
Obtaining High Fault Coverage with Circular BIST Via State Skipping

Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084

Abstract
Despite all of the advantages that circular BIST ofsers

compared to conventional BIST approaches in terms of
low area overhead, simple control logic, and easy
insertion, it has seen limited use because it does not
reliably provide high fault coverage. This paper presents
a systematic approach for achieving high fault coverage
with circular BIST. The basic idea is to add a small
amount of logic that causes the circular chain to skip to
particular states. This “state skipping” logic can be used
to break out of limit cycles, break correlations in the test
patterns, and jump to states that detect random-pattern-
resistant faults. The state skipping logic is added in the
chain interconnect and not in the functional logic, so no
delay is added to system paths. Result indicate that in
many cases, this approach can boost the fault coverage of
circular BIST to match that of conventional parallel BIST
approaches while still maintaining a significant advantage
in terms of hardware overhead and control complexity.

1. Introduction
Built-in self-test (BIST) involves performing test

pattern generation and output response analysis on-chip.
The most common BIST schemes are based on
pseudo-random test pattern generation using linear
feedback shift registers (LFSRs) and output response
compaction using signature analyzers [Bardell 871. A
low-overhead BIST scheme that combines test pattern
generation and output response compaction together is
circular BIST [Bardell 821, [Stroud 881, [Krasniewski 891.
In circular BIST, the flip-flops in a circuit are replaced
with special BIST cells which are connected together to
form one long circular chain. During BIST operation,
each flip-flop is fed by the exclusive-OR of its normal
functional input and the output of the flip-flop that
precedes it in the chain (as shown in Fig. 1). Hence the
response of the circuit in each clock cycle during BIST is
compacted in the circular chain and then used as the test
pattern in the next clock cycle.

Circular BIST provides a number of attractive
features:
1. At-speed testing - the circuit can be tested at its normal

operating clock rate.
2 Shorter test time than scan BIST - a test pattern is

applied each clock cycle.
3. Less overhead than using BILBO registers

[Konemann 791 - less register interconnection and
control complexity.

4. Simple BIST control logic - there is only a single test
session.

5. Easy insertion into a design - similar to scan insertion.

Despite all of the advantages that circular BIST offers
compared with conventional BIST approaches, it has seen
limited use. The reason is that it does not reliably provide
high fault coverage. The test patterns that are generated in
circular BIST are not truly pseudo-random as they are
with scan BIST or BILBO registers, and there can be
significant aliasing due to register adjacency [Hudson 871,
[Stroud 881.

Several solutions to the register adjacency problem
have been described. One solution is to avoid register
adjacency by careful ordering of the flip-flops in the
circular chain [Stroud 881. If it is not possible to find an
ordering that is adjacency-free, then extra “transparent”
flip-flops can be added to the chain to break up the
adjacency [Pilarski 921. In [Avra 931, it was shown that
certain types of register adjacency can actually be
beneficial in that it permits the functional logic to be
shared with the BIST logic to reduce overhead and
prevent error masking. In [Carletta 941, the concept of
register adjacency was generalized to arbitrary distances.
It was shown that a distance-d register adjacency occurs
when there is reconvergence after d clock cycles. An
algorithm for identifying distance-d register adjacency
was described. As with unit-distance register adjacency,
distance-d register adjacency can be avoided by careful
ordering of the flip-flops in the circular chain.

410
0-8186-7810-0/97 $10.00 0 1997 IEEE

I I

Figure 1. Circular BIST Chain: the Q signals are the
inputs to the combinational logic and the Z signals

are the outputs of the combinational logic

While a number of solutions have been developed for
the register adjacency problem, the problem of reliably
generating test patterns that provide high fault coverage
during circular BIST has not been adequately dealt with.
This problem is the major factor that limits the
effectiveness of circular BIST and is the problem that is
addressed in this paper.

The test patterns generated by an LFSR have a
guaranteed pseudo-random property that can be used to
reliably predict fault coverage given the detection
probabilities of the faults in the circuit [McCluskey 881.
This is not the case for the test patterns that are generated
during circular BIST. Some probabilistic models of
circuit behavior were used in [Krasniewski 891 and
[Pilarski 921 to try to estimate the expected number of
different test patterns that are generated in a k-bit section
of the circular chain during circular BXST. This analysis
assumes that the inputs to the k-bit section of the circular
chain are completely independent of the outputs of the
k-bit section. This assumption is really an approximation
because obviously the circular nature of the chain means
that the outputs of the k-bit section will eventually
influence the inputs of the k-bit section after some number
of clock cycles. Consequently, the number of different
test patterns and the probability distribution of the patterns
that are predicted by probabilistic analysis of circular
BIST are not reliable and cannot be depended on. As has
been shown in [Brynestad 901 and [Corno 941, in many
real circuits, the fault coverage provided by circular BIST
can be surprisingly low.

One way to view circular BIST is that it converts the
circuit into an autonomous finite state machine (i.e., a
FSM with no primary inputs) during testing. In the state
transition diagram for circular BIST, there is exactly one
outgoing edge from each state. A state may not
necessarily have any incoming edges in which case it can
only be visited if it is the initial state. The state transition
diagram contains one or more cycles which partition it
into state transition subgraphs, this is illustrated in Fig. 2.
One problem that arises with circular BIST is limit cycling
which occurs when the circuit gets stuck in a state cycle
and repeatedly generates the same test patterns.
Identifying an initial state for circular BIST that will not
result in limit cycling is a problem. Another problem is
that the set of test patterns that detect fault F , may be in a

disjoint set of state transition subgraphs from the set of
test patterns that detect fault F,. In that case, no initial
seed can be found which will allow both faults to be
detected. These problems do not arise with an LFSR
because there is only one cycle (besides the degenerate
all 0 state), and the distance between states that detect
different faults can be reliably predicted with probabilistic
analysis.

Figure 2. Example of State Transition Diagram with Four
Subgraphs

There are three things that can limit the fault coverage
achieved by circular BIST:

1. Limit Cycling - If the circular chain gets stuck in a
cycle before a sufficient set of test patterns is
generated, then the fault coverage can be low.
Simulation can be used to check whether limit cycling
occurs. If so, then a diffferent initial seed can be tried,
or the chain can be reordered. However, results were
shown in [Corno 941 that while these techniques can
help, they do not always work. A method for finding
the longest acyclic path in the state transition diagram
was described in [Corno 941. This approach works in
some cases, but is computationally intensive for large
circuits.

2. Correlations in Test Pat- - It may not be possible
to generate test patterns for some faults regardless of
the test length because of correlations due to the circuit
structure. Avoiding register adjacency helps reduce
this problem considerably, but there are many other
sources of correlatioin that can occur due to
reconvergence after multiple clock cycles. Some
examples of a few different types of correlation that
can occur in circular BIST structures were shown in
[Carletta 941. Techniques for analyzing word-level
correlation are described in [Carletta 951.

3. Random-Pattern-Resistant Faults - Random-pattern-
resistant (r.p. .) faults can only be detected by a
relatively small number of test patterns, and thus are
hard to detect in any pseudo-random BIST scheme.
Inserting test points to increase the detection
probability for r.p.r. faults is complicated in circular
BIST. Inserting a conlrol point completely changes

411

the sequence of test patterns that are generated, hence
simulation based approaches for test point insertion are
not effective. Moreover, inserting control points can
introduce register adjacency.

This paper proposes a unified approach for solving all
three of the problems listed above. The idea is to add a
small amount of logic that causes the circular chain to skip
to particular states. This “state skipping” logic alters the
state transition diagram. If simulation indicates that the
circular chain gets stuck in a limit cycle, then state
skipping logic can be used to jump out of the cycle. State
skipping logic can also be used to break correlations in the
test patterns, and it can be used to jump to states that
detect random-pattern-resistant faults.

An example of state skipping logic is shown in Fig. 3.
When the chain reaches the state 101 1, if the next state in
the sequence would normally be 1000, then the state
skipping logic would cause it to skip to the state 1100
instead. Note that the state skipping logic is added in the
chain interconnect and not in the functional logic, so no
delay is added on system paths.

A systematic procedure is described for designing state
skipping logic that provides a desired fault coverage.
With this procedure, high fault coverage for circular BIST
can reliably be achieved. This is something that chain
reordering and initial seed selection alone cannot
guarantee.

In Sec. 2, an
overview of the procedure for adding state skipping logic
to achieve a desired fault coverage is given. In Sec. 3, the
process of designing the state skipping logic is described
in detail. In Sec. 4, experimental results are shown
comparing parallel BIST, normal circular BIST, and
circular BIST with state skipping logic. Section 5 is a
conclusion.

This paper is organized as follows:

z1 I z2
?3?4 I
I&II i‘ i‘

Figure 3. Example of State Skipping Logic

2. Overview of Procedure
Given a circular BIST structure and the initial state,

this section describes a systematic procedure for adding
state skipping logic that will provide a desired fault
coverage. The basic idea is to do fault simulation for the
sequence of states that is generated in the circular chain
until a point is reached where no new faults are being
detected. At that point, state skipping logic is added to

jump to a new state that detects a fault that is currently
undetected and hopefully gets the circular chain in a new
state transition subgraph that will allow additional faults
to be detected. The decision on when to give up on the
current state sequence and add state skipping logic is
governed by a parameter m. If no new faults have been
detected by the last m states, then state skipping logic is
added. The parameter m can be used to tradeoff between
hardware area and test time. Smaller values of m will
result in more state skipping logic and a shorter overall
test length. Larger values of m will result in a longer
overall test length, but less state skipping logic will be
needed.

The procedure is described step by step below:

1. Do fault simulation until no new faults are detected bv
the last m states.

Fault simulation is done for the sequence of states
that is generated in the circular chain. If no new faults
are detected by the last m states, then state skipping
logic is added.

2. Compare test cubes for the undetected faults with the
last m states to identify the test cube c and state s that
differ in the fewest number of bits (minimum
Hamming distance).

Test cubes for the undetected faults are found by
doing ATPG (automatic test pattern generation) and
leaving unspecified inputs as don’t cares (X’s) . This
ATPG need only be done the first time and then the
test cubes can be stored and reused in subsequent
iterations. The reason for finding the test cube c and
state s that differ in the fewest number of bits is to
minimize the amount of state skipping logic that is
required. None of the last m states detected any faults,
so it doesn’t matter which of those states are skipped.

3. Add state skipping logic to cause the sequence to jump
from the state directly preceding state s to a state that
matches the test cube c.

The state skipping logic alters the sequence of the
circular chain so that instead of going to state s, the
sequence jumps to a state that matches the test cube c.
The state skipping logic is designed in a way that
preserves the same state sequence up to, but not
including, state s. Thus, all of the faults that have been
detected up to state s will remain detected and there is
no need to re-simulate the circular chain. The
procedure for designing the state skipping logic is
described in detail in Sec. 3.

4. If the fault coverage is still not sufficient, then loop
back to step 1.

The procedure iterates and continues to add state
skipping logic until the fault coverage is sufficient.

412

This procedure uses a hill-climbing approach to
continue adding state skipping logic until the fault
coverage is sufficient. Because the state skipping logic
preserves the previous sequence, time consuming
re-simulation is not necessary. The procedure is
guaranteed to eventually achieve the required fault
coverage. The overall test length will depend strongly on
the value of m. If the test length becomes too long, then
the procedure can be repeated with a smaller value of m.

3. State Skipping Logic
Step 3 of the procedure involves adding state skipping

logic to alter the sequence of the circular chain so that
instead of going to state s, the sequence jumps to a state
that matches a test cube c. The process of designing this
state skipping logic is the subject of this section.

The first step is to find the largest cube d that contains
the state that directly precedes state s (this state will be
labeled state p) in the sequence, but does not contain any
of the other previous states in the sequence. The cube d is
used to decode state p and initiate the state skipping. In
order to preserve the sequence, the cube d should not
decode any of the other previous states in the sequence
that come before state p . It is desirable to have the cube d
be as large as possible so that the corresponding AND will
have as few inputs as possible.

Finding the largest cube d is done by finding a
minimum column cover in a Boolean conflict matrix. The
conflict matrix has one row for each state in the sequence
that comes before state p . So if state p is the (L+l)th state
in the sequence, then there are L rows in the conflict
matrix. The columns in the conflict matrix correspond to
the bits in the state. So if there are n flip-flops in the
circular chain, then there are n columns in the conflict
matrix. For each of the L states that come before state p ,
the corresponding row in the conflict matrix is formed by
placing a ‘1’ in each column where the bit value of the
state is different from the bit value of state p and placing a
‘0’ in each column with the bit values are the same. A set
of columns covers the matrix if every row has a ‘1’ in at
least one of the columns in the set. The literals in the
largest cube d correspond to the set of columns in the
minimum column cover of the conflict matrix. This set of
literals is compatible with state p , but conflicts with all L
states that come before state p in the sequence. Finding
the minimum column cover is an NP-complete problem,
but efficient heuristics and techniques exist for solving it
[Coudert 961.

An example of forming the conflict matrix and finding
the largest cube d is shown in Fig. 4. The conflict matrix
is covered by columns 3 and 4, so the cube d has two
literals which correspond to the last two bits in statep.

When the circular chaiin reaches state p , the decoding
cube d is activated and the state skipping is performed by
complementing the bits in the next state (i.e., state s)
which differ from the test cube c to force the next state of
the circular chain to match test cube c. Complementing the
bits of the next state is performed by adding exclusive-OR
gates in front of each flip-flop where state s differs from
test cube c. The exclusive-OR gates are added in the
chain interconnect and not on the functional path. This is
done so that no delay is added to system paths.

Figure 5 shows the circular chain with state skipping
logic for the example in Fig. 4. The 2nd and 3rd bits in
state s differ from the 2nd and 3rd bits in test cube c, so
exclusive-OR gates are added in front of the
corresponding flip-flops.

One question that arises is whether the state skipping
logic that is added is itself tested. The way that it is
constructed ensures that it will be tested by the patterns
that are generated during circular BIST. The number of
literals in the decoding cube is minimized such that if any
input to the corresponding AND gate is removed due to a
stuck-at fault, then the cube would decode some pattern
earlier in the sequence and therefore change the sequence
in the presence of the fault. If the output of the AND gate
is stuck-at 0, then the state skipping would not occur and
the circular chain would follow the normal sequence. So
any fault in the state skipping logic is guaranteed to change
the sequence of the circular chain. The only way that the
fault would not be detected is if signature aliasing occurs.

Figure 6 shows an example how the control logic can
be implemented for circular BIST with state skipping
logic. The circular BIST cell that is shown is the one
proposed in [Stroud 881.

p = 1101 0000 Conflict Matrix
s = 0101 101 1
t = OOlX 1 100 1 1 0 1
L = 5 0111 0 1 1 0

1010 0 0 0 1
1101 1 0 1 0
0101 001x 0 1 1 1
0110 1110
1001 0100 Min. Column Cover = 3 , 4

d = XXOl Normal W/ state

Figure 4. Example of Finding Decoding Cube d.

i
Figure 5. Circular Chain with State Skipping Logic for

the Example in Fig. 4

413

State Shpping ‘i
Decode Logic I

I I -

U -
..

Normal
BIST

Figure 6. Example of Control Logic for Circular BIST
with State Skipping

4. Experimental Results
Some experimental results were generated for some of

the ISCAS 89 [Brglez 891 benchmark circuits comparing
parallel BIST, normal circular BIST, and circular BIST
with state skipping logic. The procedure described in this
paper was used to insert the state skipping logic. The
results are shown in Table 1. For each circuit, the
factored form literal count is shown along with the size of
the circular chain. The circuits were simulated for up to
50,000 patterns. The same initial seed was used for each
of the three BIST schemes. The test length and fault
coverage is shown for each scheme. The fault coverage is
for detectable faults. For the parallel BIST approach, an
LFSR was used to apply pseudo-random patterns and a
separate MISR was used to compact the response. For the
normal circular BIST scheme with no state skipping logic,
if the circular chain got stuck in a limit cycle, then the
number of distinct test patterns that were generated are
shown in parenthesis. For the circular BIST with state
skipping logic, the number of extra literals that are added
for the state skipping logic is shown, and a percentage
overhead figure is computed by comparing the number of
extra literals for the state skipping logic with the number

of literals in the funclional circuit.
Several observations can be made about the results.

The fault coverage for circular BIST in most of the
smaller circuits (~ 2 0 8 , s298, s344, s382, ~510, 3526) was
limited by the fact that the circular chain got stuck in a
cycle. Those circuits were very random pattern testable
and parallel BIST achieved complete fault coverage in a
very short test length. A small amount of state skipping
logic was sufficient to allow the circular chain to jump out
of the limit cycles and achieve 100% fault coverage. The
area overhead of the state skipping logic is much less than
what is required for a separate MISR or a CBILBO
register to perform parallel BIST. Hence, these results
indicate that circular BIST with state slupping is an
attractive and effective approach for BIST of small
controllers.

For the circuits that contain random-pattern-resistant
faults, the fault coverage for both parallel BIST and
circular BIST was limited. In some cases the added
correlation in the test patterns generated in circular BIST
provided slightly more fault coverage than the purely
pseudo-random patterns generated in parallel BIST (e.g.,
s641 and s9234), and in some cases it provided less fault
coverage (e.g., s420, ~ 1 1 9 6 , s5378). The fault coverage
for s5378 was quite a bit lower. For the circuits with a
relatively small number of random-pattern-resistant faults,
the results indicate that adding state skipping logic is an
efficient way to boost the fault coverage up to 100%. For
the circuits that had a large number of random-pattern-
resistant faults (s420 and s5378), adding state skipping
logic is not so efficient. For those circuits, test point
insertion or mixed-mode testing would probably be more
effective.

Table 1. Results for ISCAS 89 Benchmark Circuits

414

5. Summary and Conclusions
An systematic approach for reliably achieving high

fault coverage with circular BIST was presented. State
skipping logic is inserted into the circular chain to
improve the test patterns that are generated during
circular BIST. The state skipping logic is used to jump
out of limit cycles, break correlations in the test patterns,
and jump to states that detect random-resistant faults.
Result indicate that in many cases, this approach can
boost the fault coverage of circular BIST to match that of
conventional parallel BIST approaches while still
maintaining a significant advantage in terms of hardware
overhead and control complexity.

One issue with adding state skipping logic is how
much routing overhead does it add. One way to control
the routing overhead would be to select the inputs for
each decoding cube such that they come from
neighboring flip-flops. Techniques for selecting the
decoding cubes in a way that minimizes routing overhead
are being investigated.

Acknowledgments
The author would like to thank Bahram Pouya and

Prof. Takis Konstantopoulos from the Dept. of Electrical
and Computer Engineering at the University of Texas at
Austin, and Prof. Edward McCluskey from the Center for
Reliable Computing at Stanford University for their
helpful comments and suggestions. This work is part of
the TOPS project at the Center for Reliable Computing at
Stanford University and was supported by the Advanced
Research Projects Agency under prime contract
NO. DABT63-94-C-0045.

References
[Avra 931 Avra, L.J., and E.J. McCluskey, “Synthesizing for

Scan Dependence in Built-In Self-Testable Designs,” Proc.
ofInternationa1 Test Conference, pp. 734-743, 1993.

[Bardell 821 Bardell, P.H., and W.H. McAnney, “Self-Testing
Multichip Logic Modules,” Proc. of International Test
Conference, pp. 200-204, 1982.

[Bardell 871 Bardell, P.H., W.H. McAnney, and J. Savir, Built-
In Test for VLSI: Pseudorandom Techniques, John Wiley
& Sons, Inc., 1987.

[Brglez 891 Brglez, F., D. Bryan, and K. Kozminski,
“Combinational Profiles of Sequential Benchmark Circuits,”
Proc. of International Symposium on Circuits and Systems,
pp. 1929-1934, 1989.

[Brynestad 901 Brynestad, C)., E.J. Aas, and A.E. Vallestad,
“State Transition Graph Analysis as a Key to BIST Fault
Coverage,” Proc. of International Test Conference, pp.
537-543, 1990.

[Carletta 941 Carletta, J., and C. Papachristou, “Structural
Constraints for Circular !$elf-Test Paths,” Proc. of VLSI Test
Symposium, pp. 87-92, 1994.

[Carletta 951 Carletta, J., and C. Papachristou, “Testability
Analysis and Insertion for RTL Circuits Based on
Pseudorandom BIST,” Proc. of International Conference on
Computer Design, pp. 162-167, 1995.

[Corno 941 Corno, F., P. Prinetto, M. Sonza Reorda, “Making the
Circular Self-Test Path Technique Effective for Real
Circuits,” Proc. of International Test Conference,
pp. 949-957, 1994.

[Coudert 961 Coudert, O., “On Solving Covering Problems,”
Proc. of 33rd Design Automation Conference, pp. 197-202,
1996.

[Hudson 871 Hudson, C.L., and G.D. Peterson, “Parallel Self-
Test with Pseudo-Random Test Pattems,” Proc. of
International Test Conference, pp. 954-963, 1987.

[Krasniewski 891 Krasniewski, A., and S. Pilarski, “Circular Self-
Test Path: A Low-Cost BIST Technique for VLSI
Circuits,” IEEE Trans. on Computer-Aided Design, Vol. 8,
No. 1, pp. 46-55, Jan. 1989.

[Konemann 791 Konemann, B., J. Mucha, and G. Zwiehoff,
“Built-In Logic Block Observation Techniques,” Proc. of
International Test Conference, pp. 37-41, 1979.

[McCluskey 881 McCluskey, E.J., S. Makar, S. Mourad, and K.
Wagner, “Probability Models for Pseudorandom Test
Sequences,” IEEE Trans. on Computer-Aided Design,
Vol. 7, No. 1, pp. 68-74, Jan. 1988.

[Pilarski 921 Pilarski, S., A. Krasniewski, and T. Kameda,
“Estimating Testing Effectiveness of the Circular Self-Test
Path Technique,” IEEE Trans. on Computer-Aided Design,
Vol. 11, No. 10, pp. 1301-1316, Jan. 1992.

[Stroud 881 Stroud, C.E., “Automated BIST for Sequential Logic
Synthesis,” IEEE Design & Test of Computers, pp. 22-32,
Dec. 1988.

415

