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Abstract 
Despite all of the advantages that circular BIST ofsers 

compared to conventional BIST approaches in terms of 
low area overhead, simple control logic, and easy 
insertion, it has seen limited use because it does not 
reliably provide high fault coverage. This paper presents 
a systematic approach for  achieving high fault coverage 
with circular BIST. The basic idea is to add a small 
amount of logic that causes the circular chain to skip to 
particular states. This “state skipping” logic can be used 
to break out of limit cycles, break correlations in the test 
patterns, and jump to states that detect random-pattern- 
resistant faults. The state skipping logic is added in the 
chain interconnect and not in the functional logic, so no 
delay is added to system paths. Result indicate that in 
many cases, this approach can boost the fault coverage of 
circular BIST to match that of conventional parallel BIST 
approaches while still maintaining a significant advantage 
in terms of hardware overhead and control complexity. 

1. Introduction 
Built-in self-test (BIST) involves performing test 

pattern generation and output response analysis on-chip. 
The most common BIST schemes are based on 
pseudo-random test pattern generation using linear 
feedback shift registers (LFSRs) and output response 
compaction using signature analyzers [Bardell 871. A 
low-overhead BIST scheme that combines test pattern 
generation and output response compaction together is 
circular BIST [Bardell 821, [Stroud 881, [Krasniewski 891. 
In circular BIST, the flip-flops in a circuit are replaced 
with special BIST cells which are connected together to 
form one long circular chain. During BIST operation, 
each flip-flop is fed by the exclusive-OR of its normal 
functional input and the output of the flip-flop that 
precedes it in the chain (as shown in Fig. 1). Hence the 
response of the circuit in each clock cycle during BIST is 
compacted in the circular chain and then used as the test 
pattern in the next clock cycle. 

Circular BIST provides a number of attractive 
features: 
1. At-speed testing - the circuit can be tested at its normal 

operating clock rate. 
2 Shorter test time than scan BIST - a test pattern is 

applied each clock cycle. 
3. Less overhead than using BILBO registers 

[Konemann 791 - less register interconnection and 
control complexity. 

4. Simple BIST control logic - there is only a single test 
session. 

5. Easy insertion into a design - similar to scan insertion. 

Despite all of the advantages that circular BIST offers 
compared with conventional BIST approaches, it has seen 
limited use. The reason is that it does not reliably provide 
high fault coverage. The test patterns that are generated in 
circular BIST are not truly pseudo-random as they are 
with scan BIST or BILBO registers, and there can be 
significant aliasing due to register adjacency [Hudson 871, 
[Stroud 881. 

Several solutions to the register adjacency problem 
have been described. One solution is to avoid register 
adjacency by careful ordering of the flip-flops in the 
circular chain [Stroud 881. If it is not possible to find an 
ordering that is adjacency-free, then extra “transparent” 
flip-flops can be added to the chain to break up the 
adjacency [Pilarski 921. In [Avra 931, it was shown that 
certain types of register adjacency can actually be 
beneficial in that it permits the functional logic to be 
shared with the BIST logic to reduce overhead and 
prevent error masking. In [Carletta 941, the concept of 
register adjacency was generalized to arbitrary distances. 
It was shown that a distance-d register adjacency occurs 
when there is reconvergence after d clock cycles. An 
algorithm for identifying distance-d register adjacency 
was described. As with unit-distance register adjacency, 
distance-d register adjacency can be avoided by careful 
ordering of the flip-flops in the circular chain. 
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Figure 1. Circular BIST Chain: the Q signals are the 
inputs to the combinational logic and the Z signals 

are the outputs of the combinational logic 

While a number of solutions have been developed for 
the register adjacency problem, the problem of reliably 
generating test patterns that provide high fault coverage 
during circular BIST has not been adequately dealt with. 
This problem is the major factor that limits the 
effectiveness of circular BIST and is the problem that is 
addressed in this paper. 

The test patterns generated by an LFSR have a 
guaranteed pseudo-random property that can be used to 
reliably predict fault coverage given the detection 
probabilities of the faults in the circuit [McCluskey 881. 
This is not the case for the test patterns that are generated 
during circular BIST. Some probabilistic models of 
circuit behavior were used in [Krasniewski 891 and 
[Pilarski 921 to try to estimate the expected number of 
different test patterns that are generated in a k-bit section 
of the circular chain during circular BXST. This analysis 
assumes that the inputs to the k-bit section of the circular 
chain are completely independent of the outputs of the 
k-bit section. This assumption is really an approximation 
because obviously the circular nature of the chain means 
that the outputs of the k-bit section will eventually 
influence the inputs of the k-bit section after some number 
of clock cycles. Consequently, the number of different 
test patterns and the probability distribution of the patterns 
that are predicted by probabilistic analysis of circular 
BIST are not reliable and cannot be depended on. As has 
been shown in [Brynestad 901 and [Corno 941, in many 
real circuits, the fault coverage provided by circular BIST 
can be surprisingly low. 

One way to view circular BIST is that it converts the 
circuit into an autonomous finite state machine (i.e., a 
FSM with no primary inputs) during testing. In the state 
transition diagram for circular BIST, there is exactly one 
outgoing edge from each state. A state may not 
necessarily have any incoming edges in which case it can 
only be visited if it is the initial state. The state transition 
diagram contains one or more cycles which partition it 
into state transition subgraphs, this is illustrated in Fig. 2. 
One problem that arises with circular BIST is limit cycling 
which occurs when the circuit gets stuck in a state cycle 
and repeatedly generates the same test patterns. 
Identifying an initial state for circular BIST that will not 
result in limit cycling is a problem. Another problem is 
that the set of test patterns that detect fault F ,  may be in a 

disjoint set of state transition subgraphs from the set of 
test patterns that detect fault F,. In that case, no initial 
seed can be found which will allow both faults to be 
detected. These problems do not arise with an LFSR 
because there is only one cycle (besides the degenerate 
all 0 state), and the distance between states that detect 
different faults can be reliably predicted with probabilistic 
analysis. 

Figure 2. Example of State Transition Diagram with Four 
Subgraphs 

There are three things that can limit the fault coverage 
achieved by circular BIST: 

1. Limit Cycling - If the circular chain gets stuck in a 
cycle before a sufficient set of test patterns is 
generated, then the fault coverage can be low. 
Simulation can be used to check whether limit cycling 
occurs. If so, then a diffferent initial seed can be tried, 
or the chain can be reordered. However, results were 
shown in [Corno 941 that while these techniques can 
help, they do not always work. A method for finding 
the longest acyclic path in the state transition diagram 
was described in [Corno 941. This approach works in 
some cases, but is computationally intensive for large 
circuits. 

2.  Correlations in Test Pat- - It may not be possible 
to generate test patterns for some faults regardless of 
the test length because of correlations due to the circuit 
structure. Avoiding register adjacency helps reduce 
this problem considerably, but there are many other 
sources of correlatioin that can occur due to 
reconvergence after multiple clock cycles. Some 
examples of a few different types of correlation that 
can occur in circular BIST structures were shown in 
[Carletta 941. Techniques for analyzing word-level 
correlation are described in [Carletta 951. 

3. Random-Pattern-Resistant Faults - Random-pattern- 
resistant (r.p. .)  faults can only be detected by a 
relatively small number of test patterns, and thus are 
hard to detect in any pseudo-random BIST scheme. 
Inserting test points to increase the detection 
probability for r.p.r. faults is complicated in circular 
BIST. Inserting a conlrol point completely changes 
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the sequence of test patterns that are generated, hence 
simulation based approaches for test point insertion are 
not effective. Moreover, inserting control points can 
introduce register adjacency. 

This paper proposes a unified approach for solving all 
three of the problems listed above. The idea is to add a 
small amount of logic that causes the circular chain to skip 
to particular states. This “state skipping” logic alters the 
state transition diagram. If simulation indicates that the 
circular chain gets stuck in a limit cycle, then state 
skipping logic can be used to jump out of the cycle. State 
skipping logic can also be used to break correlations in the 
test patterns, and it can be used to jump to states that 
detect random-pattern-resistant faults. 

An example of state skipping logic is shown in Fig. 3. 
When the chain reaches the state 101 1, if the next state in 
the sequence would normally be 1000, then the state 
skipping logic would cause it to skip to the state 1100 
instead. Note that the state skipping logic is added in the 
chain interconnect and not in the functional logic, so no 
delay is added on system paths. 

A systematic procedure is described for designing state 
skipping logic that provides a desired fault coverage. 
With this procedure, high fault coverage for circular BIST 
can reliably be achieved. This is something that chain 
reordering and initial seed selection alone cannot 
guarantee. 

In Sec. 2, an 
overview of the procedure for adding state skipping logic 
to achieve a desired fault coverage is given. In Sec. 3, the 
process of designing the state skipping logic is described 
in detail. In Sec. 4, experimental results are shown 
comparing parallel BIST, normal circular BIST, and 
circular BIST with state skipping logic. Section 5 is a 
conclusion. 

This paper is organized as follows: 

z1 I z2 
?3?4 I 
I&II i‘ i‘ 

Figure 3. Example of State Skipping Logic 

2. Overview of Procedure 
Given a circular BIST structure and the initial state, 

this section describes a systematic procedure for adding 
state skipping logic that will provide a desired fault 
coverage. The basic idea is to do fault simulation for the 
sequence of states that is generated in the circular chain 
until a point is reached where no new faults are being 
detected. At that point, state skipping logic is added to 

jump to a new state that detects a fault that is currently 
undetected and hopefully gets the circular chain in a new 
state transition subgraph that will allow additional faults 
to be detected. The decision on when to give up on the 
current state sequence and add state skipping logic is 
governed by a parameter m. If no new faults have been 
detected by the last m states, then state skipping logic is 
added. The parameter m can be used to tradeoff between 
hardware area and test time. Smaller values of m will 
result in more state skipping logic and a shorter overall 
test length. Larger values of m will result in a longer 
overall test length, but less state skipping logic will be 
needed. 

The procedure is described step by step below: 

1. Do fault simulation until no new faults are detected bv 
the last m states. 

Fault simulation is done for the sequence of states 
that is generated in the circular chain. If no new faults 
are detected by the last m states, then state skipping 
logic is added. 

2. Compare test cubes for the undetected faults with the 
last m states to identify the test cube c and state s that 
differ in the fewest number of bits (minimum 
Hamming distance). 

Test cubes for the undetected faults are found by 
doing ATPG (automatic test pattern generation) and 
leaving unspecified inputs as don’t cares (X’s) .  This 
ATPG need only be done the first time and then the 
test cubes can be stored and reused in subsequent 
iterations. The reason for finding the test cube c and 
state s that differ in the fewest number of bits is to 
minimize the amount of state skipping logic that is 
required. None of the last m states detected any faults, 
so it doesn’t matter which of those states are skipped. 

3. Add state skipping logic to cause the sequence to jump 
from the state directly preceding state s to a state that 
matches the test cube c. 

The state skipping logic alters the sequence of the 
circular chain so that instead of going to state s, the 
sequence jumps to a state that matches the test cube c. 
The state skipping logic is designed in a way that 
preserves the same state sequence up to, but not 
including, state s. Thus, all of the faults that have been 
detected up to state s will remain detected and there is 
no need to re-simulate the circular chain. The 
procedure for designing the state skipping logic is 
described in detail in Sec. 3. 

4. If the fault coverage is still not sufficient, then loop 
back to step 1. 

The procedure iterates and continues to add state 
skipping logic until the fault coverage is sufficient. 
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This procedure uses a hill-climbing approach to 
continue adding state skipping logic until the fault 
coverage is sufficient. Because the state skipping logic 
preserves the previous sequence, time consuming 
re-simulation is not necessary. The procedure is 
guaranteed to eventually achieve the required fault 
coverage. The overall test length will depend strongly on 
the value of m. If the test length becomes too long, then 
the procedure can be repeated with a smaller value of m. 

3. State Skipping Logic 
Step 3 of the procedure involves adding state skipping 

logic to alter the sequence of the circular chain so that 
instead of going to state s, the sequence jumps to a state 
that matches a test cube c. The process of designing this 
state skipping logic is the subject of this section. 

The first step is to find the largest cube d that contains 
the state that directly precedes state s (this state will be 
labeled state p )  in the sequence, but does not contain any 
of the other previous states in the sequence. The cube d is 
used to decode state p and initiate the state skipping. In 
order to preserve the sequence, the cube d should not 
decode any of the other previous states in the sequence 
that come before state p .  It is desirable to have the cube d 
be as large as possible so that the corresponding AND will 
have as few inputs as possible. 

Finding the largest cube d is done by finding a 
minimum column cover in a Boolean conflict matrix. The 
conflict matrix has one row for each state in the sequence 
that comes before state p .  So if state p is the (L+l)th state 
in the sequence, then there are L rows in the conflict 
matrix. The columns in the conflict matrix correspond to 
the bits in the state. So if there are n flip-flops in the 
circular chain, then there are n columns in the conflict 
matrix. For each of the L states that come before state p ,  
the corresponding row in the conflict matrix is formed by 
placing a ‘1’ in each column where the bit value of the 
state is different from the bit value of state p and placing a 
‘0’ in each column with the bit values are the same. A set 
of columns covers the matrix if every row has a ‘1’ in at 
least one of the columns in the set. The literals in the 
largest cube d correspond to the set of columns in the 
minimum column cover of the conflict matrix. This set of 
literals is compatible with state p ,  but conflicts with all L 
states that come before state p in the sequence. Finding 
the minimum column cover is an NP-complete problem, 
but efficient heuristics and techniques exist for solving it 
[Coudert 961. 

An example of forming the conflict matrix and finding 
the largest cube d is shown in Fig. 4. The conflict matrix 
is covered by columns 3 and 4, so the cube d has two 
literals which correspond to the last two bits in statep. 

When the circular chaiin reaches state p ,  the decoding 
cube d is activated and the state skipping is performed by 
complementing the bits in the next state (i.e., state s) 
which differ from the test cube c to force the next state of 
the circular chain to match test cube c. Complementing the 
bits of the next state is performed by adding exclusive-OR 
gates in front of each flip-flop where state s differs from 
test cube c. The exclusive-OR gates are added in the 
chain interconnect and not on the functional path. This is 
done so that no delay is added to system paths. 

Figure 5 shows the circular chain with state skipping 
logic for the example in Fig. 4. The 2nd and 3rd bits in 
state s differ from the 2nd and 3rd bits in test cube c, so 
exclusive-OR gates are added in front of the 
corresponding flip-flops. 

One question that arises is whether the state skipping 
logic that is added is itself tested. The way that it is 
constructed ensures that it will be tested by the patterns 
that are generated during circular BIST. The number of 
literals in the decoding cube is minimized such that if any 
input to the corresponding AND gate is removed due to a 
stuck-at fault, then the cube would decode some pattern 
earlier in the sequence and therefore change the sequence 
in the presence of the fault. If the output of the AND gate 
is stuck-at 0, then the state skipping would not occur and 
the circular chain would follow the normal sequence. So 
any fault in the state skipping logic is guaranteed to change 
the sequence of the circular chain. The only way that the 
fault would not be detected is if signature aliasing occurs. 

Figure 6 shows an example how the control logic can 
be implemented for circular BIST with state skipping 
logic. The circular BIST cell that is shown is the one 
proposed in [Stroud 881. 

p =  1101 0000 Conflict Matrix 
s = 0101 101 1 
t = OOlX 1 100 1 1 0 1  
L =  5 0111 0 1 1 0  

1010 0 0 0 1  
1101 1 0 1 0  
0101 001x 0 1 1 1  
0110 1110 
1001 0100 Min. Column Cover = 3 , 4  

d = XXOl Normal W/ state 

Figure 4. Example of Finding Decoding Cube d. 

i 
Figure 5. Circular Chain with State Skipping Logic for 

the Example in Fig. 4 
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Figure 6. Example of Control Logic for Circular BIST 
with State Skipping 

4. Experimental Results 
Some experimental results were generated for some of 

the ISCAS 89 [Brglez 891 benchmark circuits comparing 
parallel BIST, normal circular BIST, and circular BIST 
with state skipping logic. The procedure described in this 
paper was used to insert the state skipping logic. The 
results are shown in Table 1. For each circuit, the 
factored form literal count is shown along with the size of 
the circular chain. The circuits were simulated for up to 
50,000 patterns. The same initial seed was used for each 
of the three BIST schemes. The test length and fault 
coverage is shown for each scheme. The fault coverage is 
for detectable faults. For the parallel BIST approach, an 
LFSR was used to apply pseudo-random patterns and a 
separate MISR was used to compact the response. For the 
normal circular BIST scheme with no state skipping logic, 
if the circular chain got stuck in a limit cycle, then the 
number of distinct test patterns that were generated are 
shown in parenthesis. For the circular BIST with state 
skipping logic, the number of extra literals that are added 
for the state skipping logic is shown, and a percentage 
overhead figure is computed by comparing the number of 
extra literals for the state skipping logic with the number 

of literals in the funclional circuit. 
Several observations can be made about the results. 

The fault coverage for circular BIST in most of the 
smaller circuits ( ~ 2 0 8 ,  s298, s344, s382, ~510,  3526 ) was 
limited by the fact that the circular chain got stuck in a 
cycle. Those circuits were very random pattern testable 
and parallel BIST achieved complete fault coverage in a 
very short test length. A small amount of state skipping 
logic was sufficient to allow the circular chain to jump out 
of the limit cycles and achieve 100% fault coverage. The 
area overhead of the state skipping logic is much less than 
what is required for a separate MISR or a CBILBO 
register to perform parallel BIST. Hence, these results 
indicate that circular BIST with state slupping is an 
attractive and effective approach for BIST of small 
controllers. 

For the circuits that contain random-pattern-resistant 
faults, the fault coverage for both parallel BIST and 
circular BIST was limited. In some cases the added 
correlation in the test patterns generated in circular BIST 
provided slightly more fault coverage than the purely 
pseudo-random patterns generated in parallel BIST (e.g., 
s641 and s9234), and in some cases it provided less fault 
coverage (e.g., s420, ~ 1 1 9 6 ,  s5378 ). The fault coverage 
for s5378 was quite a bit lower. For the circuits with a 
relatively small number of random-pattern-resistant faults, 
the results indicate that adding state skipping logic is an 
efficient way to boost the fault coverage up to 100%. For 
the circuits that had a large number of random-pattern- 
resistant faults (s420 and s5378 ), adding state skipping 
logic is not so efficient. For those circuits, test point 
insertion or mixed-mode testing would probably be more 
effective. 

Table 1. Results for ISCAS 89 Benchmark Circuits 
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5. Summary and Conclusions 
An systematic approach for reliably achieving high 

fault coverage with circular BIST was presented. State 
skipping logic is inserted into the circular chain to 
improve the test patterns that are generated during 
circular BIST. The state skipping logic is used to jump 
out of limit cycles, break correlations in the test patterns, 
and jump to states that detect random-resistant faults. 
Result indicate that in many cases, this approach can 
boost the fault coverage of circular BIST to match that of 
conventional parallel BIST approaches while still 
maintaining a significant advantage in terms of hardware 
overhead and control complexity. 

One issue with adding state skipping logic is how 
much routing overhead does it add. One way to control 
the routing overhead would be to select the inputs for 
each decoding cube such that they come from 
neighboring flip-flops. Techniques for selecting the 
decoding cubes in a way that minimizes routing overhead 
are being investigated. 
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