
EE319K Spring 2014 Final Exam Page 1

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

Final Exam

Date: May 8, 2014

UT EID: Circle one: VJR, NT, RY

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an
undue advantage:

Signature:

Instructions:
 Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
 You have 180 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly.
 Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1 10

Problem 2 10

Problem 3 15

Problem 4 10

Problem 5 10

Problem 6 10

Problem 7 15

Problem 8 10

Problem 9 10

Total 100

EE319K Spring 2014 Final Exam Page 2

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(10) Question 1:

(i) What is the name given to 1024 bytes?

(ii) The ______________ thread is the execution of the main program, while the ____________ thread
is the execution of the ISR.

(iii) Name the type of FSM where the output value depends on both the current state and input.

(iv) Name the C programming language term that describes the storage of a data structure where the
elements of each row are stored in succession.

(v) The smallest complete unit of serial transmission is called a ________________.

(vi) The term given to the collection of software functions that allow the higher level software to
utilize an I/O device.

(vii) The name given to a local variable with permanent allocation.

(viii) Name the step in an interrupt service routine where the trigger flag is cleared?

(ix) What two actions are implicitly performed after the SysTick counter reaches a zero.

(x) The assembler directive that places a 32 bit word into memory.

EE319K Spring 2014 Final Exam Page 3

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(10) Question 2 (Local Variables).
Given the following C code and its equivalent Assembly code, answer each of the sub-questions.

Line#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Assembly Code

sum EQU 0 number
n EQU 4 number
comp PUSH {R4,R5,R11,LR}
 MOV R11,SP
 SUB R11,#8
 MOV R0,#0
 STR R0,[R11,#sum]
 MOV R1,#1000
 STR R1,[R11,#n]
loop LDR R1,[R11,#n]
 LDR R0,[R11,#sum]
 ADD R0,R1
 STR R0,[R11,sum]
 LDR R1,[R11,#n]
 SUBS R1,#1
 STR R1,[R11,#n]
 BNE loop
 ADD R11,#8
 POP {R4,R5,R11,PC}

C Code

uint32_t comp(void)
{

 uint32_t sum,n;
 sum = 0;
 for(n=1000; n>0 ; n--)
 {
 sum=sum+n;

 }

return sum;

}

a) (4 points) There are four key stages in the implementation of local variables. Identify each of those
stages in the assembly routine above. Write the instruction number that marks the beginning of a stage
and provide a brief one-line statement explaining the purpose of the stage.

b) (2 points) Identify the base pointer in the assembly code and explain its usefulness. In other words,
can we always use the stack pointer for accessing local variables?

c) (4 points) Assuming n were changed from uint32_t to a uint16_t data type, identify all lines of
assembly code that require changing. List below the corrected versions of these lines.

EE319K Spring 2014 Final Exam Page 4

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(15) Question 3 (C Programming with struct).

a) (4 points) Define a generic C struct called MyString that contains two attributes, an array of chars
and an index variable. The character array must be large enough to hold the string “ABCDEFGHIJ”.

b) (5 points) Write a function called LCDOut which accepts a pointer to a struct of type MyString as
a parameter and prints the character at the current index-th location to the LCD using
LCDOutChar(char c). It should then increment the index by 1.

c) (6 points) Call the LCDOut function in a loop from your main program until all characters of the
variable, outStr, are output to the LCD.

___________ LCDOut(___________________________) {

}

void main() {
 MyString outStr; // Assume outStr already initialized

}

EE319K Spring 2014 Final Exam Page 5

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(10) Question 4 (Interrupts).
Using SysTick Interrupt only to generate the following signal on Port E pin 2.

a) (3 points) Assuming the following initialization steps have been done for you:
 - Clock is setup at 50MHz
 - GPIO Port E pin 2 has been configured and an initial value of 0 written to it.
 What values should these three registers be initialized to?

NVIC_ST_CTRL_R 0x07
NVIC_ST_RELOAD_R 200000
NVIC_ST_CURRENT_R 0

b) (7 points) Complete the SysTick_Handler ISR that generates the desired signal. You may
assume a global variable called hilo, is initialized to zero and use it in your ISR.

void SysTick_Handler() {

 GPIO_PORTE_DATA_R ^= 0x04;
 if (NVIC_ST_RELOAD_R == 200000) {

NVIC_ST_RELOAD_R == 300000;
 }else{
 NVIC_ST_RELOAD_R == 200000;
 }
}

}

EE319K Spring 2014 Final Exam Page 6

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(10) Question 5 (UART).
a) (3 points) A serial port (UART1) is configured with default settings to run with a bandwidth of 50K
bytes/sec. What is the baud-rate of this port in bits/sec?

a) (7 points) Complete the subroutine UART_InString that reads a CR-terminated string
from the UART0. The subroutine uses call-by-reference parameter passing. For each character, it waits
for new input using busy-wait synchronization. Read the input character and place it in the string
passed as input. When a CR is read, insert a Zero (Null) in the string and return. You don’t need to
write the UART initialization. The ASCII code for Carriage Return (CR) is 13. You may write the
routine in C OR Assembly
Assembly Code
; Input; R0 has the address of the
; location where the read
; string of characters
; are to be placed
UART_InString

C Code
; Input: str is a pointer to
; the location where the
; string of characters read
; are to be placed
void UART_InString(char *str){

EE319K Spring 2014 Final Exam Page 7

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(10) Question 6 (ADC).
a) (3 points) For a 12-bit ADC with an analog input voltage of 0-3V, what are the following:

(i) ADC precision

(ii) ADC range

(iii) ADC resolution

b) (2 points) What will the above 12-bit ADC return if the input voltage is 1.0V?

c) (5 points) Write an ADC0_In function (in C) that uses busy-wait synchronization to sample the
ADC. The function reads the ADC output, and returns the 12-bit binary number. Assume the ADC has
already been initialized to use sequencer 3 with a software trigger and channel 1. See supplement pages
for ADC registers.

 uint32_t ADC0_In(void) {

EE319K Spring 2014 Final Exam Page 8

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(15) Question 7 (Hardware)
a) (5 points) For the ADC in the previous question, the input analog voltage is provided by the voltage
drop across a resistance consisting of a variable resistor R in series with a resistance Rs. The resistance
Rs (in series with R), is due to the connecting wires, the source resistance and any extraneous effects,
and is roughly 10% of R.
Draw this external circuit in the box below with the series resistances shown clearly. Mark the source
voltage connected across the series resistance connection clearly. Pick any suitable value of R. What is
the voltage that needs to be connected across the series resistance such that the maximum voltage at the
ADC input is 3V?

b) (10 points) The desired LED operating point is 1V, 10mA. Interface this LED to PA2 using
negative logic. You can use any number of 7406 inverters, and any number of resistors. Assume the
VOL of the 7406 is 0.5V. Assume the microcontroller output voltages are VOH = 3.1V and VOL = 0.2V.
Specify values for any resistors needed. Show equations of your calculations used to select resistor
values.

7406

PA2

Microcontroller

Microcontroller

ADC

+3.3V

EE319K Spring 2014 Final Exam Page 9

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(10) Question 8 (FIFO).

a) (2 points) What is the most important feature that first-in-first-out (FIFO) offers for I/O devices?

b) (3 points) In the FIFO implementation using a dummy slot, what are the checks for Full and Empty
FIFO.

c) (5 points) You are designing a low-budget embedded systems microcontroller and are told to reuse
hardware structures aggressively to keep the costs low. Assume you have multiple stacks in your
micro-controller. Explain how you can implement FIFO using only stack(s) that are last-in-first-out
(LIFO)?

EE319K Spring 2014 Final Exam Page 10

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

(10) Question 9 (FSM). Given the following Moore FSM implementation:

const struct State{
 uint8_t out; // Output to PT0
 uint8_t wait; // Wait time in 500ns units
 const struct State next[4]; // Next states
};
typedef const struct State StateType;
#define S0 &fsm[0]
#define S1 &fsm[1]
#define S2 &fsm[2]
#define S3 &fsm[3]

StateType fsm[4] = {
 {0x00, 80, {S0, S1, S0, S2}},
 {0x01, 200, {S1, S2, S1, S3}},
 {0x10, 80, {S2, S3, S2, S0}},
 {0x00, 200, {S3, S0, S3, S1}}
};

StateType *cState; // Current State

a. (7 points) Draw a FSM diagram for the implementation provided. The diagram must capture all the
information included in the implementation.

b. (3 points)Assuming, S0 is the initial state, and the 2-bit input is from Port E pins 1 and 0 what output

sequence is produced upon this sequence of inputs on PE1-0:
 01,11,11,10,00,11

EE319K Spring 2014 Final Exam Page 11

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Spring 2014 Final Exam Page 12

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

EE319K Spring 2014 Final Exam Page 13

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some TM4C123/LM4F120 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-12 11-0
$4003.80A8 12-bit DATA ADC_SSFIFO3

Table 10.3. The TM4C123/LM4F120ADC registers. Each register is 32 bits wide.

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set
the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer,
we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register
to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to
the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. There are 11 on the
TM4C123/LM4F120. Which channel we sample is configured by writing to the ADC_SSMUX3_R register. The
ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on
ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait synchronization.
When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the

EE319K Spring 2014 Final Exam Page 14

Janapa Reddi, Telang, Yerraballi May 08, 2014 9:00am-12:00pm

sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete, assuming the
IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to
clear the corresponding bit in the ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).
 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

