Embedded Systems Architecture

Interrupts and Interrupt Handlers

Mark McDermott

Embedded Systems Archit
Review of ARM Interrupts

Vector table
Reserved area of 32 bytes at the end of the memory map
One word of space for each exception type
Contains a Branch or Load PC instruction for the exception handler

n modes and registers
} pti t prog; from user to non-user mode
Each exception handler has access to its own set of registers
Its own r13 = stack pointer
Its own r14 = link register
Its own SPSR (Saved Program Status Register)
Exception handlers must save (restore) other register on entry (exit)

1/12/2010 4

Outline of This Lecture
ARM Interrupts
Interrupts on the iMX21 SoC
Interrupt handlers
ing interrupt handler for iMX21 SoC

1/12/2010 2

Embedded Systems Architecture

Register Organization Summary

User FIQ IRQ svC Undef Abort

Thumb state
Low register

Thumb state
1 High register:
12 r12

113 (sp) 113 (sp) 13 (sp) 113 (sp)

14 (Ir) 14 (Ir) 14 (i) 14 (i)

115 (pc)

sp [ spsr|

Note: System mode uses the User mode register set

1/12/2010 -

Review of ARM Exceptions

Excoption Doscription

Reset Checun when the
fow wigmalling powes

ot prrwcred up, A soll eset

e the proceusr, o any attahed copraccees, rrognizes the corenily

exculing indruction.

Sediware esermupt (W1 Thin in & uscr-defimce syachnons imerrspt imeruction 1 allows & program seaning in
Ulser mode. fioe example. o request priviligped operatioss that ran in Supervisor mode. such
s an RTUIS fanction.
Prelcich Atoet et when the i e ans bt T e—
the ddrces wan ilicgal®,
Dt Abort e whes a data tranafir inalrutaon sstempts 1o o of ahore data ot an dlcygal addewt
RQ Chccwn when the procesor exiomal mbermupt request pim is asserted (LOW) and the | bit
i the CPSR is clear
g O when the prosexor extcral fasd smsermupt ouest pin s asseriod (LOW ) and the F
i i the: CPSH i clear.
1/12/2010 3

Embedded Systems Architecture

What if Exceptions Happen Simultaneously?

Vector address  Exceplion type Exception made ( Priority (1=high, Balow) )
i Rewt Sapery tsor (SVE)

™ Undefined Instrictisn Vndet o

™ mupt (SWI Sapersbsor (SVC) o

L Abort s

e Abon 2

it bl

ol

1/12/2010 6



EE382N-4 Embedded Systems Architecture

Enabling IRQ and FIQ

Program Status Register
31 30 29 28 27 8 7 6 5 4 3 2 1 0

[w]ze]v] | [ [r]r] [w]w]vwe]w]w]

To disable interrupts, set corresponding “F” or “I” bit to 1

On interrupt, processor does the following
Switches register banks
Copies CPSR to SPSR_mode (saves mode, interrupt flags, etc.)
Changes the CPSR mode bits (M[4:0])
Disables interrupts
Copies PC to R14_mode (to provide return address)
Sets the PC to the vector address of the exception handler

Interrupt handlers must contain code to clear the source of the

interrupt

EE382N-4 Embedded Systems Architecture

Types of Interrupts

Synchronous
Produced by the processor while executing instructions.
Issues only after finishing execution of an instruction.
Often called exceptions.
Example: SWI, page faults, system calls, divide by zero

Asynchronous
Generated by other hardware devices.
Occur at arbitrary times, including while CPU is busy executing an instruction.
Ex: /0, timer interrupts

EE382N-4 Embedded Systems Architecture

Interrupt Details

On an IRQ interrupt, the ARM processor will ...
If the “1” bit in the CPSR is clear, the current instruction is completed and
then the processor will
Save the address of the next instruction plus 4 in r14_irq
Save the CPSR in the SPSR_irq
Force the CPSR mode bits M[4:0] to 10010 (binary)
This switches the CPU to IRQ mode and then sets the “I” flag to
disable further IRQ interrupts

On an FIQ interrupt, the processor will ...
If the “F” bit in the CPSR is clear and the current instruction is completed,
the ARM will
Save the address of the next instruction plus 4 in r14_fiq
Force the CPSR mode bits M[4:0] to 10001 (binary)
This switches the CPU to FIQ mode and then sets the “I” and “F” flags to disable further
IRQ or FIQ interrupts

1/12/2010

EE382N-4 Embedded Systems Architecture

iMX21 Interrupts

EE382N-4 Embedded Systems Architecture
IRQ vs. FIQ

FIQs have higher priority than IRQs
When multiple interrupts occur, FIQs get serviced before IRQs
Servicing an FIQ causes IRQs to be disabled until the FIQ handler re-enables
them
CPSR restored from the SPSR at the end of the FIQ handler

How are FIQs made faster?
They have five extra registers at their disposal, allowing them to store status
between calls to the handler
FIQ vector is the last entry in the vector table
The FIQ handler can be placed directly at the vector location and run sequentially
after the location
Cache-based systems: Vector table + FIQ handler all locked down into one block

1/12/2010 9

EE382N-4 Embedded Systems Architecture
iMX21 ARM Interrupt Controller (AITC)

The AITC performs the following functions:
Supports up to 64 interrupt sources
Supports fast and normal interrupts
Selects normal or fast interrupt request from any interrupt source
Indicates pending interrupt sources via a register for normal and fast
interrupts
Indicates highest priority interrupt number via register (can be used as a
table index)
Independently enable or disable any interrupt source
Provides a mechanism for software to schedule an interrupt
Supports up to 16 software controlled priority levels for normal interrupts
and priority masking

1/12/2010 12



EE382N-4 Embedded Systems Architecture

iMX21 AITC Block Diagram
4 . ™

TENABLE £

| Priority A
Encoder

Software | swector
| Priorty |/
Encoder !

INTTYPE

anc_im

site,_ridata_ovr
g

32 [ Equas e
hasdr o OWD000_001ET

Equals to | 22
| o000 00T ] ?"“"i'w A ahe_riaa
1 4 hrsady 1
\_ En | J

1/12/2010

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

iMX21 Interrupt Sources (upper 32bits)

EE382N-4 Embedded Systems Architecture

iMX21 Interrupt Sources (lower 32bits)

e it T -

T 1 — ———— e
T e 1 e e e e 1

R

There are 192 additional interrupts
via the GPIO ports.

There are five 32-bit GPIO ports:
its 0-31

Port >
Port-B: bits 32-63 [=
Port-C: bits 64-95

bits 96-127
its 128-159
Port-F: bits 160-191

1/12/2010 14

1/12/2010

Details of the AITC Operation

The interrupt controller consists of a set of control registers and
associated logic to perform interrupt masking, and priority support of
normal interrupts.

The interrupt source registers (INTSRCH / INTSRCL) are a pair of 32-bit
status registers with a single interrupt source associated with each of
the 64 bits.

An interrupt line or set of interrupt lines are routed from each interrupt
source to the INTSRCH or INTSRCL register. This allows up to 64 distinct
interrupt sources in an implementation. Interrupt requests may be
forced to be asserted by way of the interrupt force registers (INTFRCH /
INTFRCL).

Each bit in this register is logically “OR-ed” with the corresponding
hardware request line prior to feeding the INTSRCH or INTSRCL register
inputs.

1/12/2010

16

EE382N-4 Embedded Systems Architecture
Details of the AITC Operation (cont)

There is a corresponding set of interrupt enable registers
(INTENABLEH / INTENABLEL), also 32-bits wide which allow
individual bit masking of the INTSRCH / INTSRCL registers. There
is also a corresponding set of interrupt type register (INTTYPEH /
INTTYPEL) which selects whether an interrupt source will
generate a normal or fast interrupt to the ARM926EJ-S core.

1/12/2010 17

EE382N-4 Embedded Systems Architecture

GPIO Interrupts on the iMX21

Every general purpose input can be configured as an interrupt
and each interrupt can be defined as either:

rising-edge triggered

falling-edge triggered

level sensitive
The interrupts can be masked using a 32-bit mask register.

Two levels of interrupt masking are provided. Interrupts can be
individually masked at the bit level or at the port level.

The interrupt status register bits corresponding to the interrupts
waiting for service are stored as a value of 1. The interrupt status
register is Write 1 to Clear (wic).

1/12/2010

18




EE382N-4 Embedded Systems Architecture

Assigning Interrupt Number on the iMX21

The 64 interrupt sources are assigned from 0-63 respectively.
INT-8 (GPIO interrupt) is assigned interrupt numbers 64-255.

To determine which interrupt sources Linux recognizes type:
more /proc/interrupts

On the TLL-6219 you will see the following 4 interrupt sources:

Int# H#INT's Source

20: 117 IMX-uart
26: 15985 i.MX Timer Tick
55: o imx21-hc:usbl
224: 2 smsc911x

The first 3 sources are internal interrupts. INT-224 is an external
interrupt from the Ethernet Controller.

The ENET interrupt is connected to Port-F Pin-0 (PF0).

This corresponds to bit #160 in the GPIO bit ordering.

INT Number = 64 + 160 = 224

1/12/2010 19

EE382N-4 Embedded Systems Architecture
Interrupt Handlers
Kernel routine that runs in

response to interrupt.
More than one handler can exist

Module Organization

Module’s ‘payload is

per IRQ. a callback-function
. that will ‘handle’ an
Must run quickly. interrupt
Resume execution of interrupted
code. Registers the ‘isr’
How to deal with high work | andthen enables
interrupts? the device to generate

. interrupt-signals
Ex: network, hard disk

Disables the
interrupt-signals
| and then unregisters
this module’s ‘isr’

1/12/2010

EE382N-4 Embedded Systems

Interrupt Handlers

EE382N-4 Embedded Systems

Interrupt Handlers
When an interrupt occurs, the hardware will jump to an

“interrupt handler”

user program user program

IRQ Interrupt handler
 E——

« Oninterrupt, the processor will set
the corresponding interrupt bit in
the CPSR to disable subsequent
interrupts of the same type from
occurring.

However, interrupts of a higher
priority can still occur.

Interrupt

1/12/2010

EE382N-4 Embedded Systems Architecture
Jumping to the Interrupt Handler

Auto-vectored
Processor-determined address of interrupt handler based on type of
interrupt
This is what the ARM does

Vectored
Device supplies processor with address of interrupt handler

Why the different methods?
If multiple devices uses the same interrupt type (IRQ vs. FIQ), in an Auto-
vectored system the processor must poll each device to determine which
device interrupted the processor

This can be time-consuming if there is a lot of devices

In a vectored system, the processor would just take the address from the
device (which dumps the interrupt vector onto a special bus).

1/12/2010 21

EE382N-4 Embedded Systems Architecture

Nested/Re-entrant Interrupts

Interrupts can occur within interrupt handlers

user program user program

IRQ Interrupt handler
[ ]

FIQ Interrupt handler
—

« On interrupt, the processor will set
the corresponding interrupt bit in
the CPSR to disable subsequent

Interrupt interrupts of the same type from
occurring.
« However, interrupts of a higher
Second

priority can still occur.

Interrupt

1/12/2010 24




EE382N-4 Embedded Systems Architecture

Timing of Interrupts

Before an interrupt handler can do anything, it must save away
the current program's registers (if it touches those registers)
That's why the FIQ has lots of extra registers - to minimize CPU
context saving overhead

user program user program

cpu context saved,

)

[ servicing” interrupt
cpu context restored

Interrupt latenc

Interrupt \

Interrupt response

1/12/2010

25

EE382N-4 Embedded Systems Al ecture
Interrupt Context

Not associated with a process.
Cannot sleep: no task to reschedule.
current macro points to interrupted process.
Shares kernel stack of interrupted process.
Be very frugal in stack usage.

1/12/2010 26

EE382N-4 Embedded Systems Architecture

Registering a Handler

request_irq()
Register an interrupt handler for a given interrupt input pin.

free_irq()
Unregister a given interrupt handler.
Disable interrupt line if all handlers unregistered.

1/12/2010 27

EE382N-4 Embedded Systems Architecture

Top and Bottom Halves

Interrupt handling sometimes needs to perform lengthy tasks.

This problem is resolved by splitting the interrupt handler into
two halves:
Top half responds to the interrupt

The one registered to request_irq

Saves data to device-specific buffer and schedules the bottom half

Current interrupt disabled, possibly all disabled.

Runs in interrupt context, not process context. Can’t sleep.

Acknowledges receipt of interrupt.

Schedules bottom half to run later.

Bottom half is scheduled by the top half to execute later
With all interrupts enabled
Wakes up processes, starts 1/O operations, etc.
Runs in process context with interrupts enabled.
Performs most work required. Can sleep.
Ex: copies network data to memory buffers.

1/12/2010

28

EE382N-4 Embedded Systems Architecture
Top and Bottom Halves

Three mechanisms may be used to implement bottom halves
SoftIRQs
Have strong locking requirements
Only used of performance iti - king, SCSI, etc.
Reentrant

Tasklets
Built on top of SoftIRQs
Should not sleep
Cannot run in parallel with itself
Can run in parallel with other tasklets on SMP systems
Guaranteed to run on the same CPU that first scheduled them

Workqueues
Can sleep
Cannot copy data to and from user space

1/12/2010 29

EE382N-4 Embedded Systems Architecture

Dos and Don’ts of Interrupt Handlers

It's a programming offense if your interrupt context code goes to sleep.
Interrupt handlers cannot relinquish the processor by calling sleepy functions
such as schedule_timeout().

For protecting critical sections inside interrupt handlers, you can't use mutexes
because they may go to sleep. Use spinlocks instead, and use them only if you
must.

Interrupt handlers are supposed to get out of the way quickly but are expected
to get the job done. To circumvent this Catch-22, interrupt handlers split their
work into two halves: top (slim) and bottom (fat).

You do NOT need to design interrupt handlers to be reentrant. When an
interrupt handler is running, the corresponding IRQ is disabled until the
handler returns.

Interrupt handlers can be interrupted by handlers associated with IRQs that
have higher priority. You can prevent this nested interruption by specifically
requesting the kernel to treat your interrupt handler as a fast handler.

From: Essential Linux Device Drivers - Venkateswaran
1/12/2010 30




EE382N-4 Embedded Systems Architecture

Writing an interrupt handler for the iMX21

EE382N-4 Embedded Systems Al

Writing an Interrupt Handler for PF16 on iMX21

The first task to do is to have the driver request the IRQ and associate an
interrupt handler with it. This is done as part of init()

#define PF16_INT 240  /* PF16 on iMX21 */

static int __init init_interrupt_arm(void) {
intrv=0;

/* request interrupt */
rv = request_irq(PF16_INT, interrupt_interrupt_arm, SA_TRIGGER_RISING | SA_DISABLED,
“interrupt_arm", NULL);
if(rv){
printk("Can't get interrupt %d\n", PF16_INT);
goto no_interrupt_arm;

EE382N-4 Embedded Systems Architecture
Writing an Interrupt Handler for PF16 on iMX21 (cont)

Interrupt Handler FLAGS
The SA_DISABLED flag specifies that this interrupt handler has to be treated

as a fast handler, so the kernel has to disable interrupts while invoking the
handler.

SA_TRIGGER_RISING announces that the pulse input generates a rising edge
on the interrupt line when it wants to signal an interrupt. In other words,
the pulse input is an edge-sensitive device. Some devices are instead level-
sensitive and keep the interrupt line asserted until the CPU services it. To
flag an interrupt as level-sensitive, use the SA_TRIGGER_HIGH flag.

/* everythingis initialized */
printk(KERN_INFO "%s %s Initialized\n",MODULE_NAME, MODULE_VERSION);
return 0;

/* free up the irq request on error */

no_interrupt_arm:
free_irq(PF16_INT, NULL);
return -EBUSY;

From: Essential Linux Device Drivers - Venkateswaran
1/12/2010 32 1/12/2010 33

EE382N-4 Embedded Systems Architecture

Writing an Interrupt Handler for PF16 on iMX21 (cont)

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

Asynchronous Notification Registering the FILE_DESCRIPTOR

The second task to do is to setup the interrupt handler: Polling is inefficient for asynchronous events such as interrupts.

The character device that is used by user application needs to be
Solution: Asynchronous notification

registered when the kernel driver is initialized.

.

* function: interrupt_interrupt_arm

Application receives a signal wk datak ilabl
#define FPGA_MAIOR 245
* This function is the interrupt handler for interrupt 240. It flags the Two steps #define MODULE_NAME "fpga_int"
* user application that an interrupt occurred. Specify a process as the owner of the file (so that the kernel knows whom to
*/ N static int __init init_interrupt_arm(void) {
notify)
Set the FASYNC flag in the device via fentl() command from the user application if (register_chrdev(FPGA_MAJOR, MODULE_NAME, &fpga_fops)) {
static struct fasync_struct *fasync_fpga_queue ; // Set up queue to point to calling routine. . printk("fpga_int: unable to get major %d. ABORTING!\n", FPGA_MAIOR);
system calls: return -EBUSY;
void interrupt_interrupt_arm(int irq, void *dev_id, struct pt_regs *regs) /* create a signal handler */
signal(SIGIO, &input_handler);
{ /* set current pid the owner of the stdin */ b
/* Do whatever TOP HALF work needs to be done - quickly */

fentl(FILE_DESCRIPTOR, F_SETOWN, getpid());

/* obtain the current file control flags */
oflags = fentl(FILE_DESCRIPTOR, F_GETFL);

/* set the asynchronous flag */
fentl(FILE_DESCRIPTOR, F_SETFL, oflags | FASYNC);

/* Signal the user application that an interrupt occurred */
kill_fasync(&fasync_fpga_queue, SIGIO, POLL_IN);

The /dev/fgpa_int device is assigned to 245,0

Use ‘mknod /dev/fpga_int c 245 0’ to generate the node
The &fpga_ops pointer is used to point to the routines that are
called when the device is accessed from the user application.

return IRQ_HANDLED; // Exit interrupt handler
}

1/12/2010

34 1/12/2010

35 1/12/2010 36



EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

Setting up the file handling operations

The next step is to assign routines to handle the various device
calls through the fpga_fops structure.

I
* Define which file operations are supported
*/

This routine

struct file_operations ~fpga_fops = { handles the

Lowner = THIS_MODULE, device open
llseek D operations
.read NULL,
write NULL,
.readdir NULL,
poll NULL,

et NULL, This routine
“mmap NULL, handles the
open fpga_open, device close
flush NULL, operations
release fpga_release,

fsync D

fasme fpga_fasync, Fre—

loc NULL,

readv. = NULL, h:"":'::r"'c‘"
writev = (LT operations for

the device

1/12/2010

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Al
fpga_fasync() routine

This is invoked by the kernel when the user program opens the
/dev/fpga_int device and issues fcntl(F_SETFL) on the associated
file descriptor.
fasync_helper() ensures that if the driver issues a kill_fasync(), a
SIGIO is dispatched to the owning application.

* function: fpga_fasync
.
*

static struct fasync_struct *fasync_fpga_queue ; // Define queue structure

static int fpga_fasync (int fd, struct file *filp, int on)

/* Register the calling routine in the fasync_fpga_queue */
return fasync_helper(fd, filp, on, &fasync_fpga_queue);
}

1/12/2010

EE382N-4 Embedded Systems Architecture

kill_fasync() routine

kill_fasync() is used to signal the interested process(es) when
data arrives. "kill" is actually a misnomer. This function
asynchronously delivers the SIGIO signal to the processes which
requested it. Since the default action performed when receiving a
signal is to terminate.

The arguments are the signal to send (usually SIGIO) and the
band, which is almost always POLL_IN plus a pointer to the queue
with the list of processes to be notified “fasync_fpga_queue”
Usage:

kill_fasync(&fasync_fpga_queue, SIGIO, POLL_IN);

1/12/2010 39

EE382N-4 Embedded Systems Architecture

Setting up the interrupt from the user space application

The user space setup involves setting up the actions to be
performed and opening the appropriate device.

int main(int argc, char **argv)

int count;
struct sigaction action; // Setup structure for actions to be performed
intfd, re, fc;

sigemptyset(&action.sa_mask);
sigaddset(&action.sa_mask, SIGIO);

action.sa_handler
action.sa_flags =

sighandler; // Identify the routine to do signal handling

/* The sigaction system call is used to set the action taken by a process
on receipt of a specific signal.

sigaction(SIGIO, &action, NULL);

fd = open("/dev/fpga_int", O_RDWR); // Open the device

fentl(fd, F_SETOWN, getpid(); 1l Set the owner of the process
fentl(fd, F_SETFL, fentl(fd, F_GETFL) | O_ASYNC); // Get and set the flags

I+ User routine follows ... *

1/12/2010

40

fentl() routine

fentl((int fd, int cmd) manipulate open file descriptors. It
performs one of various miscellaneous operations on fd. The
operation in question is determined by cmd:
F_GETFL: Read the file descriptor's flags.
F_SETFL: Set the file status flags part of the descriptor's flags to the value
specified by arg. Remaining bits (access mode, file creation flags) in arg are
ignored. On Linux this command can only change the O_APPEND,
O_NONBLOCK, O_ASYNC, and O_DIRECT flags.

F_SETOWN Set the process ID or process group that will receive SIGIO and
SIGURG signals for events on file descriptor fd.

1/12/2010

a1

Signal Handling

The signal handling routine checks to see if the correct signal
arrived. A flag can be set to indicate to the main routine that the
interrupt happened.

int det_int=0; // Flag to indicate that interrupt signal detected
void sighandler(int signo)

if (signo==SIGIO) {

det_int++;

I+ Perform whatever functions need to be done as part of detecting the interrupt

* such as reading data from the device, setting additional flags etc.

K
}

return; /* Return to main loop */

1/12/2010 42



EE382N-4 Embedded Systems Architecture

main_loop() routine

This while loop emulates a program running the main loop i.e.
sleep(). The main loop is interrupted when the SIGIO signal is
received.

while(1) {
P this only returns if a signal arrives */
sleep(86400); /* one day */
if (idet_int)
continue;
num_int++; // Count the number of interrupts - DEBUG ONLY
printf("mon_interrupt: Number of interrupts detected: %d\n", num_int);

det_int=0; // Reset flag for next loop




