specified hold flags.
Moreover, the reduction in the number of transitions increases as the
number of blocks in a test pattern increases. Note that the number
of transitions in the HF-SR is included in the number of transitions
shown in the ninth column. The hardware overhead also increases in
this case as the size of the HF-SRs becomes larger. The hardware
overhead depends on the number of scan chains. In these experiments,
the number of scan chains is chosen depending on the circuit size. The
11th column indicates the number of 2-to-1 MUXs required, which is
equal to the number of scan chains because one MUX is located on the
entrance of each scan chain. The size of the HF-SR is indicated in the
last column and depends on the number of blocks.

Fig. 6 shows the percentage change in specified bits and power
reduction compared to the original test cubes for one benchmark
circuit s15850. It illustrates how to choose the number of blocks for
a corresponding circuit and test set. The number of blocks is a user-
defined variable. It is chosen by considering test power, the number
of specified bits, and hardware overhead simultaneously. The number
of blocks simulated varies from 5 to 100, which is represented on the
x axis for both graphs in Fig. 6. With a small number of blocks, the
number of specified bits is reduced to less than the number of specified
bits in the original test cubes. This is also observed in most of the
other circuits. A small number of blocks are also good with respect
to hardware overhead because it means small hardware overhead.
However, the amount of power reduction is almost proportional to the
number of blocks, as shown in Fig. 6, which means that the power
consumption with a small number of blocks is small. With five to ten
blocks, the power reduction is about 37%, while the average of the
power reduction is about 50%. If 37% power reduction is good enough
for a user’s test methodology, a number from five to ten is chosen as
the number of blocks because it causes very small hardware overhead
and can achieve high test-data compression. If 37% power reduction
is not good enough, the number of blocks is chosen to be larger while
still trying to minimize the number of specified bits. In Fig. 6, 38 or
39 blocks can be chosen. This can achieve 48% power reduction and
1.8% reduction of the number of specified bits with relatively small

Fig. 6. Continuous change with 5–100 blocks in s15850. (a) Percentage
change in specified bits. (b) Power reduction.

hardware overhead but not as small as hardware overhead with five to
ten blocks.

The proposed encoding scheme can be used in conjunction with
any LFSR-reseeding scheme. Experiments were performed for using
the proposed encoding scheme in conjunction with the partial LFSR-
reseeding scheme described in [7]. The results are shown in Table II.
The exact same set of test cubes that were used for generating the
results published in [7] was encoded using the proposed encoding
scheme in conjunction with the scheme in [7]. As can be seen, in most
cases, both the test storage and the test power are reduced using the
proposed scheme.

Table III shows a comparison of the experimental results in [11] and
[12] with those of the proposed encoding scheme (used in conjunction
with partial LFSR reseeding as described in [7]). As can be seen, the
proposed scheme reduces the test-storage requirements much more
than the other schemes. Note that the test storage for the method in
[12] was calculated here by multiplying the size of the primary and
secondary LFSRs by the number of test cubes. In terms of reducing test
power, the proposed scheme is much more effective than the scheme
in [12], which is also applicable for LFSR reseeding. Moreover, the
compression ratio in the proposed scheme is similar or even higher
than that in [12] even though 1000 pseudorandom patterns are applied
first in [12]. Note that the results for both [11] and the proposed scheme
are for encoding the entire deterministic test set. While the test power
for the proposed scheme is not reduced as much as for the scheme in
[11], which is based on run-length encoding, much more compression
is achieved. The key advantage of the proposed scheme compared with
[11] is that it is compatible with LFSR reseeding, which is used in
commercial tools due to its superior encoding efficiency.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007 401

TABLE II
SIMULATION RESULTS FOR PARTIAL RESEEDING AND THE PROPOSED SCHEME (AFTER A PSEUDO-RANDOM SEQUENCE OF 10 000 PATTERNS)

TABLE III
SIMULATION RESULTS COMPARING THE ALTERNATING RUN-LENGTH CODE AND THE PROPOSED SCHEME

VI. CONCLUSION

LFSR reseeding is a powerful approach for reducing test storage.
The proposed encoding scheme provides a way to reduce the test
power for LFSR reseeding while still preserving or even improving
the compression that is achieved. The block size can be easily adjusted
to tradeoff test-power reduction versus hardware overhead. The pro-
posed scheme can be used in either a BIST environment or in test-
compression schemes based on LFSR reseeding to help satisfy power
constraints.

REFERENCES

[1] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson,
T. Kun-Han, A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eider, and
G. Jun, “Embedded deterministic test for low cost manufacturing test,” in
Proc. Int. Test Conf., 2002, pp. 301–310.

[2] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and
D. Wheater, “A SmartBIST variant with guaranteed encoding,” in Proc.
VLSI Test Symp., 2001, pp. 325–330.

[3] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc. Eur.
Test Conf., 1991, pp. 237–242.

[4] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Generation of
vector patterns through reseeding of multiple-polynomial linear feedback
shift register,” in Proc. Int. Test Conf., 1992, pp. 120–129.

[5] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-
polynomial linear feedback shift registers,” IEEE Trans. Comput., vol. 44,
no. 2, pp. 223–233, Feb. 1995.

[6] N. Zacharia, J. Rasjski, and J. Tyszer, “Decompression of test data
using variable-length seed LFSRs,” in Proc. VLSI Test Symp., 1995,
pp. 426–433.

[7] C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using partial
LFSR reseeding,” in Proc. Int. Test Conf., 2001, pp. 885–893.

[8] P. Girard, “Survey of low-power testing of VLSI circuits,” IEEE Des. Test
Comput., vol. 19, no. 3, pp. 82–92, May/Jun. 2002.

[9] R. Sankaralingam, R. R. Oruganti, and N. A. Touba, “Static compaction
techniques to control scan vector power dissipation,” in Proc. VLSI Test
Symp., 2000, pp. 35–40.

[10] A. Chandra and K. Chakrabarty, “Combining low-power scan testing and
test data compression for system-on-a-chip,” in Proc. Des. Autom. Conf.,
2001, pp. 166–169.

[11] ——, “Reduction of SOC test data volume, scan power and testing time
using alternating run-length codes,” in Proc. Des. Autom. Conf., 2002,
pp. 673–678.

[12] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Low power mixed-
mode BIST based on mask pattern generation using dual LFSR reseed-
ing,” in Proc. Int. Conf. Comput. Des., 2002, pp. 474–479.

[13] J. Lee and N. A. Touba, “Low power test data compression based on LFSR
reseeding,” in Proc Int. Conf. Comput. Des., 2004, pp. 180–185.

[14] S. Samaranayake, N. Sitchinava, R. Kapur, M. B. Amin, and
T. W. Williams, “Dynamic scan: Driving down the cost of test,” Computer,
vol. 35, no. 10, pp. 63–68, Oct. 2002.

