
 EE345M Quiz 2 Spring 2009 Solution Page 1

Jonathan W. Valvano

Jonathan W. Valvano April 17, 2009, 10:00 to 10:50am
(15) Question 1. A CAN system with 3 nodes has a baud rate of 50,000 bits/sec.
Part a) First think about the problem, as it is. 50,000 bps is 20μs/bit. The “does it work” issue
involves the average bandwidth. Peak bandwidths can be solved with Fifo queues. Each frame is
11+32+36 = 79 bits, which is 1.58 ms per frame, each node sends one so it takes 4.74 ms to send all
three. 4.74ms is less than 20 ms, so it works. Let x be the CAN baud rate in bps. It will work if
 3*79/x < 0.02sec
 50*3*79 < x
 11850 bps < x
Part b) Bandwidth means data (real information) transfer rate. When selling a communication
system to the public, they want to transfer information, and do not care how many overhead bits
you need or how fast you can send overhead bits. (4 bytes/node*3nodes)/20ms = 600 bytes/sec
Part c) Stuff bits cause transitions in signals with long sequences of 0’s or 1’s. They allow the
receivers to synchronize to the transmitter, reducing the requirement that the baud rates in each
node match exactly. Stuff bits are not used for error checking. They do however prevent errors.
(20) Question 2. Consider a 256-point FFT calculated on 12-bit ADC data sampled at 10 Hz.
Part a) f = k*fs/n = 64*10Hz/256 = 2.5 Hz
Part b) The phase is 45o, or π/4 (could also have been 225 o)
Part c) The FFT output at k and 256-k are complex conjugate pairs of each other (because the input
is real).
Part d) The first term of the FFT is the sum of all the input data, so the real part is 2048*256 =
524,288, and the imaginary part will be zero.
(15) Question 3. Consider the following 16-bit FIFO implementation.
//*********Fifo_AlmostFull**********
// check to see if FIFO is almost full
// Input: none
// Output: true if the fifo is more than 75% full
#define FIFO75 ((3*FIFOSIZE)/2)
// 75% full in bytes
int Fifo_AlmostFull(void){
 unsigned short size;
 size = (unsigned short)PutPt – (unsigned short)GetPt;
 if(PutPt < GetPt){
 size = size +2*FIFOSIZE;
 }
 return size>FIFO75;
}
(25) Question 4. There are multiple threads that need to update a shared LCD display.
void Display(int line, unsigned short num){
asm ldx #Free
asm clra // new value for Free
asm minm 0,x // atomic test and set
asm bcc busy //C=1, if Free went from 1 to 0
 LCD_GoTo(line,1);
 LCD_OutDec(num);
 asm busy:
}

 EE345M Quiz 2 Spring 2009 Solution Page 2

Jonathan W. Valvano

(25) Question 5. Implement the following fork and join synchronization.
Sema4Type Done;
void master(void){
 for(;;){
 fun1();
 OS_InitSemaphore(&Done,-1);
 OS_AddThread(&slave3,50,3);
 OS_AddThread(&slave4,50,3);
 fun2();
 OS_Wait(&Done); // both done
 fun5();
 }
}

void slave3(void){
// none
 fun3();
 OS_Signal(&Done); // done
 OS_Kill();
}

void slave4(void){

 fun4();
 OS_Signal(&Done); // done
 OS_Kill();
}

Part 0) List the semaphore(s) needed
 Sema4Type Done; // define this in shared global space

Part a) Give the C code labeled segment1A for the master to execute between fun1 and fun2
 OS_InitSemaphore(&Done,-1);
 OS_AddThread(&slave3,50,3);
 OS_AddThread(&slave4,50,3);

Part b) Give the C code labeled segment1B for the master to execute between fun2 and fun5
 OS_Wait(&Done); // both done
 // when both slave 3 and 4 are done, done=1

Part c) Give the C code labeled segment3A for the slave3 to execute before fun3

None

Part d) Give the C code labeled segment3B for the slave3 to execute after fun3
 OS_Signal(&Done); // slave 3 is done
 OS_Kill();

Part e) Give the C code labeled segment4A for the slave4 to execute before fun4

None

Part f) Give the C code labeled segment4B for the slave3 to execute after fun4
 OS_Signal(&Done); // slave 3 is done
 OS_Kill();

