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Abstract

This paper presents a procedure for synthesizing
multilevel circuits with concurrent error detection based
on Bose-Lin codes.  Bose-Lin codes are an efficient
solution for providing concurrent error detection as they
are separable codes and have a fixed number of check
bits, independent of the number of information bits.
Furthermore, Bose-Lin code checkers have a simple
structure as they are based on modulo operations.
Procedures are described for synthesizing circuits in a
way that their structure ensures that all single-point
faults can only cause errors that are detected by a Bose-
Lin code.  This paper also presents an efficient scheme
for concurrent error detection in sequential circuits.
Both the state bits and the output bits are encoded with a
Bose-Lin code and their checking is combined such that
one checker suffices.  Results indicate low area
overhead.  The cost of concurrent error detection is
reduced significantly compared to other methods.

1.  Introduction

In applications where dependability and data
integrity are important, concurrent error detection (CED)
circuitry is used to detect transient and intermittent
errors.  Early detection of errors is crucial for preserving
the state of the system and preventing data corruption.
The move towards deep-submicron technologies with
lower voltage levels and smaller noise margins is
increasing the susceptibility of systems to transient and
intermittent faults thereby making CED increasingly
important.  This paper presents automated procedures for
synthesizing both combinational and sequential circuits
with low-cost CED circuitry.  The CED circuitry can
detect all on-line errors due to single-point faults as well
as enhance off-line testability and reduce BIST overhead
[Nicolaidis 89], [Gupta 96].

One general approach for CED is to encode the
outputs of a circuit with an error detecting code and have
a checker that monitors the outputs and gives an error
indication if a non-codeword occurs (as illustrated in
Fig. 1).
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Figure 1.  General Structure of a Self-Checking Circuit

To detect all single-point faults, the error detecting
code that is used must be such that all possible errors in
the circuit due to single-point faults result in
non-codeword outputs.  Efficient CED schemes exist for
circuits with regular structures such as PLA’s [Mak 82],
[Nicolaidis 91] and ALU’s [Pradhan 86], [Lo 92],
[Gorshe 96].  However, for arbitrary multilevel
combinational and sequential logic circuits more
efficient approaches for synthesizing circuits with CED
circuitry are needed [Gossel 93].

One approach that has been proposed for synthesizing
arbitrary multilevel circuits with concurrent error
detection is based on a Berger code.  A Berger code is an
optimal code for detecting all unidirectional errors
[Berger 61].  Jha and Wang [Jha 93] proposed a
synthesis method in which the circuit is synthesized
using only algebraic transformations (such as those used
in the algebraic script in MIS [Brayton 87]) such that the
resulting circuit can be transformed so that it is inverter-
free, i.e., has inverters only at the primary inputs (PI’s).
The   primary  outputs    (PO’s)  are then encoded  with a
Berger code.  Since the inverters are only at the PI’s, any
error  caused  by  an  internal  fault  (i.e., fault not at  the



PI’s) will   produce  a unidirectional error at the POs and
therefore is guaranteed to be detected by the Berger
code.  Note that for any concurrent error detection
scheme (including duplication), detection of faults at the
primary inputs cannot be guaranteed unless encoded
inputs are used, however, if the inputs to the circuit are
outputs of another concurrently checked logic block,
then the only undetectable PI faults are break faults after
the checker [Khodadad-Mostashiry 80].  De, et al.,
[De 94], described a constrained technology mapping
procedure that maintains the inverter-free property
during technology mapping thereby fully automating the
synthesis method based on a Berger code.  In [De 94],
results are presented showing that a significant reduction
in overhead is achieved by using the Berger code scheme
compared with using duplication.

A Bose-Lin code [Bose 85] is an optimal systematic
code for detecting up to t unidirectional errors and
requires fewer check bits and a much simpler checker
than a Berger code.  In [Gorshe 96], it was shown that a
significant hardware reduction could be achieved by
using a Bose-Lin code instead of a Berger code for
designing an ALU with CED.  In this paper, a method is
presented for synthesizing arbitrary multilevel circuits
with CED based on a Bose-Lin code.  The circuit is
synthesized in a way that its structure ensures that all
internal faults can only cause errors that are detected by
a Bose-Lin code.  Thus, a simpler Bose-Lin code can be
used in place of a Berger code resulting in significant
hardware reduction without loss of error detection
capability.

Another contribution of this paper is a new and very
efficient scheme for CED in sequential circuits.  A
sequential circuit with CED was proposed in [Jha 93].
The state bits are encoded with an m-out-of-n code and
the output bits are encoded with a Berger code.  Separate
checkers are required to check the state bits and the
output bits.  In this paper, both the state bits and the
output bits are encoded with a Bose-Lin code.  An
efficient technique is used to combine the checking the
state bits and the outputs bits together with a single
checker thereby reducing overhead.  Moreover, since a
Bose-Lin code is a separable code, no constraints are
placed on the state encoding.  Thus, it is compatible with
conventional state assignment tools and also applicable
to sequential circuits where some of the flip-flops may
be storing data.  By using the proposed procedure instead
of a duplicate-and-compare approach, the cost of CED is
significantly reduced while still detecting all single-point
faults. The paper is organized as follows:  Section 2
explains Bose-Lin codes.  Section 3 presents the
synthesis procedure. Sections 4 and 5 give the results for

combinational and sequential circuits respectively.
Section 6 concludes the paper.

2. Bose-Lin Codes

Bose-Lin codes are optimal codes for detecting up to
t unidirectional errors.  These codes were developed by
Bose and Lin [Bose 85].  They are systematic and
require a fixed number of check bits, independent of the
number of information bits.  These two properties make
Bose-Lin codes an efficient solution for synthesizing
arbitrary circuits with CED.

The codes are constructed by counting the number of
ones or zeroes, similar to the Berger codes.  The counts
are then modified depending on t.  For t = 2 and 3, the
counts are performed modulo 4 and 8, resulting in 2 and
3 check bits, respectively.  Bose-Lin codes with check
bits greater than 3 are explained in detail in [Gorshe 96].
The synthesis technique proposed in this paper can be
used to implement self-checking circuits for any t
unidirectional error detecting Bose-Lin codes.

A totally  self-checking checker design for Bose-Lin
codes has been proposed in [Jha 91].  This checker is
based on the Berger code checker proposed in
[Marouf 78].  Modulo 2r

 addition is implemented by
discarding the appropriate MSBs. Table 1 gives the
comparison of literal counts of a double error detecting
Bose-Lin code checker [Jha 91] as compared to a Berger
code checker [Marouf 78].

Table 1.  Literal Count Comparison of Bose-Lin Code
Checker versus Berger Code Checker

# of Bits
Berger

[Marouf 78]
Bose-Lin
[Jha 91]

8 94 65
16 199 133

24 303 221

32 408 290

3.  Synthesis Procedure

The circuit synthesis must be done such that all
internal faults can only cause errors that can be detected
by a Bose-Lin code.  There are two structural constraints
on the circuit that, if satisfied, will guarantee detection
of all internal faults with a Bose-Lin code.  The first
constraint is that the circuit must be inverter-free so that
only unidirectional errors can occur (this constraint is the



same as for a Berger code).  The second constraint is that
no non-PI node in the circuit can have a path to more
than t PO’s if a t unidirectional error detecting Bose-Lin
code is used.  These two constraints ensure that all errors
due to internal faults can cause no more than t
unidirectional errors and thus all errors will be detected
by the Bose-Lin code.

Multilevel logic optimization improves circuit area
by using operations that restructure and minimize the
logic.  As was described in [Jha 93], multilevel logic
optimization with algebraic transformations (such as
those used in the algebraic script in MIS [Brayton 87])
will result in a circuit that can be transformed so that it
has   inverters  only  at  the PI’s.   So if  the synthesis is
restricted to algebraic transformations, then the inverter-
free constraint can be satisfied.

The constraint that no non-PI node can have a path to
more than t PO’s can be  satisfied by restricting fanout in
the circuit.  Multilevel logic optimization operations that
restructure the circuit must be constrained so that they do
not introduce fanout that creates a path from some node
to  more  than  t PO’s.   There are  two restructuring
operations that introduce fanout, resubstitution and
extraction [Brayton 90].  When performing those two
operations, a check must be made to ensure that any new
fanout being introduced in the circuit does not violate the
constraints.

In resubstitution one logic expression f is substituted
into another logic expression g to reduce the literal
count.  Resubstitution introduces fanout in the circuit as
f will fanout to g.  A check must be made to see if a
particular resubstitution operation will create a path from
some node to more than t PO’s.   If so, then the
resubstitution operation is not permitted when
synthesizing for a Bose-Lin code.

In extraction, a common subexpression is factored out
from a set of logic expressions.  Fanout is introduced
from the subexpression to the logic expressions that is
was factored out of.  Again, a check must be made to see
if a particular extraction operation will create a path
from some node to more than t PO’s.   If so, then the
extraction operation is not permitted.

We modified the MIS logic synthesis [Brayton 87]
system for use in synthesizing circuits with CED based
on Bose-Lin Codes.  MIS uses various filters to reduce
the pairs of logic expressions that are considered for
resubstitution (because there are so many of them).  We
added an additional filter to remove pairs of logic
expressions for which adding fanout would create a path
from some node to more than t PO’s.  We also modified
the extraction routines in MIS so that they only factor
out common subexpressions between logic expressions

for which the fanout constraints are satisfied.  We added
a command to MIS which automatically adds the Bose-
Lin check bit functions.  This modified version of MIS
can be used to synthesize circuits with CED based on
any t unidirectional error detecting Bose-Lin code.  The
original circuit is simply read into MIS and the Bose-Lin
check bit functions are added, and then the circuit is
optimized using the algebraic script with the modified
resubstitution and extraction commands.  Provided a
technology mapping procedure that preserves the
structure of the circuit is used, e.g., tree-mapping
[Keutzer 87], [Detjens 87], all errors due to internal
faults are guaranteed to be detected.

A special class of circuits with CED that satisfies
certain properties are called self-checking circuits
[Anderson 71].  Self-checking circuits guarantee
detection of the first error that occurs due to a fault in a
specified fault class.  If a totally self-checking Bose-Lin
code checker is used, the implementation that is
generated by our synthesis procedure is self-checking for
internal single-point faults.

  4.  Self-Checking Combinational Circuits

Self-checking combinational circuits have been
studied in [De 94].  De, et al. have shown that a
significant overhead reduction can be achieved by using
Berger codes as compared to duplication.  In this paper,
we have synthesized several benchmark circuits with
CED based on double error detecting Bose-Lin codes
(i.e., t = 2).  Since we used double error detecting codes,
there are always two check bits which are added to the
output bits.  The check bits indicate the number of output
bits that have a logical value of ‘1’ modulo 4.   Synthesis
is done as explained in Sec. 3.  The synthesis procedure
ensures that no node in the circuit can fanout to more
than  two  PO’s.   Table 2 gives information about the
benchmark circuits that were used (for comparison, we
used the same set of benchmark circuits that were used
in [De 94]).

Table 2 also gives the literal counts for the original
circuit, the circuit with CED based on Berger codes as
reported in [De 94], and our circuit with CED based on
Bose-Lin codes.  For most of the circuits the number of
literals for CED based on Bose-Lin codes is significantly
reduced compared to the Berger code case.

The advantages of the Bose-Lin code lies in a lower
number of check bits and a simpler checker. The
structural constraint that no node can fan out to more
than two primary outputs can cause an increase in the
number of literals in the CED circuit as is seen in luc and



Table 2.  Literal Count Comparison for Berger versus Bose-Lin Code

Circuit Berger Code Bose-Lin Code

Names #inputs #outputs

Lits in
Functional

Circuit

Lits in
CED

Circuit

Lits in
Berger

Checker

Total
Number
of Lits

Lits in
CED

Circuit

Lits in
Bose-Lin
Checker

Total
Number
of Lits

apla 10 12 171 444 146 590 343 114 457
br1 12 8 118 229 94 323 248 74 322

bw 5 28 200 187 355 542 304 274 578

b10 15 11 401 875 133 1008 671 108 779

clip 9 5 130 675 54 729 473 48 521

dc1 4 7 49 51 80 131 66 68 134

dc2 8 7 118 271 80 351 283 68 351

inc 7 9 134 230 107 337 188 88 276

in0 15 11 449 890 133 1023 766 108 874

luc 8 27 215 248 342 590 477 268 745

m1 6 12 86 190 146 336 100 114 214

p82 5 14 109 158 172 330 162 134 296

sa02 10 4 166 273 41 314 229 34 263

vg2 25 8 87 943 94 1037 327 74 401

wim 4 7 41 73 80 153 61 68 129

x6dn 39 5 335 668 54 722 648 48 696

5xp1 7 10 119 284 120 404 280 94 374

p82.  For p82, the total number of literals for CED based
on Bose-Lin codes is less due to a simpler checker.  For
luc, the total number of literals is better for the Berger
code case.  It should be noted here that the constraint
that no node can fanout to more than two primary
outputs will reduce routing complexity and therefore
lead to less layout area.

Layout was done for some circuits having a
reasonably large number of outputs - bw,  luc, m1 and
p82.  The results are presented in Table 3.  The layout
was done using the tools from Alliance.   Layout in
[De 94] was done using  Timberwolf.  Thus, comparison

of the two methods is done on the basis of the
percentage overheads with the original circuit.  Table 3
clearly indicates that the cost of CED is considerably
reduced by the use of Bose-Lin codes.  Benchmark
circuits bw and luc have less layout area overhead for
CED based on Bose-Lin codes, even though the literal
count for the Bose-Lin code case was more than that for
the Berger code case.  The best results are seen for the
bw circuit as it has the largest number of outputs, 28.  In
general,  the cost of CED based on Bose-Lin codes will
be much less compared to other methods for circuits
having a large number of outputs.

Table 3.  Layout Area Comparisons

Circuit Duplication Berger Code Bose-Lin Code
Name Area Area %Ovrhd Orig. Area Area %Ovrhd Area %Ovrhd

bw 301104 1286256 327 742000 2520000 240 461448 53
luc 367488 1420434 286 756000 2259888 199 842634 129
m1 113520 341694 200 584584 1018584 74 136080 20
p82 149160 562248 277 436728 1145256 162 241488 62



5.  Self-Checking Sequential Circuits

Here we propose a cost-effective design for
sequential circuits based on Bose-Lin codes that has a
number of attractive features.  The general form of a
sequential circuit with CED as proposed in [Jha 93] is
shown in Fig. 2.  The state bits are encoded with an m-
out-of-n code and the output bits are encoded with a
Berger code.  The state bits and the output bits are
checked separately and the two checker outputs are then
combined with a final two rail checker (TRC) module.

Any single-point fault in the combinational part of
the circuit can affect the outputs of the next state logic
and/or the outputs of the output logic.  The fault will be
detected by the m-out-of-n checker and/or the Berger
code checker respectively.  However, faults in the flip-
flops cannot be detected by this design.  Our design
ensures that all faults in the flip-flops are also detected.
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Figure 2. Self -Checking Sequential Machine Proposed
in [Jha 93]

In our approach, we use Bose-Lin codes to encode
both the state bits and the output bits.  An efficient
technique is used to combine the checking of the state
bits and the output bits using a single checker (as
illustrated in Fig. 3).  We have used the following
naming convention: NS (Next State bits) denotes the
state bits generated from the next state logic block.  PS
(Present State bits) denotes the state bits after the flip-
flops i.e. they are the NS after one clock cycle. NSC are
the two check bits for the next state logic.  After passing
through the flip-flop stage, they become check bits for
the present state and are denoted as PSC .   Finally, ZC are
the check bits that encode both the output logic as well
as the PS.

NSC  bits are computed in the usual manner by
computing the number of ones modulo 4 in NS.  The

check bits for the output logic (ZC), however, are
computed as the number of ones modulo 4 in the output
bits and PS.  The check bits can be thought of as
encoding both the input and the output space of the
circuit.  Thus, only one checker is sufficient to check
both the spaces.  The Bose-Lin code checker has to be
slightly modified for this application.  The output bits
are fed to the checker and the number of ones modulo 4
are computed.  PSC is added to the result of this
computation and then the result is compared with ZC.
This arrangement ensures that the state bits and the
output bits are checked together and all faults in the flip-
flops are also detected.
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Figure 3. Proposed Self-Checking Sequential Machine

Analysis of fault detection:  Our synthesis technique
ensures that a non-PI node does not have a path to more
than two POs.  Thus, a single-point fault can result in
errors in the following bit combinations:  two NS bits,
two output bits, one NS bit and one output bit, or a
subset of any of the previous three.  Errors in the NS bits
will be clocked into the flip-flops.  In the next cycle
they are propagated to the PS bits and detected by the
checker.  Errors in the output bits will be detected in the
same clock cycle as the occurrence of the error.  Note
that faults in the flip-flops are also detected since the
checker checks the PS rather than NS.  Even though the
flip-flops may fanout  to   more    than two  PO’s, single
errors  in the flip-flops are equivalent to being in a
non-codeword    state   which  is   guaranteed  to cause a
mismatch with the PSC check bits.



Table 4.  Literal Count Comparison for Berger Code with m-hot state assignment versus Bose-Lin Code with Minimal
State Assignment

m-hot Assign + Berger Code Min. State Assign. + Bose-Lin

Circuit #
inputs

#
outputs

#
states

Lits in
CED ckt.

Lits in
checker+FF

Total # of
literals

Lits in
CED ckt.

 Lits in
checker+FF

Total #
of literals

dk14 3 5 7 235 81 316 204 77 281
dk15 3 5 4 169 61 230 122 74 196

dk16 2 3 27 457 94 551 496 63 559

planet 7 19 48 810 314 1124 883 226 1109

styr 9 10 30 952 182 1134 1120 129 1249

Table 4 gives the comparison of the proposed method
with [Jha 93].  The table gives the details of these
circuits.  State assignment has been done using
MUSTANG [Devadas 88].  The number of flip-flops for
the smaller circuits is the minimal number required to
represent the states.  Values of m for the m-hot encoding
have been taken such that the number of flip-flops is
comparable in both schemes.

Table 4 shows that the number of literals in the
circuit with CED based on Bose-Lin codes is less for
small circuits and larger for bigger circuits as compared
to CED based on Berger codes.  This is due mostly to
the fact that an m-hot encoding gives better literal count
results than MUSTANG for machines with a large
number of states [Jha 93].  In actuality, comparing our
literal counts with those in [Jha 93] is not a good
comparison because the state assignment in the two
cases is so different.  We show the comparison just to
illustrate that even with a less optimal state assignment
(from the perspective of minimizing the literal count),
we still get better results in most cases.  If we were able
to compare with the exact same state assignment we
believe that our overhead would be significantly better.
It should be noted here that it is not always possible to
encode the states using m-hot codes.  Bose-Lin codes,
on the other hand, are separable codes and thus no
constraints are placed on the state encoding.  Thus, this
scheme of CED is  compatible with MUSTANG and any
other state assignment tool.  Also, it is applicable to
general sequential circuits where some of the flip-flops
may be storing data.

Table 4 also indicates that despite a larger number of
literals in the circuit with CED, the total number of
literals is comparable for both methods.  The saving in
cost of CED results from the smaller number of check
bits for the Bose-Lin codes and the other saving in
literals by our checker scheme.  The  modification to the
normal Bose-Lin checker in our sequential circuit CED

scheme is the modulo 4 addition of PSC to the number of
ones modulo 4 of the output bits.  This requires 14
literals.   Since the Bose-Lin code checker requires
fewer literals than the Berger code checker, and we are
using only one checker, the total number of literals in
our proposed checker is much less than that of Jha and
Wang [Jha 93] for a reasonably large number of outputs.

6. Conclusions

It has been found that Bose-Lin codes significantly
reduce the cost of concurrent error detection for both
combinational and sequential circuits.  Synthesis and
layout of combinational benchmark circuits with CED
based on Bose-Lin codes show low hardware overheads,
making it a practical solution.  An efficient scheme for
CED in sequential circuits has been proposed.  This
scheme can be extended to handle CED based on
Berger codes.  The advantages of this scheme are the
following:
1)  Only one checker is required for checking both the

state bits and the output bits.
2)  No constraints are placed on state encoding.
3)  Faults in the flip-flops are guaranteed to be detected.

The synthesis procedure outlined in this paper was
implemented in MIS, but can be implemented in other
logic synthesis systems.  Note also that the scheme
described in this paper can be used to convert an
existing sequential circuit (with both control state and
data flip-flops) that does not have CED into one with
CED by simply eliminating a sufficient number of
fanouts to guarantee that all errors due to internal faults
will be detected.
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