
ARM® Compiler toolchain v4.1 for
µVision

Linker Reference
Copyright © 2008, 2011 ARM. All rights reserved.
ARM DUI 0458B (ID061811)

ARM Compiler toolchain v4.1 for µVision
Linker Reference

Copyright © 2008, 2011 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with or are registered trademarks or trademarks of ARM in the EU and other countries, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks
of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

December 2008 A Non-Confidential Release for RVCT v4.0 for µVision

June 2011 B Non-Confidential Release for ARM Compiler toolchain v4.1 for µVision
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. ii
ID061811 Non-Confidential

Contents
ARM Compiler toolchain v4.1 for µVision Linker
Reference

Chapter 1 Conventions and feedback

Chapter 2 Linker command-line options
2.1 --any_contingency ... 2-5
2.2 --any_placement=algorithm ... 2-6
2.3 --any_sort_order=order .. 2-8
2.4 --arm_only .. 2-9
2.5 --autoat, --no_autoat .. 2-10
2.6 --be8 .. 2-11
2.7 --be32 .. 2-12
2.8 --bestdebug, --no_bestdebug .. 2-13
2.9 --branchnop, --no_branchnop .. 2-14
2.10 --callgraph, --no_callgraph ... 2-15
2.11 --callgraph_file=filename ... 2-17
2.12 --callgraph_output=fmt ... 2-18
2.13 --cgfile=type ... 2-19
2.14 --cgsymbol=type .. 2-20
2.15 --cgundefined=type .. 2-21
2.16 --combreloc, --no_combreloc ... 2-22
2.17 --comment_section, --no_comment_section .. 2-23
2.18 --compress_debug, --no_compress_debug ... 2-24
2.19 --cppinit, --no_cppinit ... 2-25
2.20 --cpu=list .. 2-26
2.21 --cpu=name ... 2-27
2.22 --crosser_veneershare, --no_crosser_veneershare .. 2-28
2.23 --datacompressor=opt ... 2-29
2.24 --debug, --no_debug .. 2-30
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. iii
ID061811 Non-Confidential

Contents
2.25 --diag_error=tag[,tag,...] ... 2-31
2.26 --diag_remark=tag[,tag,...] ... 2-32
2.27 --diag_style=arm|ide|gnu ... 2-33
2.28 --diag_suppress=tag[,tag,...] .. 2-34
2.29 --diag_warning=tag[,tag,...] .. 2-35
2.30 --eager_load_debug, --no_eager_load_debug .. 2-36
2.31 --edit=file_list ... 2-37
2.32 --emit_debug_overlay_relocs .. 2-38
2.33 --emit_debug_overlay_section ... 2-39
2.34 --emit_non_debug_relocs .. 2-40
2.35 --emit_relocs .. 2-41
2.36 --entry=location .. 2-42
2.37 --errors=file .. 2-44
2.38 --exceptions, --no_exceptions .. 2-45
2.39 --exceptions_tables=action .. 2-46
2.40 --export_dynamic, --no_export_dynamic ... 2-47
2.41 --feedback=file ... 2-48
2.42 --feedback_image=option .. 2-49
2.43 --feedback_type=type .. 2-50
2.44 --filtercomment, --no_filtercomment ... 2-51
2.45 --fini=symbol .. 2-52
2.46 --first=section_id .. 2-53
2.47 --force_explicit_attr .. 2-54
2.48 --force_so_throw, --no_force_so_throw ... 2-55
2.49 --fpu=list ... 2-56
2.50 --fpu=name .. 2-57
2.51 --help .. 2-58
2.52 --info=topic[,topic,...] .. 2-59
2.53 --info_lib_prefix=opt ... 2-62
2.54 --init=symbol .. 2-63
2.55 --inline, --no_inline ... 2-64
2.56 --inlineveneer, --no_inlineveneer ... 2-65
2.57 input-file-list .. 2-66
2.58 --keep=section_id .. 2-68
2.59 --keep_protected_symbols .. 2-70
2.60 --largeregions, --no_largeregions .. 2-71
2.61 --last=section_id .. 2-72
2.62 --ldpartial .. 2-73
2.63 --legacyalign, --no_legacyalign .. 2-74
2.64 --libpath=pathlist .. 2-75
2.65 --library_type=lib .. 2-76
2.66 --list=file ... 2-77
2.67 --list_mapping_symbols, --no_list_mapping_symbols ... 2-78
2.68 --load_addr_map_info, --no_load_addr_map_info .. 2-79
2.69 --locals, --no_locals .. 2-80
2.70 --ltcg ... 2-81
2.71 --mangled, --unmangled .. 2-82
2.72 --map, --no_map .. 2-83
2.73 --match=crossmangled .. 2-84
2.74 --max_veneer_passess=value ... 2-85
2.75 --max_visibility=type .. 2-86
2.76 --merge, --no_merge .. 2-87
2.77 --muldefweak, --no_muldefweak .. 2-88
2.78 --output=file .. 2-89
2.79 --override_visibility ... 2-90
2.80 --pad=num ... 2-91
2.81 --paged .. 2-92
2.82 --pagesize=pagesize ... 2-93
2.83 --partial ... 2-94
2.84 --piveneer, --no_piveneer .. 2-95
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. iv
ID061811 Non-Confidential

Contents
2.85 --predefine="string" .. 2-96
2.86 --privacy ... 2-98
2.87 --reduce_paths, --no_reduce_paths .. 2-99
2.88 --ref_cpp_init, --no_ref_cpp_init ... 2-100
2.89 --reloc ... 2-101
2.90 --remarks ... 2-102
2.91 --remove, --no_remove .. 2-103
2.92 --ro_base=address .. 2-104
2.93 --ropi .. 2-105
2.94 --rosplit ... 2-106
2.95 --rw_base=address .. 2-107
2.96 --rwpi .. 2-108
2.97 --scanlib, --no_scanlib .. 2-109
2.98 --scatter=file ... 2-110
2.99 --section_index_display=type .. 2-111
2.100 --show_cmdline .. 2-112
2.101 --show_full_path .. 2-113
2.102 --show_parent_lib .. 2-114
2.103 --show_sec_idx .. 2-115
2.104 --sort=algorithm ... 2-116
2.105 --split .. 2-118
2.106 --startup=symbol, --no_startup .. 2-119
2.107 --strict ... 2-120
2.108 --strict_enum_size, --no_strict_enum_size .. 2-121
2.109 --strict_flags, --no_strict_flags .. 2-122
2.110 --strict_ph, --no_strict_ph ... 2-123
2.111 --strict_relocations, --no_strict_relocations .. 2-124
2.112 --strict_symbols, --no_strict_symbols .. 2-125
2.113 --strict_visibility, --no_strict_visibility .. 2-126
2.114 --strict_wchar_size, --no_strict_wchar_size ... 2-127
2.115 --symbolic .. 2-128
2.116 --symbols, --no_symbols .. 2-129
2.117 --symdefs=file .. 2-130
2.118 --tailreorder, --no_tailreorder .. 2-131
2.119 --thumb2_library, --no_thumb2_library .. 2-132
2.120 --tiebreaker=option .. 2-133
2.121 --undefined=symbol ... 2-134
2.122 --undefined_and_export=symbol ... 2-135
2.123 --unresolved=symbol ... 2-136
2.124 --use_definition_visibility .. 2-137
2.125 --userlibpath=pathlist ... 2-138
2.126 --veneer_inject_type=type ... 2-139
2.127 --veneer_pool_size=size .. 2-140
2.128 --veneershare, --no_veneershare .. 2-141
2.129 --verbose .. 2-142
2.130 --version_number ... 2-143
2.131 --vfemode=mode ... 2-144
2.132 --via=file ... 2-145
2.133 --vsn ... 2-146
2.134 --xref, --no_xref .. 2-147
2.135 --xrefdbg, --no_xrefdbg .. 2-148
2.136 --xref{from|to}=object(section) ... 2-149
2.137 --zi_base=address ... 2-150

Chapter 3 Linker steering file command reference
3.1 EXPORT .. 3-2
3.2 HIDE .. 3-3
3.3 IMPORT ... 3-4
3.4 RENAME ... 3-5
3.5 REQUIRE .. 3-7
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. v
ID061811 Non-Confidential

Contents
3.6 RESOLVE .. 3-8
3.7 SHOW .. 3-10

Chapter 4 Formal syntax of the scatter file
4.1 BNF notation used in scatter-loading description syntax ... 4-3
4.2 Syntax of a scatter file ... 4-4
4.3 About load region descriptions .. 4-5
4.4 Syntax of a load region description .. 4-6
4.5 Load region attributes .. 4-7
4.6 About execution region descriptions .. 4-8
4.7 Syntax of an execution region description ... 4-9
4.8 Execution region attributes .. 4-11
4.9 Address attributes for load and execution regions ... 4-14
4.10 Considerations when using a relative address +offset for load regions 4-16
4.11 Considerations when using a relative address +offset for execution regions 4-17
4.12 Inheritance rules for load region address attributes ... 4-18
4.13 Inheritance rules for execution region address attributes 4-19
4.14 Inheritance rules for the RELOC address attribute .. 4-20
4.15 About input section descriptions .. 4-21
4.16 Syntax of an input section description ... 4-22
4.17 How the linker resolves multiple matches when processing scatter files 4-26
4.18 Behavior when .ANY sections overflow because of linker-generated content 4-28
4.19 How the linker resolves path names when processing scatter files 4-29
4.20 About Expression evaluation in scatter files .. 4-30
4.21 Expression usage in scatter files ... 4-31
4.22 Expression rules in scatter files ... 4-32
4.23 Execution address built-in functions for use in scatter files 4-34
4.24 Scatter files containing relative base address load regions and a ZI execution region ..

4-36
4.25 ScatterAssert function and load address related functions 4-38
4.26 Symbol related function in a scatter file ... 4-40
4.27 Example of aligning a base address in execution space but still tightly packed in load

space ... 4-41
4.28 AlignExpr(expr, align) function ... 4-42
4.29 GetPageSize() function .. 4-43
4.30 SizeOfHeaders() function .. 4-44
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. vi
ID061811 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• your name and company
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 1-1
ID061811 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0458B
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Product Manuals, http://www.keil.com/support/man_arm.htm
• Keil Support Knowledgebase, http://www.keil.com/support/knowledgebase.asp
• Keil Product Support, http://www.keil.com/support/
• ARM Glossary,

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 1-2
ID061811 Non-Confidential

Chapter 2
Linker command-line options

The following topics describe the command-line options supported by the linker, armlink:
• --any_contingency on page 2-5
• --any_placement=algorithm on page 2-6
• --any_sort_order=order on page 2-8
• --arm_only on page 2-9
• --autoat, --no_autoat on page 2-10
• --be8 on page 2-11
• --be32 on page 2-12
• --bestdebug, --no_bestdebug on page 2-13
• --branchnop, --no_branchnop on page 2-14
• --callgraph, --no_callgraph on page 2-15
• --callgraph_file=filename on page 2-17
• --callgraph_output=fmt on page 2-18
• --cgfile=type on page 2-19
• --cgsymbol=type on page 2-20
• --cgundefined=type on page 2-21
• --combreloc, --no_combreloc on page 2-22
• --comment_section, --no_comment_section on page 2-23
• --compress_debug, --no_compress_debug on page 2-24
• --cppinit, --no_cppinit on page 2-25
• --cpu=list on page 2-26
• --cpu=name on page 2-27
• --crosser_veneershare, --no_crosser_veneershare on page 2-28
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-1
ID061811 Non-Confidential

Linker command-line options
• --datacompressor=opt on page 2-29
• --debug, --no_debug on page 2-30
• --diag_error=tag[,tag,...] on page 2-31
• --diag_remark=tag[,tag,...] on page 2-32
• --diag_style=arm|ide|gnu on page 2-33
• --diag_suppress=tag[,tag,...] on page 2-34
• --diag_warning=tag[,tag,...] on page 2-35
• --eager_load_debug, --no_eager_load_debug on page 2-36
• --edit=file_list on page 2-37
• --emit_debug_overlay_relocs on page 2-38
• --emit_debug_overlay_section on page 2-39
• --emit_non_debug_relocs on page 2-40
• --emit_relocs on page 2-41
• --entry=location on page 2-42
• --errors=file on page 2-44
• --exceptions, --no_exceptions on page 2-45
• --exceptions_tables=action on page 2-46
• --export_dynamic, --no_export_dynamic on page 2-47
• --feedback=file on page 2-48
• --feedback_image=option on page 2-49
• --feedback_type=type on page 2-50
• --filtercomment, --no_filtercomment on page 2-51
• --fini=symbol on page 2-52
• --first=section_id on page 2-53
• --force_explicit_attr on page 2-54
• --force_so_throw, --no_force_so_throw on page 2-55
• --fpu=list on page 2-56
• --fpu=name on page 2-57
• --help on page 2-58
• --info=topic[,topic,...] on page 2-59
• --info_lib_prefix=opt on page 2-62
• --init=symbol on page 2-63
• --inline, --no_inline on page 2-64
• --inlineveneer, --no_inlineveneer on page 2-65
• input-file-list on page 2-66
• --keep=section_id on page 2-68
• --keep_protected_symbols on page 2-70
• --largeregions, --no_largeregions on page 2-71
• --last=section_id on page 2-72
• --ldpartial on page 2-73
• --legacyalign, --no_legacyalign on page 2-74
• --libpath=pathlist on page 2-75
• --library_type=lib on page 2-76
• --list=file on page 2-77
• --list_mapping_symbols, --no_list_mapping_symbols on page 2-78
• --load_addr_map_info, --no_load_addr_map_info on page 2-79
• --locals, --no_locals on page 2-80
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-2
ID061811 Non-Confidential

Linker command-line options
• --ltcg on page 2-81
• --mangled, --unmangled on page 2-82
• --map, --no_map on page 2-83
• --match=crossmangled on page 2-84
• --max_veneer_passess=value on page 2-85
• --max_visibility=type on page 2-86
• --merge, --no_merge on page 2-87
• --muldefweak, --no_muldefweak on page 2-88
• --output=file on page 2-89
• --override_visibility on page 2-90
• --pad=num on page 2-91
• --paged on page 2-92
• --pagesize=pagesize on page 2-93
• --partial on page 2-94
• --piveneer, --no_piveneer on page 2-95
• --predefine="string" on page 2-96
• --privacy on page 2-98
• --reduce_paths, --no_reduce_paths on page 2-99
• --ref_cpp_init, --no_ref_cpp_init on page 2-100
• --reloc on page 2-101
• --remarks on page 2-102
• --remove, --no_remove on page 2-103
• --ro_base=address on page 2-104
• --ropi on page 2-105
• --rosplit on page 2-106
• --rw_base=address on page 2-107
• --rwpi on page 2-108
• --scanlib, --no_scanlib on page 2-109
• --scatter=file on page 2-110
• --section_index_display=type on page 2-111
• --show_cmdline on page 2-112
• --show_full_path on page 2-113
• --show_parent_lib on page 2-114
• --show_sec_idx on page 2-115
• --sort=algorithm on page 2-116
• --split on page 2-118
• --startup=symbol, --no_startup on page 2-119
• --strict on page 2-120
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_flags, --no_strict_flags on page 2-122
• --strict_ph, --no_strict_ph on page 2-123
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_visibility, --no_strict_visibility on page 2-126
• --strict_wchar_size, --no_strict_wchar_size on page 2-127
• --symbolic on page 2-128
• --symbols, --no_symbols on page 2-129
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-3
ID061811 Non-Confidential

Linker command-line options
• --symdefs=file on page 2-130
• --tailreorder, --no_tailreorder on page 2-131
• --thumb2_library, --no_thumb2_library on page 2-132
• --tiebreaker=option on page 2-133
• --undefined=symbol on page 2-134
• --undefined_and_export=symbol on page 2-135
• --unresolved=symbol on page 2-136
• --use_definition_visibility on page 2-137
• --userlibpath=pathlist on page 2-138
• --veneer_inject_type=type on page 2-139
• --veneer_pool_size=size on page 2-140
• --veneershare, --no_veneershare on page 2-141
• --verbose on page 2-142
• --version_number on page 2-143
• --vfemode=mode on page 2-144
• --via=file on page 2-145
• --vsn on page 2-146
• --xref, --no_xref on page 2-147
• --xrefdbg, --no_xrefdbg on page 2-148
• --xref{from|to}=object(section) on page 2-149
• --zi_base=address on page 2-150.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-4
ID061811 Non-Confidential

Linker command-line options
2.1 --any_contingency

This option permits extra space in any execution regions containing .ANY sections for
linker-generated content such as veneers and alignment padding. Two percent of the space is
reserved for veneers.

When a region is about to overflow because of potential padding, armlink lowers the priority of
the .ANY selector.

This option is off by default. That is, armlink does not attempt to calculate padding and strictly
follows the .ANY priorities.

Use this option with the --scatter option.

2.1.1 See also

Tasks
Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-23.

Concepts
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28.

Reference
• --any_placement=algorithm on page 2-6
• --any_sort_order=order on page 2-8
• --info=topic[,topic,...] on page 2-59
• --scatter=file on page 2-110
• Syntax of an input section description on page 4-22.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-5
ID061811 Non-Confidential

Linker command-line options
2.2 --any_placement=algorithm

Controls the placement of sections that are placed using the .ANY module selector.

2.2.1 Syntax

--any_placement=algorithm

where algorithm is one of the following:

best_fit Place the section in the execution region that currently has the least free space but
is also sufficient to contain the section.

first_fit Place the section in the first execution region that has sufficient space. The
execution regions are examined in the order they are defined in the scatter file.

next_fit Place the section using the following rules:
• place in the current execution region if there is sufficient free space
• place in the next execution region only if there is insufficient space in the

current region
• never place a section in a previous execution region.

worst_fit Place the section in the execution region that currently has the most free space.

Use this option with the --scatter option.

2.2.2 Usage

The placement algorithms interact with scatter files and --any_contingency as follows:

Interaction with normal scatter-loading rules
Scatter-loading with or without .ANY assigns a section to the most specific
selector. All algorithms continue to assign to the most specific selector in
preference to .ANY priority or size considerations.

Interaction with .ANY priority
Priority is considered after assignment to the most specific selector in all
algorithms.
worst_fit and best_fit consider priority before their individual placement
criteria. For example, you might have .ANY1 and .ANY2 selectors, with the .ANY1
region having the most free space. When using worst_fit the section is assigned
to .ANY2 because it has higher priority. Only if the priorities are equal does the
algorithm come into play.
first_fit considers the most specific selector first, then priority. It does not
introduce any more placement rules.
next_fit also does not introduce any more placement rules. If a region is marked
full during next_fit, that region cannot be considered again regardless of priority.

Interaction with --any_contingency
The priority of a .ANY selector is reduced to 0 if the region might overflow because
of linker-generated content. This is enabled and disabled independently of the
sorting and placement algorithms.
armlink calculates a worst-case contingency for each section.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-6
ID061811 Non-Confidential

Linker command-line options
For worst_fit, best_fit, and first_fit, when a region is about to overflow
because of the contingency, armlink lowers the priority of the related .ANY
selector.
For next_fit, when a possible overflow is detected, armlink marks that section as
FULL and does not consider it again. This stays consistent with the rule that when
a section is full it can never be revisited.

2.2.3 Default

The default option is worst_fit.

2.2.4 See also

Tasks
Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-23.

Concepts
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28
Using the Linker:
• Examples of using placement algorithms for .ANY sections on page 8-26
• Example of next_fit algorithm showing behavior of full regions, selectors, and priority on

page 8-28.

Reference
• --any_contingency on page 2-5
• --any_sort_order=order on page 2-8
• --info=topic[,topic,...] on page 2-59
• --scatter=file on page 2-110
• Syntax of an input section description on page 4-22.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-7
ID061811 Non-Confidential

Linker command-line options
2.3 --any_sort_order=order

Controls the sort order of input sections that are placed using the .ANY module selector.

2.3.1 Syntax

--any_sort_order=order

where order is one of the following:

descending_size

Sort input sections in descending size order.

cmdline Sort input sections by command-line index.

By default, sections that have the same properties are resolved using the creation index. You can
use the --tiebreaker command-line option to resolve sections by the order they appear on the
linker command-line.

Use this option with the --scatter option.

2.3.2 Usage

The sorting governs the order that sections are processed during .ANY assignment. Normal
scatter-loading rules, for example R0 before RW, are obeyed after the sections are assigned to
regions.

2.3.3 Default

The default option is descending_size.

2.3.4 See also

Tasks
Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-23.

Concepts
Using the Linker:
• Examples of using sorting algorithms for .ANY sections on page 8-30.

Reference
• --any_contingency on page 2-5
• --any_placement=algorithm on page 2-6
• --info=topic[,topic,...] on page 2-59
• --scatter=file on page 2-110
• --tiebreaker=option on page 2-133
• Syntax of an input section description on page 4-22.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-8
ID061811 Non-Confidential

Linker command-line options
2.4 --arm_only

This option enables the linker to target the ARM instruction set only. If the linker detects any
objects requiring Thumb® state, an error is generated.

2.4.1 See also

Reference
Compiler Reference:
• --arm on page 3-11
• --arm_only on page 3-11
• --thumb on page 3-90.
Assembler Reference:
• --arm on page 2-6
• --arm_only on page 2-6
• --thumb on page 2-23.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-9
ID061811 Non-Confidential

Linker command-line options
2.5 --autoat, --no_autoat
This option controls the automatic assignment of __at sections to execution regions. __at
sections are sections that must be placed at a specific address.

2.5.1 Usage

If enabled, the linker automatically selects an execution region for each __at section. If a
suitable execution region does not exist, the linker creates a load region and an execution region
to contain the __at section.

If disabled, the standard scatter-loading section selection rules apply.

2.5.2 Default

The default is --autoat.

2.5.3 Restrictions

You cannot use __at section placement with position independent execution regions.

2.5.4 See also

Concepts
Using the Linker:
• Automatic placement of __at sections on page 8-37
• Manual placement of __at sections on page 8-39.

Reference
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-10
ID061811 Non-Confidential

Linker command-line options
2.6 --be8

This option specifies ARMv6 Byte Invariant Addressing big-endian mode.

This is the default Byte Addressing mode for ARMv6 and later big-endian images.It means that
the linker reverses the endianness of the instructions to give little-endian code and big-endian
data for input objects that have been compiled or assembled as big-endian.

Byte Invariant Addressing mode is only available on ARM processors that support ARMv6 and
above.

2.6.1 See also

Other information
• ARM Architecture Reference Manuals,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-11
ID061811 Non-Confidential

Linker command-line options
2.7 --be32

This option specifies legacy Word Invariant Addressing big-endian mode, that is, identical to
big-endian images prior to ARMv6. This produces big-endian code and data.

Word Invariant Addressing mode is the default mode for all pre-ARMv6 big-endian images.

2.7.1 See also

Other information
• ARM Architecture Reference Manuals,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-12
ID061811 Non-Confidential

Linker command-line options
2.8 --bestdebug, --no_bestdebug
This option selects between linking for smallest code/data size or best debug illusion. Input
objects might contain common data (COMDAT) groups, but these might not be identical across
all input objects because of differences such as objects compiled with different optimization
levels.

2.8.1 Default

The default is --no_bestdebug. This ensures that the code and data of the final image are the same
regardless of whether you compile for debug or not. The smallest COMDAT groups are selected
when linking, at the expense of a possibly slightly poorer debug illusion.

2.8.2 Usage

Use --bestdebug to select COMDAT groups with the best debug view. Be aware that the code
and data of the final image might not be the same when building with or without debug.

2.8.3 Example

For two objects compiled with different optimization levels:

armcc -c -O2 file1.c
armcc -c -O0 file2.c
armlink --bestdebug fil1.o file2.o -o image.axf

2.8.4 See also

Concepts
Using the Linker:
• Elimination of common debug sections on page 5-2
• Elimination of common groups or sections on page 5-3
• Elimination of unused sections on page 5-4
• Elimination of unused virtual functions on page 5-5.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-13
ID061811 Non-Confidential

Linker command-line options
2.9 --branchnop, --no_branchnop
This option causes the linker to replace any branch with a relocation that resolves to the next
instruction with a NOP. This is the default behavior. However, there are cases where you might
want to disable the option, for example, when performing verification or pipeline flushes.

2.9.1 Default

The default is --branchnop.

Use --no_branchnop to disable this behavior.

2.9.2 See also

Concepts
Using the Linker:
• Handling branches that optimize to a NOP on page 5-20.

Reference
• --inline, --no_inline on page 2-64
• --tailreorder, --no_tailreorder on page 2-131.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-14
ID061811 Non-Confidential

Linker command-line options
2.10 --callgraph, --no_callgraph
This option creates a file containing a static callgraph of functions. The callgraph gives
definition and reference information for all functions in the image.

Note
 If you use the --partial option to create a partially linked object, then no callgraph file is
created.

2.10.1 Usage

The callgraph file:

• is saved in the same directory as the generated image.

• has the same name as the linked image. Use the --callgraph_file=filename option to
specify a different callgraph filename.

• has a default output format of HTML. Use the --callgraph_output=fmt option to control
the output format.

Note
 If the linker is to calculate the function stack usage, any functions defined in the assembler files
must have the appropriate:
• PROC and ENDP directives
• FRAME PUSH and FRAME POP directives.

For each function func the linker lists the:
• processor state for which the function is compiled (ARM or Thumb)
• set of functions that call func
• set of functions that are called by func
• number of times the address of func is used in the image.

In addition, the callgraph identifies functions that are:
• called through interworking veneers
• defined outside the image
• permitted to remain undefined (weak references)
• called through a Procedure Linkage Table (PLT)
• not called but still exist in the image.

The static callgraph also gives information about stack usage. It lists the:

• size of the stack frame used by each function

• maximum size of the stack used by the function over any call sequence, that is, over any
acyclic chain of function calls.

If there is a cycle, or if the linker detects a function with no stack size information in the call
chain, + Unknown is added to the stack usage. A reason is added to indicate why stack usage is
unknown.

The linker reports missing stack frame information if there is no debug frame information for
the function.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-15
ID061811 Non-Confidential

Linker command-line options
For indirect functions, the linker cannot reliably determine which function made the indirect
call. This might affect how the maximum stack usage is calculated for a call chain. The linker
lists all function pointers used in the image.

Use frame directives in assembly language code to describe how your code uses the stack. These
directives ensure that debug frame information is present for debuggers to perform stack
unwinding or profiling.

2.10.2 Default

The default is --no_callgraph.

2.10.3 See also

Reference
• --callgraph_file=filename on page 2-17
• --callgraph_output=fmt on page 2-18
• --cgfile=type on page 2-19
• --cgsymbol=type on page 2-20
• --cgundefined=type on page 2-21
• Chapter 4 Formal syntax of the scatter file.
Assembler Reference:
• FRAME POP on page 5-39
• FRAME PUSH on page 5-40
• FUNCTION or PROC on page 5-47
• ENDFUNC or ENDP on page 5-49.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-16
ID061811 Non-Confidential

Linker command-line options
2.11 --callgraph_file=filename

This option controls the output filename of the callgraph.

2.11.1 Syntax

--callgraph_file=filename

where filename is the callgraph filename.

The default filename is the same as the linked image.

2.11.2 See also

Reference
• --callgraph, --no_callgraph on page 2-15
• --callgraph_output=fmt on page 2-18
• --cgfile=type on page 2-19
• --cgsymbol=type on page 2-20
• --cgundefined=type on page 2-21
• --output=file on page 2-89
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-17
ID061811 Non-Confidential

Linker command-line options
2.12 --callgraph_output=fmt

This option controls the output format of the callgraph.

2.12.1 Syntax

--callgraph_output=fmt

Where fmt can be one of the following:
html Outputs the callgraph in HTML format.
text Outputs the callgraph in plain text format.

2.12.2 Default

The default is --callgraph_output=html.

2.12.3 See also

Reference
• --callgraph, --no_callgraph on page 2-15
• --callgraph_file=filename on page 2-17
• --cgfile=type on page 2-19
• --cgsymbol=type on page 2-20
• --cgundefined=type on page 2-21
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-18
ID061811 Non-Confidential

Linker command-line options
2.13 --cgfile=type

This option controls what files are used to obtain the symbols to be included in the callgraph.

2.13.1 Syntax

--cgfile=type

where type can be one of the following:
all Includes symbols from all files.
user Includes only symbols from user defined objects and libraries.
system Includes only symbols from system libraries.

2.13.2 Default

The default is --cgfile=all.

2.13.3 See also

Reference
• --callgraph, --no_callgraph on page 2-15
• --callgraph_file=filename on page 2-17
• --callgraph_output=fmt on page 2-18
• --cgsymbol=type on page 2-20
• --cgundefined=type on page 2-21
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-19
ID061811 Non-Confidential

Linker command-line options
2.14 --cgsymbol=type

This option controls what symbols are included in the callgraph.

2.14.1 Syntax

--cgsymbol=type

Where type can be one of the following:
all Includes both local and global symbols.
locals Includes only local symbols.
globals Includes only global symbols.

2.14.2 Default

The default is --cgsymbol=all.

2.14.3 See also

Reference
• --callgraph, --no_callgraph on page 2-15
• --callgraph_file=filename on page 2-17
• --callgraph_output=fmt on page 2-18
• --cgfile=type on page 2-19
• --cgundefined=type on page 2-21
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-20
ID061811 Non-Confidential

Linker command-line options
2.15 --cgundefined=type

This option controls what undefined references are included in the callgraph.

2.15.1 Syntax

--cgundefined=type

Where type can be one of the following:
all Includes both function entries and calls to undefined weak references.
entries Includes function entries for undefined weak references.
calls Includes calls to undefined weak references.
none Omits all undefined weak references from the output.

2.15.2 Default

The default is --cgundefined=all.

2.15.3 See also

Reference
• --callgraph, --no_callgraph on page 2-15
• --callgraph_file=filename on page 2-17
• --callgraph_output=fmt on page 2-18
• --cgfile=type on page 2-19
• --cgsymbol=type on page 2-20
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-21
ID061811 Non-Confidential

Linker command-line options
2.16 --combreloc, --no_combreloc
This option enables or disables the linker reordering of the dynamic relocations so that a
dynamic loader can process them more efficiently. --combreloc is the more efficient option.

2.16.1 Default

The default is --combreloc.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-22
ID061811 Non-Confidential

Linker command-line options
2.17 --comment_section, --no_comment_section
This option controls the inclusion of a comment section .comment in the final image.

Use --no_comment_section to strip the text in the .comment section, to help reduce the image size.

Note
 You can also use the --filtercomment option to merge comments.

2.17.1 Default

The default is --comment_section.

2.17.2 See also

Concepts
• --filtercomment, --no_filtercomment on page 2-51
Using the Linker:
• About merging comment sections on page 5-23.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-23
ID061811 Non-Confidential

Linker command-line options
2.18 --compress_debug, --no_compress_debug
This option causes the linker to compress .debug_* sections, if it is sensible to do so. This
removes some redundancy and reduces debug table size. Using --compress_debug can
significantly increase the time required to link an image. Debug compression can only be
performed on DWARF3 debug data, not DWARF2.

2.18.1 Default

The default is --no_compress_debug.

2.18.2 See also

Other information
• The DWARF Debugging Standard, http://dwarfstd.org/
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-24
ID061811 Non-Confidential

Linker command-line options
2.19 --cppinit, --no_cppinit
This option enables the linker to use alternative C++ libraries with a different initialization
symbol if required.

2.19.1 Syntax

--cppinit=symbol

If --cppinit=symbol is not specified then the default symbol __cpp_initialize__aeabi_ is
assumed.

--no_cppinit does not take a symbol argument.

2.19.2 Effect

The linker adds a non-weak reference to symbol if any static constructor or destructor sections
are detected.

For --cppinit=__cpp_initialize__aeabi_, the linker processes R_ARM_TARGET1 relocations
as R_ARM_REL32, because this is required by the __cpp_initialize__aeabi_ function. In all
other cases R_ARM_TARGET1 relocations are processed as R_ARM_ABS32.

2.19.3 See also

Concepts
Using ARM C and C++ Libraries and Floating-Point Support:
• Initialization of the execution environment and execution of the application on page 2-55
• C++ initialization, construction and destruction on page 2-56.

Reference
• --ref_cpp_init, --no_ref_cpp_init on page 2-100.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-25
ID061811 Non-Confidential

Linker command-line options
2.20 --cpu=list

This option lists the supported processor names that you can use with --cpu=name.

2.20.1 See also

Reference
• --cpu=name on page 2-27.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-26
ID061811 Non-Confidential

Linker command-line options
2.21 --cpu=name

This option enables the linker to determine the target ARM processor. It has the same format as
the option supported by the compiler.

2.21.1 Syntax

--cpu=name

Where name is the name of an ARM processor. For details, see the description of --cpu=name
compiler option.

2.21.2 Usage

The link phase fails if any of the component object files rely on features that are incompatible
with the selected processor. The linker also uses this option to optimize the choice of system
libraries and any veneers that need to be generated when building the final image. The default
is to select a CPU that is compatible with all of the component object files. That is, to select the
most up-to-date architecture among all input objects.

Note
 If the --cpu option has a built-in floating-point unit (FPU) then the linker implies
--fpu=built-in_fpu. For example, --cpu=Cortex-R4F implies --fpu=vfpv3_d16.

2.21.3 See also

Reference
• --cpu=list on page 2-26
• --fpu=list on page 2-56
• --fpu=name on page 2-57.
Compiler Reference:
• --cpu=list on page 3-20
• --cpu=name on page 3-20
• --fpu=list on page 3-43
• --fpu=name on page 3-44.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-27
ID061811 Non-Confidential

Linker command-line options
2.22 --crosser_veneershare, --no_crosser_veneershare
Enables or disables veneer sharing across execution regions.

The default is --crosser_veneershare, and enables veneer sharing across execution regions.

--no_crosser_veneershare prohibits veneer sharing across execution regions.

2.22.1 See also

Reference
• --veneershare, --no_veneershare on page 2-141.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-28
ID061811 Non-Confidential

Linker command-line options
2.23 --datacompressor=opt

This option enables you to specify one of the supplied algorithms for RW data compression. If
you do not specify a data compression algorithm, the linker chooses the most appropriate one
for you automatically. In general, it is not necessary to override this choice.

2.23.1 Syntax

--datacompressor=opt

Where opt is one of the following:
on Enables RW data compression to minimize ROM size.
off Disables RW data compression.
list Lists the data compressors available to the linker.
id id is a data compression algorithm:

Specifying a compressor adds a decompressor to the code area. If the final image
does not have compressed data, the decompressor is not added.

2.23.2 Default

The default is --datacompressor=on.

2.23.3 See also

Concepts
Using the Linker:
• Optimization with RW data compression on page 5-12
• How the linker chooses a compressor on page 5-13
• How compression is applied on page 5-15
• Working with RW data compression on page 5-16.

Table 2-1 Data compressor algorithms

id Compression algorithm

0 run-length encoding

1 run-length encoding, with LZ77 on small-repeats

2 complex LZ77 compression
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-29
ID061811 Non-Confidential

Linker command-line options
2.24 --debug, --no_debug
This option controls the generation of debug information in the output file. Debug information
includes debug input sections and the symbol/string table.

2.24.1 Default

The default is --debug.

2.24.2 Usage

Use --no_debug to exclude debug information from the output file. The resulting ELF image is
smaller, but you cannot debug it at source level. The linker discards any debug input section it
finds in the input objects and library members, and does not include the symbol and string table
in the image. This only affects the image size as loaded into the debugger. It has no effect on the
size of any resulting binary image that is downloaded to the target.

If you are using --partial the linker creates a partially-linked object without any debug data.

Note
 Do not use --no_debug if a fromelf --fieldoffsets step is required. If your image is produced
without debug information, fromelf cannot:
• translate the image into other file formats
• produce a meaningful disassembly listing.

2.24.3 See also

Reference
Using the fromelf Image Converter:
• --fieldoffsets on page 4-28.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-30
ID061811 Non-Confidential

Linker command-line options
2.25 --diag_error=tag[,tag,...]

This option sets diagnostic messages that have a specific tag to error severity.

2.25.1 Syntax

--diag_error=tag[,tag,...]

Where tag can be:
• a diagnostic message number to set to error severity
• warning, to treat all warnings as errors.

2.25.2 See also

Reference
• --diag_remark=tag[,tag,...] on page 2-32
• --diag_style=arm|ide|gnu on page 2-33
• --diag_suppress=tag[,tag,...] on page 2-34
• --diag_warning=tag[,tag,...] on page 2-35
• --errors=file on page 2-44
• --remarks on page 2-102
• --strict on page 2-120.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-31
ID061811 Non-Confidential

Linker command-line options
2.26 --diag_remark=tag[,tag,...]

This option sets diagnostic messages that have a specific tag to remark severity.

You can use the --remarks option to display these messages.

2.26.1 Syntax

--diag_remark=tag[,tag,...]

Where tag is a comma-separated list of diagnostic message numbers.

2.26.2 See also

Reference
• --diag_error=tag[,tag,...] on page 2-31
• --diag_style=arm|ide|gnu on page 2-33
• --diag_suppress=tag[,tag,...] on page 2-34
• --diag_warning=tag[,tag,...] on page 2-35
• --errors=file on page 2-44
• --remarks on page 2-102
• --strict on page 2-120.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-32
ID061811 Non-Confidential

Linker command-line options
2.27 --diag_style=arm|ide|gnu

This option changes the formatting of warning and error messages.

2.27.1 Default

The default is --diag_style=arm.

2.27.2 Usage

--diag_style=gnu matches the format reported by the GNU Compiler, gcc.

--diag_style=ide matches the format reported by Microsoft Visual Studio.

2.27.3 See also

Reference
• --diag_error=tag[,tag,...] on page 2-31
• --diag_remark=tag[,tag,...] on page 2-32
• --diag_suppress=tag[,tag,...] on page 2-34
• --diag_warning=tag[,tag,...] on page 2-35
• --errors=file on page 2-44
• --remarks on page 2-102
• --strict on page 2-120.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-33
ID061811 Non-Confidential

Linker command-line options
2.28 --diag_suppress=tag[,tag,...]

This option suppresses all diagnostic messages that have a specific tag.

2.28.1 Syntax

--diag_suppress=tag[,tag,...]

Where tag can be:
• a diagnostic message number to be suppressed
• error, to suppress all errors that can be downgraded
• warning, to suppress all warnings.

2.28.2 Example

To suppress the warning messages that have numbers L6314W and L6305W, use the following
command:

armlink --diag_suppress=L6314,L6305 ...

2.28.3 See also

Reference
• --diag_error=tag[,tag,...] on page 2-31
• --diag_remark=tag[,tag,...] on page 2-32
• --diag_style=arm|ide|gnu on page 2-33
• --diag_warning=tag[,tag,...] on page 2-35
• --errors=file on page 2-44
• --remarks on page 2-102
• --strict on page 2-120.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-34
ID061811 Non-Confidential

Linker command-line options
2.29 --diag_warning=tag[,tag,...]

This option sets diagnostic messages that have a specific tag to warning severity.

2.29.1 Syntax

--diag_warning=tag[,tag,...]

Where tag can be:
• a diagnostic message number to set to warning severity
• error, to set all errors that can be downgraded to warnings.

2.29.2 See also

Reference
• --diag_error=tag[,tag,...] on page 2-31
• --diag_remark=tag[,tag,...] on page 2-32
• --diag_style=arm|ide|gnu on page 2-33
• --diag_suppress=tag[,tag,...] on page 2-34
• --errors=file on page 2-44
• --remarks on page 2-102
• --strict on page 2-120.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-35
ID061811 Non-Confidential

Linker command-line options
2.30 --eager_load_debug, --no_eager_load_debug
The --no_eager_load_debug option causes the linker to remove debug section data from memory
after object loading. This lowers the peak memory usage of the linker at the expense of some
linker performance, because much of the debug data has to be loaded again when the final image
is written.

Using --no_eager_load_debug option does not affect the debug data that is written into the ELF
file.

The default is --eager_load_debug.

Note
 The resulting image or object built without debug information might differ by a small number
of bytes. This is because the .comment section contains the linker command line used, where the
options have differed from the default (the default is --eager_debug_load). Therefore
--no_eager_load_debug images are a little larger and contain Program Header and possibly a
Section Header a small number of bytes later. Use --no_comment_section to eliminate this
difference.

2.30.1 See also

Reference
• --comment_section, --no_comment_section on page 2-23.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-36
ID061811 Non-Confidential

Linker command-line options
2.31 --edit=file_list

This option enables you to specify steering files containing commands to edit the symbol tables
in the output binary. You can specify commands in a steering file to:

• Hide global symbols. Use this option to hide specific global symbols in object files. The
hidden symbols are not publicly visible.

• Rename global symbols. Use this option to resolve symbol naming conflicts.

2.31.1 Syntax

--edit=file_list

Where file_list can be more than one steering file separated by a comma. Do not include a
space after the comma.

2.31.2 Example

--edit=file1 --edit=file2 --edit=file3

--edit=file1,file2,file3

2.31.3 See also

Concepts
Using the Linker:
• Hiding and renaming global symbols with a steering file on page 7-27.

Reference
• Chapter 3 Linker steering file command reference.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-37
ID061811 Non-Confidential

Linker command-line options
2.32 --emit_debug_overlay_relocs

Outputs only relocations of debug sections with respect to overlaid program sections to aid an
overlay-aware debugger.

2.32.1 See also

Reference
• --emit_debug_overlay_section on page 2-39
• --emit_non_debug_relocs on page 2-40
• --emit_relocs on page 2-41.

Other information
• ABI for the ARM Architecture: Support for Debugging Overlaid Programs,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-38
ID061811 Non-Confidential

Linker command-line options
2.33 --emit_debug_overlay_section

In a relocatable file, a debug section refers to a location in a program section by way of a
relocated location. A reference from a debug section to a location in a program section has the
following format:

<debug_section_index, debug_section_offset>, <program_section_index, program_section_offset>

During static linking the pair of program values is reduced to single value, the execution address.
This is ambiguous in the presence of overlaid sections.

To resolve this ambiguity, use this option to output a .ARM.debug_overlay section of type
SHT_ARM_DEBUG_OVERLAY = SHT_LOUSER + 4 containing a table of entries as follows:

debug_section_offset, debug_section_index, program_section_index

2.33.1 See also

Reference
• --emit_debug_overlay_relocs on page 2-38
• --emit_relocs on page 2-41.

Other information
• ABI for the ARM Architecture: Support for Debugging Overlaid Programs,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-39
ID061811 Non-Confidential

Linker command-line options
2.34 --emit_non_debug_relocs

Retains only relocations from non-debug sections in an executable file.

2.34.1 See also

Reference
• --emit_relocs on page 2-41.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-40
ID061811 Non-Confidential

Linker command-line options
2.35 --emit_relocs

Retains all relocations in the executable file. This results in larger executable files.

This is equivalent to the GNU ld --emit-relocs option.

2.35.1 See also

Reference
• --emit_debug_overlay_relocs on page 2-38
• --emit_non_debug_relocs on page 2-40.

Other information
• ABI for the ARM Architecture: Support for Debugging Overlaid Programs,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-41
ID061811 Non-Confidential

Linker command-line options
2.36 --entry=location

This option specifies the unique initial entry point of the image.

2.36.1 Syntax

--entry=location

Where location is one of the following:

entry_address

A numerical value, for example: --entry=0x0

symbol Specifies an image entry point as the address of symbol, for example:
--entry=reset_handler

offset+object(section)

Specifies an image entry point as an offset inside a section within a particular
object, for example:--entry=8+startup.o(startupseg)
There must be no spaces within the argument to --entry. The input section and
object names are matched without case-sensitivity. You can use the following
simplified notation:
• object(section), if offset is zero.
• object, if there is only one input section. armlink generates an error

message if there is more than one code input section in object.

Note
 If the entry address of your image is in Thumb state, then the least significant bit of the address
must be set to 1. The linker does this automatically if you specify a symbol. For example, if the
entry code starts at address 0x8000 in Thumb state you must use --entry=0x8001.

Note
 If you use --ltcg, then only --entry=symbol can be used.

2.36.2 Usage

The image can contain multiple entry points, but the initial entry point specified with this option
is stored in the executable file header for use by the loader. There can be only one occurrence
of this option on the command line. A debugger typically uses this entry address to initialize the
Program Counter (PC) when an image is loaded. The initial entry point must meet the following
conditions:

• the image entry point must lie within an execution region

• the execution region must be non-overlay, and must be a root execution region (load
address == execution address).

2.36.3 See also

Concepts
Using the Linker:
• About link-time code generation on page 5-10.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-42
ID061811 Non-Confidential

Linker command-line options
Reference
• --ltcg on page 2-81
• --startup=symbol, --no_startup on page 2-119.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-43
ID061811 Non-Confidential

Linker command-line options
2.37 --errors=file

This option redirects the diagnostics from the standard error stream to file.

The specified file is created at the start of the link stage. If a file of the same name already exists,
it is overwritten.

If file is specified without path information, it is created in the current directory.

2.37.1 See also

Reference
• --diag_error=tag[,tag,...] on page 2-31
• --diag_remark=tag[,tag,...] on page 2-32
• --diag_style=arm|ide|gnu on page 2-33
• --diag_suppress=tag[,tag,...] on page 2-34
• --diag_warning=tag[,tag,...] on page 2-35.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-44
ID061811 Non-Confidential

Linker command-line options
2.38 --exceptions, --no_exceptions
This option controls the generation of exception tables in the final image.

2.38.1 Default

The default is --exceptions.

2.38.2 Usage

Using --no_exceptions generates an error message if any exceptions sections are present in the
image after unused sections have been eliminated. Use this option to ensure that your code is
exceptions free.

2.38.3 See also

Concepts
Using the Linker:
• Using command-line options to control the generation of C++ exception tables on

page 4-31.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-45
ID061811 Non-Confidential

Linker command-line options
2.39 --exceptions_tables=action

This option specifies how exception tables are generated for objects that do not already contain
exception unwinding tables.

2.39.1 Syntax

--exceptions_tables=action

Where action is one of the following:

nocreate The linker does not create missing exception tables.

unwind The linker creates an unwinding table for each section in your image that does not
already have an exception table.

cantunwind The linker creates a nounwind table for each section in your image that does not
already have an exception table.

2.39.2 Default

The default is --exceptions_tables=nocreate.

2.39.3 See also

Concepts
Using the Linker:
• Using command-line options to control the generation of C++ exception tables on

page 4-31.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-46
ID061811 Non-Confidential

Linker command-line options
2.40 --export_dynamic, --no_export_dynamic
If an executable has dynamic symbols, then --export_dynamic exports all externally visible
symbols.

2.40.1 Usage

--export_dynamic exports non-hidden symbols into the dynamic symbol table only if a dynamic
symbol table already exists.

You can use --export_dynamic to produce a statically linked image if there are no imports or
exports.

--no_export_dynamic is the default.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-47
ID061811 Non-Confidential

Linker command-line options
2.41 --feedback=file

This option generates a feedback file for input to the compiler. This file informs the compiler
about unused functions.

During your next compilation, use the compiler option --feedback=file to specify the feedback
file to use. Unused functions are then placed in their own sections for possible future elimination
by the linker.

2.41.1 See also

Concepts
Using the Linker:
• About linker feedback on page 5-6.

Reference
• --feedback_image=option on page 2-49
• --feedback_type=type on page 2-50.
Compiler Reference:
• --feedback=filename on page 3-39.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-48
ID061811 Non-Confidential

Linker command-line options
2.42 --feedback_image=option

This option changes the behavior of the linker when writing a feedback file with scatter-loading.
Use this option to produce a feedback file where an executable ELF image cannot be created.
That is, when your code does not fit into the region limits described in your scatter file before
unused functions are removed using linker feedback.

2.42.1 Syntax

--feedback_image=option

Where option is one of the following:

none Uses the scatter file to determine region size limits. Disables region overlap and
region size overflow messages. Does not write an ELF image. Error messages are
still produced if a region overflows the 32-bit address space.

noerrors Uses the scatter file to determine region size limits. Warns on region overlap and
region size overflow messages. Writes an ELF image, which might not be
executable. Error messages are still produced if a region overflows the 32-bit
address space.

simple Ignores the scatter file. Disables ROPI/RWPI errors and warnings. Writes an ELF
image, which might not be executable.

full Enables all error and warning messages and writes a valid ELF image.

2.42.2 Default

The default option is --feedback_image=full.

2.42.3 See also

Concepts
Using the Linker:
• About linker feedback on page 5-6.

Reference
• --feedback=file on page 2-48
• --feedback_type=type on page 2-50
• --scatter=file on page 2-110.
Compiler Reference:
• --feedback=filename on page 3-39.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-49
ID061811 Non-Confidential

Linker command-line options
2.43 --feedback_type=type

This option controls the information that the linker puts into the feedback file.

2.43.1 Syntax

--feedback_type=type

Where type is a comma-separated list from the following topic keywords:
[no]iw controls functions that require interworking support.
[no]unused controls unused functions in the image.

2.43.2 Default

The default option is --feedback_type=unused,noiw.

2.43.3 See also

Concepts
Using the Linker:
• About linker feedback on page 5-6.

Reference
• --feedback=file on page 2-48
• --feedback_image=option on page 2-49.
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-7
• --feedback=filename on page 3-39.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-50
ID061811 Non-Confidential

Linker command-line options
2.44 --filtercomment, --no_filtercomment
The linker always removes identical comments. The --filtercomment permits the linker to
pre-process the .comment section and remove some information that prevents merging.

Use --no_filtercomment to prevent the linker from modifying the .comment section.

2.44.1 Default

The default is --filtercomment.

2.44.2 See also

Concepts
Using the Linker:
• About merging comment sections on page 5-23.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-51
ID061811 Non-Confidential

Linker command-line options
2.45 --fini=symbol

This option specifies the symbol name that is used to define the entry point for finalization code.
The dynamic linker executes this code when it unloads the executable file or shared object.

2.45.1 See also

Reference
• --init=symbol on page 2-63
• --symbolic on page 2-128.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-52
ID061811 Non-Confidential

Linker command-line options
2.46 --first=section_id

This option places the selected input section first in its execution region. This can, for example,
place the section containing the vector table first in the image.

2.46.1 Syntax

--first=section_id

Where section_id is one of the following:

symbol Selects the section that defines symbol. You must not specify a symbol that has
more than one definition, because only one section can be placed first. For
example: --first=reset

object(section)

Selects section from object. There must be no space between object and the
following open parenthesis. For example: --first=init.o(init)

object Selects the single input section in object. If you use this short form and there is
more than one input section, the linker generates an error message. For example:
--first=init.o

2.46.2 Usage

The --first option cannot be used with --scatter. Instead, use the +FIRST attribute in a scatter
file.

2.46.3 See also

Concepts
Using the Linker:
• Section placement with the linker on page 4-19
• Placing sections with FIRST and LAST attributes on page 4-21.

Reference
• --last=section_id on page 2-72
• --scatter=file on page 2-110.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-53
ID061811 Non-Confidential

Linker command-line options
2.47 --force_explicit_attr

The --cpu option checks the FPU attributes if the CPU chosen has a built-in FPU.

The error message L6463E: Input Objects contain archtype instructions but could not find
valid target for archtype architecture based on object attributes. Suggest using --cpu
option to select a specific cpu. is given in one of two situations:

• the ELF file contains instructions from architecture archtype yet the build attributes claim
that archtype is not supported

• the build attributes are inconsistent enough that the linker cannot map them to an existing
CPU.

If setting the --cpu option still fails, use --force_explicit_attr to cause the linker to retry the
CPU mapping using build attributes constructed from --cpu=archtype. This might help if the
error is being given solely because of inconsistent build attributes.

2.47.1 See also

Reference
• --cpu=name on page 2-27
• --fpu=name on page 2-57.
Compiler Reference:
• --cpu=name on page 3-20
• --fpu=name on page 3-44.
Assembler Reference:
• --cpu=name on page 2-8
• --fpu=name on page 2-13.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-54
ID061811 Non-Confidential

Linker command-line options
2.48 --force_so_throw, --no_force_so_throw
This option controls the assumption made by the linker that an input shared object might throw
an exception. By default, exception tables are discarded if no code throws an exception.

2.48.1 Default

The default is --no_force_so_throw.

2.48.2 Usage

Use --force_so_throw to specify that all shared objects might throw an exception and so force
the linker to keep the exception tables, regardless of whether the image can throw an exception
or not.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-55
ID061811 Non-Confidential

Linker command-line options
2.49 --fpu=list

This option lists the supported FPU architecture names that you can use with the --fpu=name
option.

2.49.1 See also

Reference
• --fpu=name on page 2-57.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-56
ID061811 Non-Confidential

Linker command-line options
2.50 --fpu=name

This option enables the linker to determine the target FPU architecture.

The linker fails if any of the component object files rely on features that are incompatible with
the selected FPU architecture. The linker also uses this option to optimize the choice of system
libraries. The default is to select an FPU that is compatible with all of the component object files.

This option has the same format as that supported by the compiler.

2.50.1 See also

Reference
• --fpu=list on page 2-56.
Compiler Reference:
• --cpu=name on page 3-20
• --fpu=list on page 3-43
• --fpu=name on page 3-44.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-57
ID061811 Non-Confidential

Linker command-line options
2.51 --help

This option displays a summary of the main command-line options.

2.51.1 Default

This is the default if you specify armlink without any options or source files.

2.51.2 See also

Reference
• --show_cmdline on page 2-112
• --version_number on page 2-143
• --vsn on page 2-146.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-58
ID061811 Non-Confidential

Linker command-line options
2.52 --info=topic[,topic,...]

This option prints information about specific topics. You can write the output to a text file using
--list=file.

2.52.1 Syntax

--info=topic[,topic,...]

Where topic is a comma-separated list from the following topic keywords:

any For sections placed using the .ANY module selector, lists:
• the sort order
• the placement algorithm
• the sections that are assigned to each execution region in the order they are

assigned by the placement algorithm.
• Information about the continency space and policy used for each region.
This keyword also displays additional information when you use the execution
region attribute ANY_SIZE in a scatter file.

architecture Summarizes the image architecture by listing the CPU, FPU and byte order.

common Lists all common sections that are eliminated from the image. Using this option
implies --info=common,totals.

compression Gives extra information about the RW compression process.

debug Lists all rejected input debug sections that are eliminated from the image as a
result of using --remove. Using this option implies --info=debug,totals.

exceptions Gives information on exception table generation and optimization.

inline Lists all functions that are inlined by the linker, and the total number of inlines if
--inline is used.

inputs Lists the input symbols, objects and libraries.

libraries Lists the full path name of every library automatically selected for the link stage.
You can use this option with --info_lib_prefix to display information about a
specific library.

merge Lists the const strings that are merged by the linker. Each item lists the merged
result, the strings being merged, and the associated object files.

sizes Lists the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for
each input object and library member in the image. Using this option implies
--info=sizes,totals.

stack Lists the stack usage of all global symbols.

summarysizes Summarizes the code and data sizes of the image.

summarystack Summarizes the stack usage of all global symbols.

tailreorder Lists all the tail calling sections that are moved above their targets, as a result of
using --tailreorder.

totals Lists the totals of the code and data (RO Data, RW Data, ZI Data, and Debug
Data) sizes for input objects and libraries.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-59
ID061811 Non-Confidential

Linker command-line options
unused Lists all unused sections that are eliminated from the user code as a result of using
--remove. It does not list any unused sections that are loaded from the ARM C
libraries.

unusedsymbols

Lists all symbols that have been removed by unused section elimination.

veneers Lists the linker-generated veneers.

veneercallers

Lists the linker-generated veneers with additional information about the callers to
each veneer. Use with --verbose to list each call individually.

veneerpools Displays information on how the linker has placed veneer pools.

visibility Lists the symbol visibility information. You can use this option with either
--info=inputs or --verbose to enhance the output.

weakrefs Lists all symbols that are the target of weak references, and whether or not they
were defined.

The output from --info=sizes,totals always includes the padding values in the totals for input
objects and libraries.

If you are using RW data compression (the default), or if you have specified a compressor using
the --datacompressor=id option, the output from --info=sizes,totals includes an entry under
Grand Totals to reflect the true size of the image.

Note
 Spaces are not permitted between topic keywords in the list. For example, you can enter
--info=sizes,totals but not --info=sizes, totals.

2.52.2 See also

Tasks
Using the Linker:
• Linker options for getting information about images on page 6-2
• Working with RW data compression on page 5-16
• Placing unassigned sections with the .ANY module selector on page 8-23.

Concepts
Using the Linker:
• Elimination of unused sections on page 5-4
• Optimization with RW data compression on page 5-12
• How the linker chooses a compressor on page 5-13
• How compression is applied on page 5-15.

Reference
• --any_placement=algorithm on page 2-6
• --any_sort_order=order on page 2-8
• --datacompressor=opt on page 2-29
• --info_lib_prefix=opt on page 2-62
• --inline, --no_inline on page 2-64
• --merge, --no_merge on page 2-87
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-60
ID061811 Non-Confidential

Linker command-line options
• --remove, --no_remove on page 2-103
• --tailreorder, --no_tailreorder on page 2-131
• --veneer_inject_type=type on page 2-139
• --verbose on page 2-142
• Execution region attributes on page 4-11.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-61
ID061811 Non-Confidential

Linker command-line options
2.53 --info_lib_prefix=opt

This option is a filter for the --info=libraries option. The linker only displays the libraries that
have the same prefix as the filter.

2.53.1 Syntax

armlink --info=libraries --info_lib_prefix=opt

Where opt is the prefix of the required library.

2.53.2 Example

• Displaying a list of libraries without the filter:
armlink --info=libraries test.o

Produces a list of libraries, for example:
install_directory\RV31\LIB\armlib\c_4.l
install_directory\RV31\LIB\armlib\fz_4s.l install_directory\RV31\LIB\armlib\h_4.l
install_directory\RV31\LIB\armlib\m_4s.l
install_directory\RV31\LIB\armlib\vfpsupport.l

• Displaying a list of libraries with the filter:
armlink --info=libraries --info_lib_prefix=c test.o

Produces a list of libraries with the specified prefix, for example:
install_directory\RV31\LIB\armlib\c_4.l

2.53.3 See also

Reference
• --info=topic[,topic,...] on page 2-59.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-62
ID061811 Non-Confidential

Linker command-line options
2.54 --init=symbol

This option specifies the symbol name that is used to define initialization code. A dynamic
linker executes this code when it loads the executable file or shared object.

2.54.1 See also

Reference
• --fini=symbol on page 2-52
• --symbolic on page 2-128.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-63
ID061811 Non-Confidential

Linker command-line options
2.55 --inline, --no_inline
This option enables or disables branch inlining to optimize small function calls in your image.

2.55.1 Default

The default is --no_inline.

Note
 This branch optimization is off by default because enabling it changes the image such that debug
information might be incorrect. If enabled, the linker makes no attempt to correct the debug
information.

2.55.2 See also

Tasks
Using the Linker:
• Inlining functions with the linker on page 5-17.

Reference
• --branchnop, --no_branchnop on page 2-14
• --tailreorder, --no_tailreorder on page 2-131.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-64
ID061811 Non-Confidential

Linker command-line options
2.56 --inlineveneer, --no_inlineveneer
This option enables or disables the generation of inline veneers to give greater control over how
the linker places sections.

2.56.1 Default

The default is --inlineveneer.

2.56.2 See also

Concepts
Using the Linker:
• Overview of veneers on page 4-26
• Veneer sharing on page 4-27
• Veneer types on page 4-28
• Generation of position independent to absolute veneers on page 4-29
• Reuse of veneers when scatter-loading on page 4-30.

Reference
• --piveneer, --no_piveneer on page 2-95
• --veneershare, --no_veneershare on page 2-141.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-65
ID061811 Non-Confidential

Linker command-line options
2.57 input-file-list

This is a space-separated list of objects, libraries, or symbol definitions (symdefs) files.

2.57.1 Usage

The linker sorts through the input file list in order. If the linker is unable to resolve input file
problems then a diagnostic message is produced.

The symdefs files can be included in the list to provide global symbol addresses for previously
generated image files.

You can use libraries in the input file list in the following ways:

• Specify a library to be added to the list of libraries that is used to extract members if they
resolve any non weak unresolved references. For example, specify mystring.lib in the
input file list.

Note
 Members from the libraries in this list are added to the image only when they resolve an

unresolved non weak reference.

• Specify particular members to be extracted from a library and added to the image as
individual objects. Members are selected from a comma separated list of patterns that can
include wild characters. Spaces are permitted but if you use them you must enclose the
whole input file list in quotes.
The following shows an example of an input file list both with and without spaces:
mystring.lib(strcmp.o,std*.o)

“mystring.lib(strcmp.o, std*.o)”

The linker automatically searches the appropriate C and C++ libraries in order to select the best
standard functions for your image. You can use --no_scanlib to prevent automatic searching of
the standard system libraries.

The linker processes the input file list in the following order:

1. Objects are added to the image unconditionally.

2. Members selected from libraries using patterns are added to the image unconditionally, as
if they are objects. For example, to add all a*.o objects and stdio.o from mystring.lib use
the following:
“mystring.lib(stdio.o, a*.o)”

3. Library files listed on the command-line are searched for any unresolved non-weak
references. The standard C or C++ libraries are added to the list of libraries that are later
used to resolve any remaining references.

2.57.2 See also

Tasks
Using the Linker:
• Accessing symbols in another image on page 7-17.

Concepts
Using the Linker:
• How the linker performs library searching, selection, and scanning on page 4-35.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-66
ID061811 Non-Confidential

Linker command-line options
Reference
• --scanlib, --no_scanlib on page 2-109.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-67
ID061811 Non-Confidential

Linker command-line options
2.58 --keep=section_id

This option specifies input sections that must not be removed by unused section elimination.

2.58.1 Syntax

--keep=section_id

Where section_id is one of the following:

symbol Specifies that an input section defining symbol is to be retained during unused
section elimination. If multiple definitions of symbol exist, armlink generates an
error message.
For example, you might use --keep=int_handler.
To keep all sections that define a symbol ending in _handler, use
--keep=*_handler.

object(section)

Specifies that section from object is to be retained during unused section
elimination. If a single instance of section is generated, you can omit section, for
example, file.o(). Otherwise, you must specify section.
For example, to keep the vect section from the vectors.o object use:
--keep=vectors.o(vect)

To keep all sections from the vectors.o object where the first three characters of
the name of the sections are vec, use:--keep=vectors.o(vec*)

object Specifies that the single input section from object is to be retained during unused
section elimination. If you use this short form and there is more than one input
section in object, the linker generates an error message.
For example, you might use --keep=dspdata.o.
To keep the single input section from each of the objects that has a name starting
with dsp, use --keep=dsp*.o.

All forms of the section_id argument can contain the * and ? wild characters. Matching is
case-insensitive, even on hosts with case-sensitive file naming. For example:
• --keep foo.o(Premier*) causes the entire match for Premier* to be case-insensitive
• --keep foo.o(Premier) causes a case-sensitive match for the string Premier.

Use *.o to match all object files. Use * to match all object files and libraries.

You can specify multiple --keep options on the command line.

2.58.2 Matching a symbol that has the same name as an object

If you name a symbol with the same name as an object, then --keep=symbol_id searches for a
symbol that matches symbol_id:
• If a symbol is found, it matches the symbol.
• If no symbol is found, it matches the object.

You can force --keep to match an object with --keep=symbol_id(). Therefore, to keep both the
symbol and the object, specify --keep foo.o --keep foo.o().
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-68
ID061811 Non-Confidential

Linker command-line options
2.58.3 See also

Concepts
Using the Linker:
• The image structure on page 4-3.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-69
ID061811 Non-Confidential

Linker command-line options
2.59 --keep_protected_symbols

Use this option to explicitly keep STV_PROTECTED symbols even if you are not using
dynamic linking.

For example, your application might export functions provided by an API to shared objects that
are loaded using a custom loader. However, the linker unused section elimination optimization
causes the sections to be removed, even if those sections include STV_PROTECTED symbols.
To prevent section containing STV_PROTECTED symbols from being removed, specify
--keep_protected_symbols.

2.59.1 See also

Concepts
Using the Linker:
• Elimination of unused sections on page 5-4.

Reference
• --max_visibility=type on page 2-86
• --override_visibility on page 2-90
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-70
ID061811 Non-Confidential

Linker command-line options
2.60 --largeregions, --no_largeregions
This option controls the sorting order of sections in large execution regions to minimize the
distance between sections that call each other.

2.60.1 Usage

If the execution region contains more code than the range of a branch instruction then the linker
switches to large region mode. In this mode the linker sorts according to the approximated
average call depth of each section in ascending order. The linker might also place distribute
veneers amongst the code sections to minimize the number of veneers.

Note
 Large region mode can result in large changes to the layout of an image even when small
changes are made to the input.

To disable large region mode and revert to lexical order, use --no_largeregions. Section
placement is then predictable and image comparisons are more predictable. However some
branches might not reach the target causing the link step to fail. If this happens you must place
code/data sections explicitly using an appropriate scatter file or write your own veneer.

2.60.2 Default

The default is --no_largeregions. The linker automatically switches to --largeregions if at least
one execution region contains more code than the smallest inter-section branch. The smallest
inter-section branch depends on the code in the region and the target processor:
32Mb Execution region contains only ARM.
16Mb Execution region contains Thumb, Thumb-2 is supported.
4Mb Execution region contains Thumb, no Thumb-2 support.

2.60.3 See also

Concepts
Using the Linker:
• Overview of veneers on page 4-26
• Veneer sharing on page 4-27
• Veneer types on page 4-28
• Generation of position independent to absolute veneers on page 4-29
• Reuse of veneers when scatter-loading on page 4-30.

Reference
• --sort=algorithm on page 2-116.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-71
ID061811 Non-Confidential

Linker command-line options
2.61 --last=section_id

This option places the selected input section last in its execution region. For example, this can
force an input section that contains a checksum to be placed last in the RW section.

2.61.1 Syntax

--last=section_id

Where section_id is one of the following:

symbol Selects the section that defines symbol. You must not specify a symbol that has
more than one definition because only a single section can be placed last. For
example: --last=checksum

object(section)

Selects the section from object. There must be no space between object and the
following open parenthesis. For example: --last=checksum.o(check)

object Selects the single input section from object. If there is more than one input section
in object, armlink generates an error message.

2.61.2 Usage

The --last option cannot be used with --scatter. Instead, use the +LAST attribute in a scatter file.

2.61.3 See also

Concepts
Using the Linker:
• Section placement with the linker on page 4-19
• Placing sections with FIRST and LAST attributes on page 4-21.

Reference
• --first=section_id on page 2-53
• --scatter=file on page 2-110.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-72
ID061811 Non-Confidential

Linker command-line options
2.62 --ldpartial

This option enables you to link a partial object with the linker combining sections in the output
object. This contrasts with the --partial option which does not combine sections. You can
control the section combination with a scatter file.

-r is a synonym for --ldpartial.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-73
ID061811 Non-Confidential

Linker command-line options
2.63 --legacyalign, --no_legacyalign
By default, the linker assumes execution regions and load regions to be four-byte aligned. This
option enables the linker to minimize the amount of padding that it inserts into the image.

The --no_legacyalign option instructs the linker to insert padding to force natural alignment.
Natural alignment is the highest known alignment for that region.

Use --no_legacyalign to ensure strict conformance with the ELF specification.

You can also use expression evaluation in a scatter file to avoid padding.

2.63.1 See also

Concepts
Using the Linker:
• Section placement with the linker on page 4-19.

Reference
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Using expression evaluation in a scatter file to avoid padding on page 8-57.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-74
ID061811 Non-Confidential

Linker command-line options
2.64 --libpath=pathlist

This option specifies a list of paths that are used to search for the ARM standard C and C++
libraries.

You can also use the ARMCCnnLIB environment variable to specify the path for the parent directory
containing the ARM libraries is specified by , where nn is the version of the compilation tools
installed. For example.ARMCC41LIB. Any paths specified with --libpath override the path
specified by the environment variable.

2.64.1 Syntax

--libpath=pathlist

Where pathlist is a comma-separated list of paths that are only used to search for required
ARM libraries. Do not include spaces between the comma and the path name when specifying
multiple path names, for example, path1,path2,path3,...,pathn.

Note
 This option does not affect searches for user libraries. Use --userlibpath instead for user
libraries.

2.64.2 See also

Concepts
Using the Linker:
• How the linker performs library searching, selection, and scanning on page 4-35.

Reference
• --userlibpath=pathlist on page 2-138.
Introducing the ARM Compiler toolchain:
• Toolchain environment variables on page 2-12
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-75
ID061811 Non-Confidential

Linker command-line options
2.65 --library_type=lib

This option selects the library to be used at link time.

Note
 This option can be used with the compiler, assembler or linker.

Use this option with the linker to override all other --library_type options.

2.65.1 Syntax

--library_type=lib

Where lib can be one of:

standardlib Specifies that the full runtime libraries are selected at link time.

microlib Specifies that the C micro-library (microlib) is selected at link time.

2.65.2 Default

If you do not specify --library_type at link time and no object file specifies a preference, then
the linker assumes --library_type=standardlib.

2.65.3 See also

Concepts
Using the ARM® C and C++ Libraries and Floating Point Support:
• Building an application with microlib on page 3-7.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-76
ID061811 Non-Confidential

Linker command-line options
2.66 --list=file

This option redirects the diagnostics output by the --info, --map, --symbols, --verbose, --xref,
--xreffrom, and --xrefto options to file.

The specified file is created when diagnostics are output. If a file of the same name already
exists, it is overwritten. However, if diagnostics are not output, a file is not created. In this case,
the contents of any existing file with the same name remain unchanged.

If file is specified without a path, it is created in the output directory, that is, the directory where
the output image is being written.

2.66.1 See also

Reference
• --info=topic[,topic,...] on page 2-59
• --map, --no_map on page 2-83
• --symbols, --no_symbols on page 2-129
• --verbose on page 2-142
• --xref, --no_xref on page 2-147
• --xrefdbg, --no_xrefdbg on page 2-148.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-77
ID061811 Non-Confidential

Linker command-line options
2.67 --list_mapping_symbols, --no_list_mapping_symbols
This option enables or disables the addition of mapping symbols $a, $d, $t, and $t.x in the output
produced by --symbols.

Mapping symbols are used to flag transitions between ARM code, Thumb code, and data.

2.67.1 Default

The default is --no_list_mapping_symbols.

2.67.2 See also

Concepts
Using the Linker:
• About mapping symbols on page 7-3.

Reference
• --symbols, --no_symbols on page 2-129.

Other information
• ELF for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-78
ID061811 Non-Confidential

Linker command-line options
2.68 --load_addr_map_info, --no_load_addr_map_info
This option includes load addresses for execution regions in the map file.

If an input section is compressed, then the load address has no meaning and COMPRESSED is
displayed instead.

For sections that do not have a load address, such as ZI data, the load address is blank

2.68.1 Default

The default is --no_load_addr_map_info.

2.68.2 Restrictions

You must use the --map with this option.

2.68.3 Example

The following example shows the format of the map file output:

 Base Addr Load Addr Size Type Attr Idx E Section Name Object

 0x00008000 0x00008000 0x00000008 Code RO 25 * !!!main __main.o(c_4.l)
 0x00010000 COMPRESSED 0x00001000 Data RW 2 dataA data.o
 0x00003000 - 0x00000004 Zero RW 2 .bss test.o

2.68.4 See also

Reference
• --map, --no_map on page 2-83.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-79
ID061811 Non-Confidential

Linker command-line options
2.69 --locals, --no_locals
The --locals option adds local symbols in the output symbol table.

The effect of the --no_locals option is different for images and object files.

When producing an executable image --no_locals removes local symbols from the output
symbol table.

For object files built with the --partial option, the --no_locals option:
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these
symbols, the names are removed. These are marked as [Anonymous Symbol] in the fromelf
--text output.

--no_locals is a useful optimization if you want to reduce the size of the output symbol table in
the final image.

2.69.1 Default

The default is --locals.

2.69.2 See also

Reference
• --privacy on page 2-98.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-80
ID061811 Non-Confidential

Linker command-line options
2.70 --ltcg

This option enables link-time code generation (LTCG). You must use this option if any of your
input objects have been compiled with --ltcg.

Note
 The LTCG feature is deprecated. As an alternative ARM recommends you use the --multifile
compiler option.

2.70.1 See also

Concepts
Using the Linker:
• About link-time code generation on page 5-10.

Reference
Compiler Reference:
• --ltcg on page 3-64
• --multifile, --no_multifile on page 3-67.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-81
ID061811 Non-Confidential

Linker command-line options
2.71 --mangled, --unmangled
This option instructs the linker to display mangled or unmangled C++ symbol names in
diagnostic messages, and in listings produced by the --xref, --xreffrom, --xrefto, and
--symbols options.

2.71.1 Default

The default is --unmangled.

2.71.2 Usage

If --unmangled is selected, C++ symbol names are displayed as they appear in your source code.

If --mangled is selected, C++ symbol names are displayed as they appear in the object symbol
tables.

2.71.3 See also

Reference
• --match=crossmangled on page 2-84
• --symbols, --no_symbols on page 2-129
• --xref, --no_xref on page 2-147
• --xrefdbg, --no_xrefdbg on page 2-148
• --xref{from|to}=object(section) on page 2-149.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-82
ID061811 Non-Confidential

Linker command-line options
2.72 --map, --no_map
This option enables or disables the printing of a memory map.

The map contains the address and the size of each load region, execution region, and input
section in the image, including linker-generated input sections. This can be output to a text file
using --list=file.

2.72.1 Default

The default is --no_map.

2.72.2 See also

Tasks
Using the Linker:
• How to find where a symbol is placed when linking on page 6-6.

Reference
• --list=file on page 2-77
• --load_addr_map_info, --no_load_addr_map_info on page 2-79
• --section_index_display=type on page 2-111.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-83
ID061811 Non-Confidential

Linker command-line options
2.73 --match=crossmangled

This option instructs the linker to match the following combinations together:
• a reference to an unmangled symbol with the mangled definition
• a reference to a mangled symbol with the unmangled definition.

Libraries and matching combinations operate as follows:

• If the library members define a mangled definition, and there is an unresolved unmangled
reference, the member is loaded to satisfy it.

• If the library members define an unmangled definition, and there is an unresolved
mangled reference, the member is loaded to satisfy it.

Note
 This option has no effect if used with partial linking. The partial object contains all the
unresolved references to unmangled symbols, even if the mangled definition exists. Matching
is done only in the final link step.

2.73.1 See also

Reference
• --mangled, --unmangled on page 2-82.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-84
ID061811 Non-Confidential

Linker command-line options
2.74 --max_veneer_passess=value

This option specifies a limit to the number of veneer generation passes the linker attempts to
make when both the following conditions are met:
• a Section that is sufficiently large has a relocation that requires a veneer
• the linker cannot place the veneer close enough to the call site.

The linker attempts to diagnose the failure if the maximum number of veneer generation passes
you specify is exceeded, and displays a warning message. You can downgrade this warning
message using --diag_remark.

2.74.1 Syntax

--max_veneer_passes=value

Where value is the maximum number of veneer passes the linker is to attempt. The minimum
value you can specify is one.

2.74.2 Default

The default number of passes is 10.

2.74.3 See also

Reference
• --diag_remark=tag[,tag,...] on page 2-32
• --diag_warning=tag[,tag,...] on page 2-35.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-85
ID061811 Non-Confidential

Linker command-line options
2.75 --max_visibility=type

This option controls the visibility of all symbol definitions.

2.75.1 Syntax

--max_visibility=type

Where type can be one of:
default Default visibility.
protected Protected visibility.

2.75.2 Usage

Use--max_visibility=protected to limit the visibility of all symbol definitions. Global symbol
definitions that normally have default visibility, are given protected visibility when this option
is specified.

2.75.3 Default

The default is --max_visibility=default.

2.75.4 See also

Reference
• --keep_protected_symbols on page 2-70
• --override_visibility on page 2-90.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-86
ID061811 Non-Confidential

Linker command-line options
2.76 --merge, --no_merge
This option enables or disables the merging of const strings that are placed in shareable sections
by the compiler. Using --merge can reduce the size of the image if there are similarities between
const strings.

For a listing of the merged const strings you can use --info=merge.

2.76.1 Default

The default is --merge.

By default, merging happens between different load and execution regions. Therefore, code
from one execution or load region might use a string stored in different region. If you do not
want this behavior, then do one of the following:
• use the PROTECTED load region attribute if you are using scatter-loading
• globally disable merging with --no_merge.

2.76.2 See also

Reference
• --info=topic[,topic,...] on page 2-59
• Load region attributes on page 4-7.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-87
ID061811 Non-Confidential

Linker command-line options
2.77 --muldefweak, --no_muldefweak
This option enables or disables multiple weak definitions of a symbol.

If enabled, the linker chooses the first definition that it encounters and discards all the other
duplicate definitions. If disabled, the linker generates an error message for all multiply defined
weak symbols.

2.77.1 Default

The default is --no_muldefweak.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-88
ID061811 Non-Confidential

Linker command-line options
2.78 --output=file

This option specifies the name of the output file. The file can be either a partially-linked object
or an executable image, depending on the command-line options used.

2.78.1 Syntax

--output=file

If --output=file is not specified, the linker uses the following default filenames:

__image.axf if the output is an executable image

__object.o if the output is a partially-linked object.

If file is specified without path information, it is created in the current working directory. If
path information is specified, then that directory becomes the default output directory.

2.78.2 See also

Reference
• --callgraph_file=filename on page 2-17
• --partial on page 2-94.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-89
ID061811 Non-Confidential

Linker command-line options
2.79 --override_visibility

This option enables EXPORT and IMPORT directives in a steering file to override the visibility of a
symbol.

By default:
• only symbol definitions with STV_DEFAULT or STV_PROTECTED visibility can be exported
• only symbol references with STV_DEFAULT visibility can be imported.

When you specify --override_visibility, any global symbol definition can be exported and any
global symbol reference can be imported.

2.79.1 See also

Reference
• --keep_protected_symbols on page 2-70
• --undefined_and_export=symbol on page 2-135
• EXPORT on page 3-2
• IMPORT on page 3-4.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-90
ID061811 Non-Confidential

Linker command-line options
2.80 --pad=num

This option enables you to set a value for padding bytes. The linker assigns this value to all
padding bytes inserted in load or execution regions.

2.80.1 Syntax

--pad=num

Where num is an integer, which can be given in hexadecimal format. For example, setting num to
0xFF might help to speed up ROM programming time. If num is greater than 0xFF, then the
padding byte is cast to a char, that is (char)num.

Note
 Padding is only inserted:

• Within load regions. No padding is present between load regions.

• Between fixed execution regions (in addition to forcing alignment). Padding is not
inserted up to the maximum length of a load region unless it has a fixed execution region
at the top.

• Between sections to ensure that they conform to alignment constraints.

2.80.2 See also

Concepts
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-91
ID061811 Non-Confidential

Linker command-line options
2.81 --paged

This option enables Demand Paging mode to help produce ELF files that can be demand paged
efficiently.

A default page size of 0x8000 bytes is used. You can change this with the --pagesize
command-line option.

2.81.1 See also

Concepts
Using the Linker:
• Demand paging on page 4-23
• About creating regions on page boundaries on page 8-52.

Reference
• --pagesize=pagesize on page 2-93
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-92
ID061811 Non-Confidential

Linker command-line options
2.82 --pagesize=pagesize

This option enables you to change the page size used when demand paging.

2.82.1 Syntax

--pagesize=pagesize

Where pagesize is the page size in bytes. The default value is 0x8000.

2.82.2 See also

Concepts
Using the Linker:
• Demand paging on page 4-23
• About creating regions on page boundaries on page 8-52.

Reference
• --paged on page 2-92.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-93
ID061811 Non-Confidential

Linker command-line options
2.83 --partial

This option creates a partially-linked object that can be used in a subsequent link step.

2.83.1 See also

Concepts
Using the Linker:
• Partial linking model on page 3-4.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-94
ID061811 Non-Confidential

Linker command-line options
2.84 --piveneer, --no_piveneer
This option enables or disables the generation of a veneer for a call from position independent
(PI) code to absolute code. When using --no_piveneer, an error message is produced if the linker
detects a call from PI code to absolute code.

2.84.1 Default

The default is --piveneer.

2.84.2 See also

Concepts
Using the Linker:
• Overview of veneers on page 4-26
• Veneer sharing on page 4-27
• Veneer types on page 4-28
• Generation of position independent to absolute veneers on page 4-29
• Reuse of veneers when scatter-loading on page 4-30.

Reference
• --inlineveneer, --no_inlineveneer on page 2-65
• --veneershare, --no_veneershare on page 2-141.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-95
ID061811 Non-Confidential

Linker command-line options
2.85 --predefine="string"

When preprocessing the scatter file, this option enables commands to be passed to the
pre-processor. You specify a pre-processor on the first line of the scatter file.

2.85.1 Syntax

--predefine=”string”

You can use more than one --predefine option on the command-line.

You can also use the synonym:--pd=”string”.

2.85.2 Restrictions

Use this option with --scatter.

2.85.3 Example

The following example shows the scatter file contents before pre-processing.

Example 2-1 Scatter file before pre-processing

#! armcc -E
lr1 BASE
{

er1 BASE
{

*(+RO)
}
er2 BASE2
{

*(+RW+ZI)
}

}

Use armlink with the command-line options:

--predefine="-DBASE=0x8000" --predefine="-DBASE2=0x1000000" --scatter=file

This passes the command-line options: -DBASE=0x8000 -DBASE2=0x1000000 to the compiler to
pre-process the scatter file.

The following example shows how the scatter file looks after pre-processing:

Example 2-2 Scatter file after pre-processing

lr1 0x8000
{

er1 0x8000
{

*(+RO)
}
er2 0x1000000
{

ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-96
ID061811 Non-Confidential

Linker command-line options
*(+RW+ZI)
}

}

2.85.4 See also

Concepts
Using the Linker:
• Using preprocessing commands in a scatter file on page 8-55.

Reference
• --scatter=file on page 2-110.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-97
ID061811 Non-Confidential

Linker command-line options
2.86 --privacy

The effect of this option is different for images and object files.

When producing an executable image it removes local symbols from the output symbol table.

For object files built with the --partial option, this option:

• Changes section names to a default value, for example, changes code section names to
.text.

• Keeps mapping symbols and build attributes in the symbol table.

• Removes those local symbols that can be removed without loss of functionality.
Symbols that cannot be removed, such as the targets for relocations, are kept. For these
symbols, the names are removed. These are marked as [Anonymous Symbol] in the fromelf
--text output.

2.86.1 See also

Reference
• --locals, --no_locals on page 2-80
• --partial on page 2-94.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-98
ID061811 Non-Confidential

Linker command-line options
2.87 --reduce_paths, --no_reduce_paths
This option enables or disables the elimination of redundant path name information in file paths.

2.87.1 Mode

Effective on Windows systems only.

2.87.2 Default

The default is --no_reduce_paths.

2.87.3 Usage

Windows systems impose a 260 character limit on file paths. Where path names exist whose
absolute names expand to longer than 260 characters, you can use the --reduce_paths option to
reduce absolute path name length by matching up directories with corresponding instances of
.. and eliminating the directory/.. sequences in pairs.

Note
 It is recommended that you avoid using long and deeply nested file paths, in preference to
minimizing path lengths using the --reduce_paths option.

2.87.4 Example

A file to be linked might be at the location:

..\..\..\xyzzy\xyzzy\objects\file.c

Your current working directory might be at the location:

\foo\bar\baz\gazonk\quux\bop

The combination of these paths results in the path:

\foo\bar\baz\gazonk\quux\bop\..\..\..\xyzzy\xyzzy\objects\file.o

By using the option --reduce_paths the path becomes:

\foo\bar\baz\xyzzy\xyzzy\objects\file.c
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-99
ID061811 Non-Confidential

Linker command-line options
2.88 --ref_cpp_init, --no_ref_cpp_init
This option enables or disables the linker adding a reference to the C++ static object
initialization routine in the ARM libraries. The default reference added is
__cpp_initialize__aeabi_. To change this you can use --cppinit.

2.88.1 Default

The default is --ref_cpp_init.

2.88.2 See also

Concepts
Using C and C++ Libraries and Floating-Point Support:
• C++ initialization, construction and destruction on page 2-56.

Reference
• --cppinit, --no_cppinit on page 2-25.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-100
ID061811 Non-Confidential

Linker command-line options
2.89 --reloc

This option creates a single relocatable load region with contiguous execution regions.

2.89.1 Usage

Only use this option for legacy systems with the type of relocatable ELF images that conform
to the ELF for the ARM Architecture specification. The generated image might not be compliant
with the ELF for the ARM Architecture specification.

When relocated MOVT and MOVW instructions are encountered in an image being linked with
--reloc, armlink produces the following additional dynamic tags:

DT_RELA The address of a relocation table.

DT_RELASZ
The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
The size, in bytes, of the DT_RELA relocation entry.

2.89.2 See also

Concepts
Using the Linker:
• Type 1 image, one load region and contiguous execution regions on page 8-59
• Type 3 image, two load regions and non-contiguous execution regions on page 8-63.

Other information
• Base Platform ABI for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
• ELF for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-101
ID061811 Non-Confidential

Linker command-line options
2.90 --remarks

This option forces the linker to display remarks that are otherwise hidden by default when used
with the --diag_remarks option.

Note
 The linker does not issue remarks by default.

2.90.1 See also

Reference
• --diag_remark=tag[,tag,...] on page 2-32
• --errors=file on page 2-44.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-102
ID061811 Non-Confidential

Linker command-line options
2.91 --remove, --no_remove
This option enables or disables the removal of unused input sections from the image. An input
section is considered used if it contains an entry point, or if it is referred to from a used section.

2.91.1 Default

The default is --remove.

2.91.2 Usage

By default, unused section elimination is disabled when building dynamically linked libraries
(DLLs) or shared objects, Use --remove to re-enable unused section elimination.

Use --no_remove when debugging to retain all input sections in the final image even if they are
unused.

Use --remove with the --keep option to retain specific sections in a normal build.

2.91.3 See also

Concepts
Using the Linker:
• Elimination of common debug sections on page 5-2
• Elimination of common groups or sections on page 5-3
• Elimination of unused sections on page 5-4
• Elimination of unused virtual functions on page 5-5.

Reference
• --keep=section_id on page 2-68
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-103
ID061811 Non-Confidential

Linker command-line options
2.92 --ro_base=address

This option sets both the load and execution addresses of the region containing the RO output
section at a specified address.

2.92.1 Syntax

--ro_base=address

Where address must be word-aligned.

2.92.2 Default

If this option is not specified, and no scatter file is specified, the default is --ro_base=0x8000.

2.92.3 Restrictions

You cannot use --ro_base with --scatter.

2.92.4 See also

Reference
• --ropi on page 2-105
• --rosplit on page 2-106
• --rw_base=address on page 2-107
• --rwpi on page 2-108
• --scatter=file on page 2-110
• --zi_base=address on page 2-150.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-104
ID061811 Non-Confidential

Linker command-line options
2.93 --ropi

This option makes the load and execution region containing the RO output section
position-independent. If this option is not used, the region is marked as absolute. Usually each
read-only input section must be Read-Only Position-Independent (ROPI). If this option is
selected, the linker:

• checks that relocations between sections are valid

• ensures that any code generated by the linker itself, such as interworking veneers, is
ROPI.

Note
 The linker gives a downgradable error if --ropi is used without --rwpi or --rw_base.

2.93.1 Restrictions

You cannot use --ropi with --scatter.

2.93.2 See also

Reference
• --ro_base=address on page 2-104
• --rosplit on page 2-106
• --rw_base=address on page 2-107
• --rwpi on page 2-108
• --scatter=file on page 2-110
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-105
ID061811 Non-Confidential

Linker command-line options
2.94 --rosplit

This option splits the default RO load region into two RO output sections, one for RO-CODE and
one for RO-DATA.

2.94.1 Restrictions

You cannot use --rosplit with --scatter.

2.94.2 See also

Reference
• --ro_base=address on page 2-104
• --ropi on page 2-105
• --rw_base=address on page 2-107
• --rwpi on page 2-108
• --scatter=file on page 2-110
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-106
ID061811 Non-Confidential

Linker command-line options
2.95 --rw_base=address

This option sets the execution addresses of the region containing the RW output section at a
specified address.

2.95.1 Syntax

--rw_base=address

Where address must be word-aligned.

2.95.2 Restrictions

You cannot use --rw_base with --scatter.

2.95.3 See also

Reference
• --ro_base=address on page 2-104
• --ropi on page 2-105
• --rosplit on page 2-106
• --rwpi on page 2-108
• --scatter=file on page 2-110
• --split on page 2-118
• --zi_base=address on page 2-150.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-107
ID061811 Non-Confidential

Linker command-line options
2.96 --rwpi

This option makes the load and execution region containing the RW and ZI output section
position-independent. If this option is not used the region is marked as absolute. This option
requires a value for --rw_base. If --rw_base is not specified, --rw_base=0 is assumed. Usually
each writable input section must be read-write position-independent (RWPI).

If this option is selected, the linker:

• checks that the PI attribute is set on input sections to any read-write execution regions

• checks that relocations between sections are valid

• generates entries relative to the static base in the table Region$$Table.
This is used when regions are copied, decompressed, or initialized.

2.96.1 Restrictions

You cannot use --rwpi with --scatter.

2.96.2 See also

Reference
• --ro_base=address on page 2-104
• --ropi on page 2-105
• --rosplit on page 2-106
• --rw_base=address on page 2-107
• --scatter=file on page 2-110
• --split on page 2-118
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-108
ID061811 Non-Confidential

Linker command-line options
2.97 --scanlib, --no_scanlib
This option enables or disables scanning of the ARM libraries to resolve references. Use
--no_scanlib if you want to link your own libraries.

2.97.1 Default

The default is --scanlib.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-109
ID061811 Non-Confidential

Linker command-line options
2.98 --scatter=file

This option creates an image memory map using the scatter-loading description contained in the
specified file. The description provides grouping and placement details of the various regions
and sections in the image.

2.98.1 Syntax

--scatter=file

Where file is the name of a scatter file.

2.98.2 Usage

To modify the placement of any unassigned input sections when .ANY selectors are present, use
the following command-line options with --scatter:
• --any_contingency

• --any_placement

• --any_sort_order

• --tiebreaker.

The --scatter option cannot be used with --first, --last, --partial, --reloc, --ro_base,
--ropi, --rosplit, --rw_base, --rwpi, --split, --startup, and --zi_base.

2.98.3 See also

Concepts
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28.
Using the Linker:
• Chapter 8 Using scatter files.

Reference
• --any_contingency on page 2-5
• --any_placement=algorithm on page 2-6
• --any_sort_order=order on page 2-8
• --first=section_id on page 2-53
• --last=section_id on page 2-72
• --partial on page 2-94
• --reloc on page 2-101
• --ro_base=address on page 2-104
• --ropi on page 2-105
• --rosplit on page 2-106
• --rw_base=address on page 2-107
• --rwpi on page 2-108
• --split on page 2-118
• --startup=symbol, --no_startup on page 2-119
• --tiebreaker=option on page 2-133
• --zi_base=address on page 2-150.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-110
ID061811 Non-Confidential

Linker command-line options
2.99 --section_index_display=type

This option changes the display of the index column when printing memory map output. Use
this option with --map.

2.99.1 Syntax

--section_index_display=type

Where type is one of the following:
cmdline Alters the display of the map file to show the order that a section appears on the

command-line. The command-line order is defined as File.Object.Section
where:
• Section is the section index, sh_idx, of the Section in the Object
• Object is the order that Object appears in the File
• File is the order the File appears on the command line.
The order the Object appears in the File is only significant if the file is an ar
archive.

internal The index value represents the order in which the linker creates the section.
input The index value represents the section index of the section in the original input

file.

2.99.2 Usage

Use --map with --section_index_display=input when you want to find the exact section in an
input object.

2.99.3 Default

The default is --section_index_display=internal.

2.99.4 See also

Reference
• --map, --no_map on page 2-83
• --tiebreaker=option on page 2-133.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-111
ID061811 Non-Confidential

Linker command-line options
2.100 --show_cmdline

This option outputs the command-line used by the linker. It shows the command-line after
processing by the linker, and can be useful to check:

• the command-line a build system is using

• how the linker is interpreting the supplied command-line, for example, the ordering of
command line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard output stream (stdout).

2.100.1 See also

Reference
• --help on page 2-58
• --via=file on page 2-145.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-112
ID061811 Non-Confidential

Linker command-line options
2.101 --show_full_path

If the file representing object obj has full path name path/to/obj then the linker displays
path/to/obj instead of obj in any diagnostic.

2.101.1 See also

Reference
• --show_parent_lib on page 2-114
• --show_sec_idx on page 2-115.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-113
ID061811 Non-Confidential

Linker command-line options
2.102 --show_parent_lib

If an object obj comes from library lib, then displays lib(obj) instead of obj in any diagnostic.

2.102.1 See also

Reference
• --show_full_path on page 2-113
• --show_sec_idx on page 2-115.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-114
ID061811 Non-Confidential

Linker command-line options
2.103 --show_sec_idx

Displays the section index, sh_idx, of section in the originating object.

For example, if section sec has section index 3 then it is displayed as sec:3 in all diagnostics

2.103.1 See also

Reference
• --show_full_path on page 2-113
• --show_parent_lib on page 2-114.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-115
ID061811 Non-Confidential

Linker command-line options
2.104 --sort=algorithm

This option specifies the sorting algorithm used to determine the order of sections in an output
image. The sorting algorithms conform to the standard rules placing input section in ascending
order by attributes.

Sort algorithms can also be specified in a scatter file for individual execution regions using the
SORTTYPE keyword.

2.104.1 Syntax

--sort=algorithm

Where algorithm is one of the following:

Alignment Sorts input sections by ascending order of alignment value.

AvgCallDepth Sorts all Thumb code before ARM code and then sorts according to the
approximated average call depth of each section in ascending order.
Use this algorithm to minimize the number of long branch veneers.

Note
 The approximation of the average call depth depends on the order of input

sections. Therefore, this sorting algorithm is more dependent on the order of input
sections than using, say, RunningDepth.

BreadthFirstCallTree

This is similar to the CallTree algorithm except that it uses a breadth-first
traversal when flattening the Call Tree into a list.

CallTree The linker flattens the call tree into a list containing the read-only code sections
from all execution regions that have CallTree sorting enabled.
Sections in this list are copied back into their execution regions, followed by all
the non read-only code sections, sorted lexically. Doing this ensures that sections
calling each other are placed close together.

Note
 This sorting algorithm is less dependent on the order of input sections than using

either RunningDepth or AvgCallDepth.

Lexical Sorts according to the name of the section and then by input order if the names
are the same.

LexicalState Sorts Thumb code before ARM code, then sorts lexically.

List Provides a list of the available sorting algorithms. The linker terminates after
displaying the list.

ObjectCode Sorts code sections by tiebreaker. All other sections are sorted lexically. This is
most useful when used with --tiebreaker=cmdline because it attempts to group all
the sections from the same object together in the memory map.

RunningDepth Sorts all Thumb code before ARM code and then sorts according to the running
depth of the section in ascending order. The running depth of a section S is the
average call depth of all the sections that call S, weighted by the number of times
that they call S.
Use this algorithm to minimize the number of long branch veneers.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-116
ID061811 Non-Confidential

Linker command-line options
2.104.2 Default

The default algorithm is --sort=Lexical. In large-region mode, the default algorithm is
--sort=AvgCallDepth.

2.104.3 See also

Concepts
• About execution region descriptions on page 4-8.
Using the Linker:
• Section placement with the linker on page 4-19.

Reference
• --largeregions, --no_largeregions on page 2-71
• Execution region attributes on page 4-11.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-117
ID061811 Non-Confidential

Linker command-line options
2.105 --split

This option splits the default load region, that contains the RO and RW output sections, into the
following load regions:

• One region containing the RO output section. The default load address is 0x8000, but a
different address can be specified with the --ro_base option.

• One region containing the RW and ZI output sections. The load address is specified with
the --rw_base option. This option requires a value for --rw_base. If --rw_base is not
specified, --rw_base=0 is assumed.

Both regions are root regions.

2.105.1 Restrictions

You cannot use --split with --scatter.

2.105.2 See also

Concepts
Using the Linker:
• The image structure on page 4-3.

Reference
• --ro_base=address on page 2-104
• --rw_base=address on page 2-107
• --scatter=file on page 2-110
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-118
ID061811 Non-Confidential

Linker command-line options
2.106 --startup=symbol, --no_startup
This option enables the linker to use alternative C libraries with a different startup symbol if
required.

2.106.1 Syntax

--startup=symbol

By default, symbol is set to __main.

--no_startup does not take a symbol argument.

2.106.2 Default

The default is --startup=__main.

2.106.3 Usage

The linker includes the C library startup code if there is a reference to a symbol that is defined
by the C library startup code. This symbol reference is called the startup symbol. It is
automatically created by the linker when it sees a definition of main(). The --startup option
enables you to change this symbol reference.

• If the linker finds a definition of main() and does not find a reference to (or definition of)
symbol, then it generates an error.

• If the linker finds a definition of main() and a reference to (or definition of) symbol, and
no entry point is specified, then the linker generates a warning.

2.106.4 See also

Reference
• --entry=location on page 2-42.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-119
ID061811 Non-Confidential

Linker command-line options
2.107 --strict

This option instructs the linker to perform additional conformance checks, such as reporting
conditions that might result in failures. An example of such a condition is taking the address of
an interworking function from a non-interworking function.

2.107.1 Usage

--strict causes the linker to check for taking the address of:

• A non-interworking location from a non-interworking location in a different state.

• A RWPI location from a location that uses the static base register R9.

• A stack checked location from a location that uses the reserved stack checking register
R10. (This is for ADS compatibility only.)

• A location that uses the reserved stack checking register r10 from a stack checked
location. (This is for ADS compatibility only).

2.107.2 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40.

Reference
• --diag_error=tag[,tag,...] on page 2-31
• --diag_suppress=tag[,tag,...] on page 2-34
• --diag_warning=tag[,tag,...] on page 2-35
• --errors=file on page 2-44
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_flags, --no_strict_flags on page 2-122
• --strict_ph, --no_strict_ph on page 2-123
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_visibility, --no_strict_visibility on page 2-126
• --strict_wchar_size, --no_strict_wchar_size on page 2-127.
Assembler Reference:
• --diag_error=tag{, tag} on page 2-9
• --diag_suppress=tag{, tag} on page 2-10
• --diag_warning=tag{, tag} on page 2-11.
Compiler Reference:
• --diag_error=tag[,tag,...] on page 3-30
• --diag_suppress=tag[,tag,...] on page 3-32
• --diag_warning=tag[,tag,...] on page 3-33
• --strict, --no_strict on page 3-88
• --strict_warnings on page 3-89.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-120
ID061811 Non-Confidential

Linker command-line options
2.108 --strict_enum_size, --no_strict_enum_size
The option --strict_enum_size causes the linker to display an error message if the enum size is
not consistent across all inputs. This is the default.

Use --no_strict_enum_size for compatibility with objects built using RVCT v3.1 and earlier.

2.108.1 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40.

Reference
• --strict on page 2-120
• --strict_flags, --no_strict_flags on page 2-122
• --strict_ph, --no_strict_ph on page 2-123
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_visibility, --no_strict_visibility on page 2-126
• --strict_wchar_size, --no_strict_wchar_size on page 2-127.
Compiler Reference:
• --enum_is_int on page 3-36.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-121
ID061811 Non-Confidential

Linker command-line options
2.109 --strict_flags, --no_strict_flags
The option --strict_flags prevents the EF_ARM_HASENTRY flag from being generated.

2.109.1 Default

The default is --no_strict_flags.

2.109.2 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40.

Reference
• --strict on page 2-120
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_ph, --no_strict_ph on page 2-123
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_visibility, --no_strict_visibility on page 2-126
• --strict_wchar_size, --no_strict_wchar_size on page 2-127.

Other information
• ARM ELF Specification (SWS ESPC 0003 B-02),

http://infocenter.arm.com/help/topic/com.arm.doc.espc0003/index.html.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-122
ID061811 Non-Confidential

Linker command-line options
2.110 --strict_ph, --no_strict_ph
The linker writes the contents of load regions into the output ELF file in the order that load
regions are written in the scatter file. Each load region is represented by one ELF program
segment. In RVCT v2.2 the Program Header Table entries describing the program segments are
given the same order as the program segments in the ELF file. To be more compliant with the
ELF specification, in RVCT v3.0 and later the Program Header Table entries are sorted in
ascending virtual address order.

Use the --no_strict_ph command-line option to switch off the sorting of the Program Header
Table entries.

2.110.1 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40.

Reference
• --strict on page 2-120
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_flags, --no_strict_flags on page 2-122
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_visibility, --no_strict_visibility on page 2-126
• --strict_wchar_size, --no_strict_wchar_size on page 2-127.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-123
ID061811 Non-Confidential

Linker command-line options
2.111 --strict_relocations, --no_strict_relocations
This option enables you to ensure Application Binary Interface (ABI) compliance of legacy or
third party objects. It checks that branch relocation applies to a branch instruction bit-pattern.
The linker generates an error if there is a mismatch.

2.111.1 Usage

Use --strict_relocations to instruct the linker to report instances of obsolete and deprecated
relocations.

Relocation errors and warnings are most likely to occur if you are linking object files built with
previous versions of the ARM tools.

2.111.2 Default

The default is --no_strict_relocations.

2.111.3 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40.

Reference
• --strict on page 2-120
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_flags, --no_strict_flags on page 2-122
• --strict_ph, --no_strict_ph on page 2-123
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_visibility, --no_strict_visibility on page 2-126
• --strict_wchar_size, --no_strict_wchar_size on page 2-127.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-124
ID061811 Non-Confidential

Linker command-line options
2.112 --strict_symbols, --no_strict_symbols
The option --strict_symbols checks that the mapping symbol type matches ABI symbol type.
The linker displays a warning if the types do not match.

A mismatch can occur only if you have hand-coded your own assembler.

2.112.1 Default

The default is --no_strict_symbols.

2.112.2 Example

In the following assembler code the symbol sym has type STT_FUNC and is ARM:

 area code, readonly
 DCD sym + 4
 ARM
sym PROC
 NOP
 THUMB
 NOP
 ENDP
 END

The difference in behavior is the meaning of DCD sym + 4:

• In pre-ABI linkers the state of the symbol is the state of the only of the mapping symbol
at that location. In this example, the state is Thumb.

• In ABI linkers the type of the symbol is the state of the location of symbol plus the offset.

2.112.3 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40
• About mapping symbols on page 7-3.

Reference
• --strict on page 2-120
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_flags, --no_strict_flags on page 2-122
• --strict_ph, --no_strict_ph on page 2-123
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_visibility, --no_strict_visibility on page 2-126
• --strict_wchar_size, --no_strict_wchar_size on page 2-127.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-125
ID061811 Non-Confidential

Linker command-line options
2.113 --strict_visibility, --no_strict_visibility
A linker is not permitted to match a symbol reference with STT_HIDDEN visibility to a dynamic
shared object. Some older linkers might permit this.

Use --no_strict_visibility to permit a hidden visibility reference to match against a shared
object.

2.113.1 Default

The default is --strict_visibility.

2.113.2 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40.

Reference
• --strict on page 2-120
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_flags, --no_strict_flags on page 2-122
• --strict_ph, --no_strict_ph on page 2-123
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_wchar_size, --no_strict_wchar_size on page 2-127.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-126
ID061811 Non-Confidential

Linker command-line options
2.114 --strict_wchar_size, --no_strict_wchar_size
The option --strict_wchar_size causes the linker to display an error message if the wide
character size is not consistent across all inputs. This is the default.

Use --no_strict_wchar_size for compatibility with objects built using RVCT v3.1 and earlier.

2.114.1 See also

Concepts
Using the Linker:
• Use of the strict family of options in the linker on page 4-40.

Reference
• --strict on page 2-120
• --strict_enum_size, --no_strict_enum_size on page 2-121
• --strict_flags, --no_strict_flags on page 2-122
• --strict_ph, --no_strict_ph on page 2-123
• --strict_relocations, --no_strict_relocations on page 2-124
• --strict_symbols, --no_strict_symbols on page 2-125
• --strict_visibility, --no_strict_visibility on page 2-126.
Compiler Reference:
• --wchar16 on page 3-97
• --wchar32 on page 3-97.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-127
ID061811 Non-Confidential

Linker command-line options
2.115 --symbolic

Sets the DF_SYMBOLIC flag in the SHT_DYNAMIC section for a shared library. This flag
changes the symbol resolution algorithm of the dynamic linker for references within the library.
The dynamic linker searches for symbols starting with the shared object rather than the
executable image. If the referenced symbol cannot be found in the shared object, the dynamic
linker searches the executable image and other shared objects as usual.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-128
ID061811 Non-Confidential

Linker command-line options
2.116 --symbols, --no_symbols
This option enables or disables the listing of each local and global symbol used in the link step,
and its value.

Note
 This does not include mapping symbols output to stdout. Use --list_mapping_symbols to
include mapping symbols in the output.

2.116.1 Default

The default is --no_symbols.

2.116.2 See also

Reference
• --list_mapping_symbols, --no_list_mapping_symbols on page 2-78.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-129
ID061811 Non-Confidential

Linker command-line options
2.117 --symdefs=file

This option creates a file containing the global symbol definitions from the output image.

2.117.1 Syntax

--symdefs=file

where file is the name of the text file to contain the global symbol definitions.

2.117.2 Default

By default, all global symbols are written to the symdefs file. If a symdefs file called file
already exists, the linker restricts its output to the symbols already listed in this file.

Note
 If you do not want this behavior, be sure to delete any existing symdefs file before the link step.

2.117.3 Usage

If file is specified without path information, the linker searches for it in the directory where the
output image is being written. If it is not found, it is created in that directory.

You can use the symbol definitions file as input when linking another image.

2.117.4 See also

Concepts
Using the Linker:
• Accessing symbols in another image on page 7-17.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-130
ID061811 Non-Confidential

Linker command-line options
2.118 --tailreorder, --no_tailreorder
This option moves tail calling sections immediately before their target, if possible, to optimize
the branch instruction at the end of a section. A tail calling section is a section that contains a
branch instruction at the end of the section. The branch must have a relocation that targets a
function at the start of a section.

2.118.1 Default

The default is --no_tailreorder.

2.118.2 Restrictions

The linker:

• Can only move one tail calling section for each tail call target. If there are multiple tail
calls to a single section, the tail calling section with an identical section name is moved
before the target. If no section name is found in the tail calling section that has a matching
name, then the linker moves the first section it encounters.

• Cannot move a tail calling section out of its execution region.

• Does not move tail calling sections before inline veneers.

2.118.3 See also

Concepts
Using the Linker:
• Handling branches that optimize to a NOP on page 5-20
• About reordering of tail calling sections on page 5-21.

Reference
• --branchnop, --no_branchnop on page 2-14.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-131
ID061811 Non-Confidential

Linker command-line options
2.119 --thumb2_library, --no_thumb2_library
Enables you to link against the combined ARM and Thumb-2 library for use with Cortex-R
series processors.

Use the --no_thumb2_library option to revert to the ARMv5T and later libraries.

2.119.1 Default

The default is --thumb2_library.

2.119.2 See also

Reference
Using ARM C and C++ Libraries and Floating-Point Support:
• C and C++ library naming conventions on page 2-120.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-132
ID061811 Non-Confidential

Linker command-line options
2.120 --tiebreaker=option

A tiebreaker is used when a sorting algorithm requires a total ordering of sections. It is used to
resolve the order when the sorting criteria results in more than one input section with equal
properties.

2.120.1 Syntax

--tiebreaker=option

where option is one of:

creation The order that the linker creates sections in its internal section data structure.
When the linker creates an input section for each ELF section in the input objects,
it increments a global counter. The value of this counter is stored in the section as
the creation index.
The creation index of a section is unique apart from the special case of inline
veneers.

cmdline The order that the section appears on the linker command-line. The
command-line order is defined as File.Object.Section where:
• Section is the section index, sh_idx, of the Section in the Object
• Object is the order that Object appears in the File
• File is the order the File appears on the command line.
The order the Object appears in the File is only significant if the file is an ar
archive.
This option is useful if you are doing a binary difference between the results of
different links, link1 and link2. If link2 has only small changes from link1, then
you might want the differences in one source file to be localized. In general,
creation index works well for objects, but because of the multiple pass selection
of members from libraries, a small difference such as calling a new function can
result in a different order of objects and therefore a different tiebreak. The
command-line index is more stable across builds.

Use this option with the --scatter option.

2.120.2 Default

The default option is creation.

2.120.3 See also

Concepts
Using the Linker:
• Examples of using sorting algorithms for .ANY sections on page 8-30.

Reference
• --any_sort_order=order on page 2-8
• --map, --no_map on page 2-83
• --scatter=file on page 2-110
• --section_index_display=type on page 2-111
• --sort=algorithm on page 2-116.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-133
ID061811 Non-Confidential

Linker command-line options
2.121 --undefined=symbol

This option causes the linker to:

1. Create a symbol reference to the specified symbol name.

2. Issue an implicit --keep(symbol) to prevent any sections brought in to define that symbol
from being removed.

2.121.1 Syntax

--undefined=symbol

2.121.2 See also

Reference
• --keep=section_id on page 2-68
• --undefined_and_export=symbol on page 2-135.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-134
ID061811 Non-Confidential

Linker command-line options
2.122 --undefined_and_export=symbol

This option causes the linker to:

1. Create a symbol reference to the specified symbol name.

2. Issue an implicit --keep(symbol) to prevent any sections brought in to define that symbol
from being removed.

3. Add an implicit EXPORT symbol to push the specified symbol into the dynamic symbol
table.

2.122.1 Syntax

--undefined_and_export=symbol

2.122.2 Usage

Be aware of the following when using this option:

• It does not change the visibility of a symbol unless you specify the --override_visibility
option.

• A warning is issued if the visibility of the specified symbol is not high enough.

• A warning is issued if the visibility of the specified symbol is overridden because you also
specified the --override_visibility option.

• Hidden symbols are not exported unless you specify the --override_visibility option.

2.122.3 See also

Reference
• --keep=section_id on page 2-68
• --override_visibility on page 2-90
• --undefined=symbol on page 2-134
• EXPORT on page 3-2.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-135
ID061811 Non-Confidential

Linker command-line options
2.123 --unresolved=symbol

This option takes each reference to an undefined symbol and matches it to the global definition
of the specified symbol.

2.123.1 Syntax

--unresolved=symbol

Where symbol must be both defined and global, otherwise it appears in the list of undefined
symbols and the link step fails.

2.123.2 Usage

This option is particularly useful during top-down development, because it enables you to test
a partially-implemented system by matching each reference to a missing function to a dummy
function.

2.123.3 See also

Reference
• --undefined=symbol on page 2-134
• --undefined_and_export=symbol on page 2-135
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-136
ID061811 Non-Confidential

Linker command-line options
2.124 --use_definition_visibility

When the linker combines global symbols the visibility of the symbol is set with the strictest
visibility of the symbols being combined. Therefore, a symbol reference with STV_HIDDEN
visibility combined with a definition with STV_DEFAULT visibility results in a definition with
STV_HIDDEN visibility.

This option enables the linker to use the visibility of the definition in preference to the visibility
a reference when combining symbols. For example, a symbol reference with STV_HIDDEN
visibility combined with a definition with STV_DEFAULT visibility results in a definition with
STV_DEFAULT visibility.

This can be useful when you want a reference to not match a Shared Library, but you want to
export the definition.

Note
 This option is not ELF-compliant and is disabled by default. To create ELF-compliant images,
you must use symbol references with the appropriate visibility.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-137
ID061811 Non-Confidential

Linker command-line options
2.125 --userlibpath=pathlist

This option specifies a list of paths that are used to search for user libraries.

2.125.1 Syntax

--userlibpath=pathlist

Where pathlist is a comma-separated list of paths that are used to search for the required
libraries. Do not include spaces between the comma and the path name when specifying
multiple path names, for example, path1,path2,path3,...,pathn.

2.125.2 See also

Concepts
Using the Linker:
• How the linker performs library searching, selection, and scanning on page 4-35.

Reference
• --libpath=pathlist on page 2-75.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-138
ID061811 Non-Confidential

Linker command-line options
2.126 --veneer_inject_type=type

This option controls the veneer layout when --largeregions mode is on.

2.126.1 Syntax

--veneer_inject_type=type

where type is one of:

individual The linker places veneers to ensure they can be reached by the largest amount of
sections that use the veneer. Veneer reuse between execution regions is permitted.
This type minimizes the number of veneers that are required but disrupts the
structure of the image the most.

pool The linker:
1. Collects veneers from a contiguous range of the execution region
2. Places all the veneers generated from that range into a pool.
3. Places that pool at the end of the range.
A large execution region might have more than one range and therefore more than
one pool. Although this type has much less impact on the structure of image, it
has fewer opportunities for reuse. This is because a range of code cannot reuse a
veneer in another pool. The linker calculates the range based on the presence of
branch instructions that the linker predicts might require veneers. A branch is
predicted to require a veneer when either:
• a state change is required
• the distance from source to target plus a contingency greater than the branch

range.
You can set the size of the contingency with the --veneer_pool_size=size option.
By default the contingency size is set to 102400 bytes. The --info=veneerpools
option provides information on how the linker has placed veneer pools.

2.126.2 Restrictions

You must use --largeregions with this option.

2.126.3 See also

Reference
• --info=topic[,topic,...] on page 2-59
• --largeregions, --no_largeregions on page 2-71
• --veneer_pool_size=size on page 2-140.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-139
ID061811 Non-Confidential

Linker command-line options
2.127 --veneer_pool_size=size

Sets the contingency size for the veneer pool in an execution region.

2.127.1 Syntax

--veneer_pool_size=pool

where pool is the size in bytes.

2.127.2 Default

The default size is 102400 bytes.

2.127.3 See also

Reference
• --veneer_inject_type=type on page 2-139.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-140
ID061811 Non-Confidential

Linker command-line options
2.128 --veneershare, --no_veneershare
This option enables or disables veneer sharing. Veneer sharing can cause a significant decrease
in image size.

2.128.1 default

The default is --veneershare.

2.128.2 See also

Concepts
Using the Linker:
• Overview of veneers on page 4-26
• Veneer sharing on page 4-27
• Veneer types on page 4-28
• Generation of position independent to absolute veneers on page 4-29
• Reuse of veneers when scatter-loading on page 4-30.

Reference
• --inlineveneer, --no_inlineveneer on page 2-65
• --piveneer, --no_piveneer on page 2-95.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-141
ID061811 Non-Confidential

Linker command-line options
2.129 --verbose

This option prints detailed information about the link operation, including the objects that are
included and the libraries from which they are taken. This output is particular useful for tracing
undefined symbols reference or multiply defined symbols. Because this output is typically quite
long, you might want to use this command with the --list=file command to redirect the
information to file.

Use --verbose to output diagnostics to stdout.

2.129.1 See also

Reference
• --list=file on page 2-77
• --muldefweak, --no_muldefweak on page 2-88
• --unresolved=symbol on page 2-136.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-142
ID061811 Non-Confidential

Linker command-line options
2.130 --version_number

This option displays the version of armlink you are using.

2.130.1 Syntax

armlink --version_number

The linker displays the version number in the format nnnbbb, where:
• nnn is the version number
• bbb is the build number.

2.130.2 Example

Version 4.1.0 build 713 is displayed as 410713.

2.130.3 See also

Reference
• --help on page 2-58
• --vsn on page 2-146
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-143
ID061811 Non-Confidential

Linker command-line options
2.131 --vfemode=mode

Virtual Function Elimination (VFE) is a technique that enables the linker to identify more
unused sections.

Use this option to specify how VFE, and Runtime Type Information (RTTI) objects, are
eliminated.

2.131.1 Syntax

--vfemode=mode

Where mode is one of the following:

on Use the command-line option --vfemode=on to make the linker VFE aware.
In this mode the linker chooses force or off mode based on the content of object
files:
• Where every object file contains VFE information or does not refer to a

symbol with a mangled C++ name, the linker assumes force mode and
continues with the elimination.

• If any object file is missing VFE information and refers to a symbol with a
mangled C++ name, for example, where code has been compiled with a
previous release of the ARM tools, the linker assumes off mode, and VFE
is disabled silently. Choosing off mode to disable VFE in this situation
ensures that the linker does not remove a virtual function that is used by an
object with no VFE information.

off Use the command-line option --vfemode=off to make armlink ignore any extra
information supplied by the compiler. In this mode, the final image is the same as
that produced by compiling and linking without VFE awareness.

force Use the command-line option --vfemode=force to make the linker VFE aware and
force the VFE algorithm to be applied. If some of the object files do not contain
VFE information, for example, where they have been compiled with a previous
release of the ARM tools, the linker continues with the elimination but displays a
warning to alert you to possible errors.

force_no_rtti

Use the command-line option --vfemode=force_no_rtti to make the linker VFE
aware and force the removal of all RTTI objects. In this mode all virtual functions
are retained.

2.131.2 Default

The default is --vfemode=on.

2.131.3 See also

Concepts
Using the Linker:
• Elimination of common debug sections on page 5-2
• Elimination of common groups or sections on page 5-3
• Elimination of unused sections on page 5-4
• Elimination of unused virtual functions on page 5-5.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-144
ID061811 Non-Confidential

Linker command-line options
2.132 --via=file

This option reads an additional list of input filenames and linker options from file.

You can enter multiple --via options on the linker command line. The --via options can also be
included within a via file.

2.132.1 See also

Concepts
Compiler Reference:
• Overview of via files on page B-2.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-145
ID061811 Non-Confidential

Linker command-line options
2.133 --vsn

This option displays the version information and the license details. For example:

>armlink --vsn
ARM Linker, N.n [Build num]
license_type
Software supplied by: ARM Limited

2.133.1 See also

Reference
• --help on page 2-58
• --show_cmdline on page 2-112
• --version_number on page 2-143.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-146
ID061811 Non-Confidential

Linker command-line options
2.134 --xref, --no_xref
This option lists to stdout all cross-references between input sections.

2.134.1 Default

The default is --no_xref.

2.134.2 See also

Reference
• --list=file on page 2-77
• --xrefdbg, --no_xrefdbg on page 2-148
• --xref{from|to}=object(section) on page 2-149.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-147
ID061811 Non-Confidential

Linker command-line options
2.135 --xrefdbg, --no_xrefdbg
This option lists to stdout all cross-references between input debug sections.

2.135.1 Default

The default is --no_xrefdbg.

2.135.2 See also

Reference
• --list=file on page 2-77
• --xref, --no_xref on page 2-147
• --xref{from|to}=object(section) on page 2-149.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-148
ID061811 Non-Confidential

Linker command-line options
2.136 --xref{from|to}=object(section)

This option lists to stdout cross-references:
• from input section in object to other input sections
• to input section in object from other input sections.

This is a useful subset of the listing produced by the --xref linker option if you are interested in
references from or to a specific input section. You can have multiple occurrences of this option
to list references from or to more than one input section.

2.136.1 See also

Reference
• --list=file on page 2-77
• --xref, --no_xref on page 2-147
• --xrefdbg, --no_xrefdbg on page 2-148.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-149
ID061811 Non-Confidential

Linker command-line options
2.137 --zi_base=address

This option specifies the base address of an ER_ZI execution region.

2.137.1 Syntax

--zi_base=address

Where address must be word-aligned.

2.137.2 Restrictions

The linker ignores --zi_base if one of the following options is also specified:
• --reloc

• --rwpi

• --split

You cannot use --zi_base with --scatter.

2.137.3 See also

Reference
• --reloc on page 2-101
• --rwpi on page 2-108
• --scatter=file on page 2-110
• --split on page 2-118
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 2-150
ID061811 Non-Confidential

Chapter 3
Linker steering file command reference

The following topics describe the steering file commands supported by the linker, armlink:
• EXPORT on page 3-2
• HIDE on page 3-3
• IMPORT on page 3-4
• RENAME on page 3-5
• REQUIRE on page 3-7
• RESOLVE on page 3-8
• SHOW on page 3-10.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-1
ID061811 Non-Confidential

Linker steering file command reference
3.1 EXPORT
The EXPORT command specifies that a symbol can be accessed by other shared objects or
executables.

Note
 A symbol can be exported only if the reference has STV_DEFAULT visibility. You must use the
--override_visibility command-line option to enable the linker to override symbol visibility
to STV_DEFAULT.

3.1.1 Syntax

EXPORT pattern [AS replacement_pattern] [,pattern [AS replacement_pattern]]

where:

pattern Is a string, optionally including wildcard characters (either * or ?), that matches
zero or more defined global symbols. If pattern does not match any defined
global symbol, the linker ignores the command. The operand can match only
defined global symbols.
If the symbol is not defined, the linker issues:
Warning: L6331W: No eligible global symbol matches pattern symbol

replacement_pattern

Is a string, optionally including wildcard characters (either * or ?), to which the
defined global symbol is to be renamed. Wild characters must have a
corresponding wildcard in pattern. The characters matched by the
replacement_pattern wildcard are substituted for the pattern wildcard.
For example:
EXPORT my_func AS func1

renames and exports the defined symbol my_func as func1.

3.1.2 Usage

You cannot export a symbol to a name that already exists. Only one wildcard character (either
* or ?) is permitted in EXPORT.

The defined global symbol is included in the dynamic symbol table (as replacement_pattern if
given, otherwise as pattern), if a dynamic symbol table is present.

3.1.3 See also

Concepts
Using the Linker:
• What is a steering file? on page 7-23.

Reference
• --override_visibility on page 2-90
• IMPORT on page 3-4.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-2
ID061811 Non-Confidential

Linker steering file command reference
3.2 HIDE
The HIDE command makes defined global symbols in the symbol table anonymous.

3.2.1 Syntax

HIDE pattern [,pattern]

where:

pattern Is a string, optionally including wildcard characters, that matches zero or more
defined global symbols. If pattern does not match any defined global symbol, the
linker ignores the command. You cannot hide undefined symbols.

3.2.2 Usage

HIDE and SHOW can be used to make certain global symbols anonymous in an output image or
partially linked object. Hiding symbols in an object file or library can be useful as a means of
protecting intellectual property, as shown in Example 3-1. This example produces a partially
linked object with all global symbols hidden, except those beginning with os_.

Example 3-1 Using the HIDE command

; steer.txt

; Hides all global symbols
HIDE *
; Shows all symbols beginning with ’os_’
SHOW os_*

Link this example with the command:

armlink --partial input_object.o --edit steer.txt --o partial_object.o

You can be link the resulting partial object with other objects, provided they do not contain
references to the hidden symbols. When symbols are hidden in the output object, SHOW
commands in subsequent link steps have no effect on them. The hidden references are removed
from the output symbol table.

3.2.3 See also

Concepts
Using the Linker:
• What is a steering file? on page 7-23.

Reference
• --edit=file_list on page 2-37
• --partial on page 2-94
• SHOW on page 3-10.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-3
ID061811 Non-Confidential

Linker steering file command reference
3.3 IMPORT
The IMPORT command specifies that a symbol is defined in a shared object at runtime.

Note
 A symbol can be imported only if the reference has STV_DEFAULT visibility. You must use the
--override_visibility command-line option to enable the linker to override symbol visibility
to STV_DEFAULT.

3.3.1 Syntax

IMPORT pattern [AS replacement_pattern] [,pattern [AS replacement_pattern]]

where:

pattern Is a string, optionally including wildcard characters (either * or ?), that matches
zero or more undefined global symbols. If pattern does not match any undefined
global symbol, the linker ignores the command. The operand can match only
undefined global symbols.

replacement_pattern

Is a string, optionally including wildcard characters (either * or ?), to which the
symbol is to be renamed. Wild characters must have a corresponding wildcard in
pattern. The characters matched by the pattern wildcard are substituted for the
replacement_pattern wildcard.
For example:
IMPORT my_func AS func

imports and renames the undefined symbol my_func as func.

3.3.2 Usage

You cannot import a symbol that has been defined in the current shared object or executable.
Only one wildcard character (either * or ?) is permitted in IMPORT.

The undefined symbol is included in the dynamic symbol table (as replacement_pattern if given,
otherwise as pattern), if a dynamic symbol table is present.

Note
 The IMPORT command only affects undefined global symbols. Symbols that have been resolved
by a shared library are implicitly imported into the dynamic symbol table. The linker ignores
any IMPORT directive that targets an implicitly imported symbol.

3.3.3 See also

Concepts
Using the Linker:
• What is a steering file? on page 7-23.

Reference
• --override_visibility on page 2-90
• EXPORT on page 3-2.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-4
ID061811 Non-Confidential

Linker steering file command reference
3.4 RENAME
The RENAME command renames defined and undefined global symbol names.

3.4.1 Syntax

RENAME pattern AS replacement_pattern [,pattern AS replacement_pattern]

where:

pattern Is a string, optionally including wildcard characters (either * or ?), that matches
zero or more global symbols. If pattern does not match any global symbol, the
linker ignores the command. The operand can match both defined and undefined
symbols.

replacement_pattern

Is a string, optionally including wildcard characters (either * or ?), to which the
symbol is to be renamed. Wild characters must have a corresponding wildcard in
pattern. The characters matched by the pattern wildcard are substituted for the
replacement_pattern wildcard.
For example, for a symbol named func1:
RENAME f* AS my_f*

renames func1 to my_func1.

3.4.2 Usage

You cannot rename a symbol to a global symbol name that already exists, even if the target
symbol name is being renamed itself.

You cannot rename a symbol to the same name as another symbol. For example, you cannot do
the following:

RENAME foo1 bar
RENAME foo2 bar

Renames only take effect at the end of the link step. Therefore, renaming a symbol does not
remove its original name. This means that you cannot do the following:

RENAME func1 func2
RENAME func2 func3

The linker gives an error that func1 cannot be renamed to func2 as a symbol already exists with
that name.

Only one wildcard character (either * or ?) is permitted in RENAME.

3.4.3 Example

Given an image containing the symbols func1, func2, and func3, you might have a steering file
containing the following commands:

;invalid, func2 already exists EXPORT func1 AS func2

; valid RENAME func3 AS b2
;invalid, func3 still exists because the link step is not yet complete EXPORT func1 AS
func3
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-5
ID061811 Non-Confidential

Linker steering file command reference
3.4.4 See also

Concepts
Using the Linker:
• What is a steering file? on page 7-23.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-6
ID061811 Non-Confidential

Linker steering file command reference
3.5 REQUIRE
The REQUIRE command creates a DT_NEEDED tag in the dynamic array. DT_NEEDED tags specify
dependencies to other shared objects used by the application, for example, a shared library.

3.5.1 Syntax

REQUIRE pattern [,pattern]

where:

pattern Is a string representing a filename. No wild characters are permitted.

3.5.2 Usage

The linker inserts a DT_NEEDED tag with the value of pattern into the dynamic array. This tells the
dynamic loader that the file it is currently loading requires pattern to be loaded.

Note
 DT_NEEDED tags inserted as a result of a REQUIRE command are added after DT_NEEDED tags
generated from shared objects or dynamically linked libraries (DLLs) placed on the command
line.

3.5.3 See also

Concepts
Using the Linker:
• What is a steering file? on page 7-23.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-7
ID061811 Non-Confidential

Linker steering file command reference
3.6 RESOLVE
The RESOLVE command matches specific undefined references to a defined global symbol.

3.6.1 Syntax

RESOLVE pattern AS defined_pattern

where:

pattern Is a string, optionally including wildcard characters (either * or ?), that matches
zero or more undefined global symbols. If pattern does not match any undefined
global symbol, the linker ignores the command. The operand can match only
undefined global symbols.

defined_pattern

Is a string, optionally including wildcard characters, that matches zero or more
defined global symbols. If defined_pattern does not match any defined global
symbol, the linker ignores the command. You cannot match an undefined
reference to an undefined symbol.

3.6.2 Usage

RESOLVE is an extension of the existing armlink --unresolved command-line option. The
difference is that --unresolved enables all undefined references to match one single definition,
whereas RESOLVE enables more specific matching of references to symbols.

The undefined references are removed from the output symbol table.

RESOLVE works when performing partial-linking and when linking normally.

3.6.3 Example

You might have two files file1.c and file2.c, as shown in the following example:

Example 3-2 Using the RESOLVE command

file1.c

extern int foo;
extern void MP3_Init(void);
extern void MP3_Play(void);

int main(void)
{
 int x = foo + 1;
 MP3_Init();
 MP3_Play();
 return x;
}

file2.c:

int foobar;
void MyMP3_Init()
{
}

ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-8
ID061811 Non-Confidential

Linker steering file command reference
void MyMP3_Play()
{
}

Create a steering file, ed.txt, containing the line:

RESOLVE MP3* AS MyMP3*.

Enter the following command:

armlink file1.o file2.o --edit ed.txt --unresolved foobar

This command has the following effects:

• The references from file1.o (foo, MP3_Init() and MP3_Play()) are matched to the
definitions in file2.o (foobar, MyMP3_Init() and MyMP3_Play() respectively), as specified
by the steering file ed.txt.

• The RESOLVE command in ed.txt matches the MP3 functions and the --unresolved option
matches any other remaining references, in this case, foo to foobar.

• The output symbol table, whether it is an image or a partial object, does not contain the
symbols foo, MP3_Init or MP3_Play.

3.6.4 See also

Concepts
Using the Linker:
• What is a steering file? on page 7-23.

Reference
• --edit=file_list on page 2-37
• --unresolved=symbol on page 2-136
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-9
ID061811 Non-Confidential

Linker steering file command reference
3.7 SHOW
The SHOW command makes global symbols visible. This command is useful if you want to make
a specific symbol visible that is hidden using a HIDE command with a wildcard.

3.7.1 Syntax

SHOW pattern [,pattern]

where:

pattern Is a string, optionally including wildcard characters, that matches zero or more
global symbols. If pattern does not match any global symbol, the linker ignores
the command.

3.7.2 Usage

The usage of SHOW is closely related to that of HIDE.

3.7.3 See also

Concepts
Using the Linker:
• What is a steering file? on page 7-23.

Reference
• HIDE on page 3-3.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 3-10
ID061811 Non-Confidential

Chapter 4
Formal syntax of the scatter file

The following topics describe the format of scatter files:

Concepts
• About load region descriptions on page 4-5
• About execution region descriptions on page 4-8
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17
• Inheritance rules for load region address attributes on page 4-18
• Inheritance rules for load region address attributes on page 4-18
• Inheritance rules for the RELOC address attribute on page 4-20
• About input section descriptions on page 4-21
• How the linker resolves multiple matches when processing scatter files on page 4-26
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28
• How the linker resolves path names when processing scatter files on page 4-29
• About Expression evaluation in scatter files on page 4-30
• Expression usage in scatter files on page 4-31
• Expression rules in scatter files on page 4-32
• Execution address built-in functions for use in scatter files on page 4-34
• Scatter files containing relative base address load regions and a ZI execution region on

page 4-36
• ScatterAssert function and load address related functions on page 4-38
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-1
ID061811 Non-Confidential

Formal syntax of the scatter file
• Symbol related function in a scatter file on page 4-40
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• BNF notation used in scatter-loading description syntax on page 4-3
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Load region attributes on page 4-7
• Syntax of an execution region description on page 4-9
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14
• Syntax of an input section description on page 4-22
• AlignExpr(expr, align) function on page 4-42
• GetPageSize() function on page 4-43
• SizeOfHeaders() function on page 4-44.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-2
ID061811 Non-Confidential

Formal syntax of the scatter file
4.1 BNF notation used in scatter-loading description syntax
Table 4-1 summarizes the Backus-Naur Form (BNF) symbols that are used to describe a formal
language.

4.1.1 See also

Concepts
• Syntax of a scatter file on page 4-4.

Table 4-1 BNF notation

Symbol Description

" Quotation marks are used to indicate that a character that is normally part of
the BNF syntax is used as a literal character in the definition. The definition
B"+"C, for example, can only be replaced by the pattern B+C. The definition B+C
can be replaced by, for example, patterns BC, BBC, or BBBC.

A ::= B Defines A as B. For example, A::= B"+" | C means that A is equivalent to either
B+ or C. The ::= notation is used to define a higher level construct in terms of
its components. Each component might also have a ::= definition that defines
it in terms of even simpler components. For example, A::= B and B::= C | D
means that the definition A is equivalent to the patterns C or D.

[A] Optional element A. For example, A::= B[C]D means that the definition A can
be expanded into either BD or BCD.

A+ Element A can have one or more occurrences. For example, A::= B+ means that
the definition A can be expanded into B, BB, or BBB.

A* Element A can have zero or more occurrences.

A | B Either element A or B can occur, but not both.

(A B) Element A and B are grouped together. This is particularly useful when the |
operator is used or when a complex pattern is repeated. For example, A::=(B
C)+ (D | E) means that the definition A can be expanded into any of BCD, BCE,
BCBCD, BCBCE, BCBCBCD, or BCBCBCE.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-3
ID061811 Non-Confidential

Formal syntax of the scatter file
4.2 Syntax of a scatter file
The following figure shows the components and organization of a typical scatter file:

Figure 4-1 Components of a scatter file

4.2.1 See also

Tasks
Using the Linker:
• Chapter 8 Using scatter files.

Concepts
• About load region descriptions on page 4-5
• About execution region descriptions on page 4-8

Load region description

Execution region description

Input section description

Module selector pattern Input section attributes

Load region description

Execution region description

Input section description

Execution region description

Input section description

Execution region description

Input section description

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000
{

program1.o (+RW,+ZI)
}

}

LOAD_ROM_2 0x4000
{

EXEC_ROM_2 0x4000
{

program2.o (+RO)
}

SRAM 0x8000 0x8000
{

program2.o (+RW,+ZI)
}

}

Scatter description
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-4
ID061811 Non-Confidential

Formal syntax of the scatter file
4.3 About load region descriptions
A load region description has:
• a name (used by the linker to identify different load regions)
• a base address (the start address for the code and data in the load view)
• attributes that specify the properties of the load region
• an optional maximum size specification
• one or more execution regions.

The following figure shows the components of a typical load region description:

Figure 4-2 Components of a load region description

4.3.1 See also

Tasks
Using the Linker:
• About creating regions on page boundaries on page 8-52
• Chapter 8 Using scatter files.

Concepts
• About Expression evaluation in scatter files on page 4-30.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Load region attributes on page 4-7
• Address attributes for load and execution regions on page 4-14.

A load region description contains
one or more execution region
descriptions

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000
{

program1.o (+RW,+ZI)
}

}

Load region description
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-5
ID061811 Non-Confidential

Formal syntax of the scatter file
4.4 Syntax of a load region description
The syntax of a load region description, in Backus-Naur Form (BNF), is:

load_region_description ::=
load_region_name (base_address | ("+" offset)) [attribute_list] [max_size]

 "{"
 execution_region_description+
 "}"

where:

load_region_name

Names the load region.

base_address Specifies the address where objects in the region are to be linked. base_address
must satisfy the alignment constraints of the load region.

+offset Describes a base address that is offset bytes beyond the end of the preceding load
region. The value of offset must be zero modulo four. If this is the first load
region, then +offset means that the base address begins offset bytes from zero.
If you use +offset, then the load region might inherit certain attributes from a
previous load region.

attribute_list

The attributes that specify the properties of the load region contents.

max_size Specifies the maximum size of the load region. This is the size of the load region
before any decompression or zero initialization take place. If the optional
max_size value is specified, armlink generates an error if the region has more than
max_size bytes allocated to it.

execution_region_description

Specifies the execution region name, address, and contents.

Note
 The Backus-Naur Form (BNF) definitions contain additional line returns and spaces to improve
readability. They are not required in the scatter-loading definition and are ignored if present in
the file.

4.4.1 See also

Concepts
• About load region descriptions on page 4-5
• Considerations when using a relative address +offset for load regions on page 4-16
• Inheritance rules for load region address attributes on page 4-18
• About Expression evaluation in scatter files on page 4-30.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description
• Load region attributes on page 4-7
• Address attributes for load and execution regions on page 4-14.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-6
ID061811 Non-Confidential

Formal syntax of the scatter file
4.5 Load region attributes
The load region attributes are:

ABSOLUTE Absolute address. The load address of the region is specified by the base
designator. This is the default, unless you use PI or RELOC.

ALIGN alignment Increase the alignment constraint for the load region from 4 to alignment.
alignment must be a positive power of 2. If the load region has a
base_address then this must be alignment aligned. If the load region has a
+offset then the linker aligns the calculated base address of the region to
an alignment boundary.
This can also affect the offset in the ELF file. For example, the following
causes the data for FOO to be written out at 4k offset into the ELF file:
FOO +4 ALIGN 4096

NOCOMPRESS RW data compression is enabled by default. The NOCOMPRESS keyword
enables you to specify that the contents of a load region must not be
compressed in the final image.

OVERLAY The OVERLAY keyword enables you to have multiple load regions at the
same address. ARM tools do not provide an overlay mechanism. To use
multiple load regions at the same address, you must provide your own
overlay manager.

PI This region is position independent.

PROTECTED The PROTECTED keyword prevents:
• overlapping of load regions
• veneer sharing
• string sharing with the --merge option.

RELOC This region is relocatable.

4.5.1 See also

Concepts
• Considerations when using a relative address +offset for load regions on page 4-16
• Inheritance rules for the RELOC address attribute on page 4-20.
Using the Linker:
• About load region descriptions on page 4-5
• Section alignment with the linker on page 4-22
• Veneer sharing on page 4-27
• Generation of position independent to absolute veneers on page 4-29
• Reuse of veneers when scatter-loading on page 4-30
• Optimization with RW data compression on page 5-12
• Placement of sections with overlays on page 8-42
• About creating regions on page boundaries on page 8-52.

Reference
• --merge, --no_merge on page 2-87
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-7
ID061811 Non-Confidential

Formal syntax of the scatter file
4.6 About execution region descriptions
An execution region description has:
• a name (used by the linker to identify different execution regions)
• a base address (either absolute or relative)
• attributes that specify the properties of the execution region
• an optional maximum size specification
• one or more input section descriptions (the modules placed into this execution region).

The following figure shows the components of a typical execution region description:

Figure 4-3 Components of an execution region description

4.6.1 See also

Tasks
Using the Linker:
• Chapter 8 Using scatter files.

Concepts
• About Expression evaluation in scatter files on page 4-30.
Using the Linker:
• Placement of sections with overlays on page 8-42
• About creating regions on page boundaries on page 8-52.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of an execution region description on page 4-9
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14
• About input section descriptions on page 4-21.

An execution region description contains
one or more input section descriptions

EXEC_ROM_1 0x0000
{

program1.o (+RO)

}

Execution region description
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-8
ID061811 Non-Confidential

Formal syntax of the scatter file
4.7 Syntax of an execution region description
The syntax of an execution region description, in Backus-Naur Form (BNF), is:

execution_region_description ::=

 exec_region_name (base_address | "+" offset) [attribute_list] [max_size | length]
 "{"
 input_section_description*
 "}"

where:

exec_region_name

Names the execution region.

base_address Specifies the address where objects in the region are to be linked. base_address
must be word-aligned.

Note
 Using ALIGN on an execution region causes both the load address and execution

address to be aligned.

+offset Describes a base address that is offset bytes beyond the end of the preceding
execution region. The value of offset must be zero modulo four.
If this is the first execution region in the load region then +offset means that the
base address begins offset bytes after the base of the containing load region.
If you use +offset, then the execution region might inherit certain attributes from
the parent load region, or from a previous execution region within the same load
region.

attribute_list

The attributes that specify the properties of the execution region contents.

max_size For an execution region marked EMPTY or FILL the max_size value is interpreted as
the length of the region. Otherwise the max_size value is interpreted as the
maximum size of the execution region.

[–]length Can only be used with EMPTY to represent a stack that grows down in memory. If
the length is given as a negative value, the base_address is taken to be the end
address of the region.

input_section_description

Specifies the content of the input sections.

Note
 The Backus-Naur Form (BNF) definitions contain additional line returns and spaces to improve
readability. They are not required in the scatter-loading definition and are ignored if present in
the file.

4.7.1 See also

Tasks
Using the Linker:
• Chapter 8 Using scatter files.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-9
ID061811 Non-Confidential

Formal syntax of the scatter file
Concepts
• About execution region descriptions on page 4-8
• Considerations when using a relative address +offset for execution regions on page 4-17
• About Expression evaluation in scatter files on page 4-30.
Using the Linker:
• Placement of sections with overlays on page 8-42
• About creating regions on page boundaries on page 8-52.

Reference
• Syntax of a scatter file on page 4-4
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14
• Inheritance rules for load region address attributes on page 4-18
• Inheritance rules for execution region address attributes on page 4-19
• Inheritance rules for the RELOC address attribute on page 4-20
• About input section descriptions on page 4-21.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-10
ID061811 Non-Confidential

Formal syntax of the scatter file
4.8 Execution region attributes
The execution region attributes are:

ABSOLUTE Absolute address. The execution address of the region is specified by the
base designator.

ALIGN alignment Increase the alignment constraint for the execution region from 4 to
alignment. alignment must be a positive power of 2. If the execution region
has a base_address then this must be alignment aligned. If the execution
region has a +offset then the linker aligns the calculated base address of
the region to an alignment boundary.

Note
 ALIGN on an execution region causes both the load address and execution

address to be aligned. This can result in padding being added to the ELF
file. To align only the execution address, use the AlignExpr expression on
the base address.

ALIGNALL value Increases the alignment of sections within the execution region.
The value must be a positive power of 2 and must be greater than or equal
to 4.

ANY_SIZE max_size Specifies the maximum size within the execution region that armlink can
fill with unassigned sections. You can use a simple expression to specify
the max_size. That is, you cannot use functions such as ImageLimit().

Note
 max_size is not the contingency, but the maximum size permitted for

placing unassigned sections in an execution region. For example, if an
execution region is to be filled only with .ANY sections, a two percent
contingency is still set aside for veneers. This leaves 98% of the region for
.ANY section assignements.

Be aware of the following restrictions when using this keyword:
• max_size must be less than or equal to the region size
• you can use ANY_SIZE on a region without a .ANY selector but it is

ignored by armlink.

EMPTY [–]length Reserves an empty block of memory of a given size in the execution
region, typically used by a heap or stack. No section can be placed in a
region with the EMPTY attribute.
length represent a stack that grows down in memory. If the length is given
as a negative value, the base_address is taken to be the end address of the
region.

FILL value Creates a linker generated region containing a value. If you specify FILL,
you must give a value, for example: FILL 0xFFFFFFFF. The FILL attribute
replaces the following combination: EMPTY ZEROPAD PADVALUE.
In certain situations, for example, simulation, this is preferable to spending
a long time in a zeroing loop.

FIXED Fixed address. The linker attempts to make the execution address equal the
load address. This makes the region a root region. If this is not possible the
linker produces an error.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-11
ID061811 Non-Confidential

Formal syntax of the scatter file
Note
 The linker inserts padding with this attribute.

NOCOMPRESS RW data compression is enabled by default. The NOCOMPRESS keyword
enables you to specify that RW data in an execution region must not be
compressed in the final image.

OVERLAY Use for sections with overlaying address ranges. If consecutive execution
regions have the same +offset then they are given the same base address.

PADVALUE Defines the value of any padding. If you specify PADVALUE, you must give
a value, for example:
EXEC 0x10000 PADVALUE 0xFFFFFFFF EMPTY ZEROPAD 0x2000

This creates a region of size 0x2000 full of 0xFFFFFFFF.
PADVALUE must be a word in size. PADVALUE attributes on load regions are
ignored.

PI This region contains only position independent sections.

SORTTYPE Specifies the sorting algorithm for the execution region, for example:
ER1 +0 SORTTYPE CallTree

UNINIT Use to create execution regions containing uninitialized data or
memory-mapped I/O.

ZEROPAD Zero-initialized sections are written in the ELF file as a block of zeros and,
therefore, do not have to be zero-filled at runtime.
This sets the load length of a ZI output section to
Image$$region_name$$ZI$$Length.
Only root execution regions can be zero-initialized using the ZEROPAD
attribute. Using the ZEROPAD attribute with a non root execution region
generates a warning and the attribute is ignored.
In certain situations, for example, simulation, this is preferable to spending
a long time in a zeroing loop.

4.8.1 See also

Concepts
• About execution region descriptions on page 4-8
• Considerations when using a relative address +offset for execution regions on page 4-17
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28
• About Expression evaluation in scatter files on page 4-30.
Using the Linker:
• Section alignment with the linker on page 4-22
• Optimization with RW data compression on page 5-12
• Image$$ execution region symbols on page 7-6
• Load$$ execution region symbols on page 7-7
• Placement of sections with overlays on page 8-42
• About creating regions on page boundaries on page 8-52
• Overalignment of execution regions and input sections on page 8-54
• Using expression evaluation in a scatter file to avoid padding on page 8-57.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-12
ID061811 Non-Confidential

Formal syntax of the scatter file
Reference
• --any_contingency on page 2-5
• --sort=algorithm on page 2-116
• Syntax of a scatter file on page 4-4
• Syntax of an execution region description on page 4-9
• Syntax of an input section description on page 4-22
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41
• AlignExpr(expr, align) function on page 4-42.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-13
ID061811 Non-Confidential

Formal syntax of the scatter file
4.9 Address attributes for load and execution regions
A subset of the load and execution region attributes inform the linker about the content of the
region and how it behaves after linking. These attributes are:

ABSOLUTE The content is placed at a fixed address that does not change after linking.

PI The content does not depend on any fixed address and might be moved after
linking without any extra processing.

RELOC The content depends on fixed addresses, relocation information is output to
enable the content to be moved to another location by another tool.

Note
 You cannot explicitly use this attribute for an execution region.

OVERLAY The content is placed at a fixed address that does not change after linking. The
content might overlap with other regions designated as OVERLAY regions.

4.9.1 Inheritance rules for address attributes

In general, all the execution regions within a load region have the same address attribute. To
make this easy to select, the address attributes can be inherited from a previous region so that
they only have to be set in one place. The rules for setting and inheriting address attributes are:

• Explicitly setting the address attribute:
— A load region can be explicitly set with the ABSOLUTE, PI, RELOC, or OVERLAY attributes.
— An execution region can be explicitly set with the ABSOLUTE, PI, or OVERLAY attributes.

An execution region can only inherit the RELOC attribute from the parent load region.

• Implicitly setting the address attribute when none is specified:
— The OVERLAY attribute cannot be inherited. A region with the OVERLAY attribute cannot

inherit.
— A base address load or execution region always defaults to ABSOLUTE.
— A +offset load region inherits the address attribute from the previous load region or

ABSOLUTE if no previous load region exists.
— A +offset execution region inherits the address attribute from the previous

execution region or parent load region if no previous execution region exists.

4.9.2 See also

Concepts
• About load region descriptions on page 4-5
• About execution region descriptions on page 4-8
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17
Using the Linker:
• Placement of sections with overlays on page 8-42.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Load region attributes on page 4-7
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-14
ID061811 Non-Confidential

Formal syntax of the scatter file
• Syntax of an execution region description on page 4-9
• Execution region attributes on page 4-11.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-15
ID061811 Non-Confidential

Formal syntax of the scatter file
4.10 Considerations when using a relative address +offset for load regions
Be aware of the following when using +offset to specify a load region base address:

• If the +offset load region LR2 follows a load region LR1 containing ZI data, then LR2
overlaps the ZI data. To fix this, use the ImageLimit() function to specify the base address
of LR2.

• A +offset load region LR2 inherits the attributes of the load region LR1 immediately
before it, unless:
— LR1 has the OVERLAY attribute
— LR2 has an explicit attribute set.
If a load region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.

4.10.1 See also

Concepts
• Inheritance rules for load region address attributes on page 4-18
• Execution address built-in functions for use in scatter files on page 4-34.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-16
ID061811 Non-Confidential

Formal syntax of the scatter file
4.11 Considerations when using a relative address +offset for execution regions
Be aware of the following when using +offset to specify an execution region base address:

• The first execution region inherits the attributes of the parent load region, unless an
attribute is explicitly set on that execution region.

• A +offset execution region ER2 inherits the attributes of the execution region ER1
immediately before it, unless:
— ER1 has the OVERLAY attribute
— ER2 has an explicit attribute set.
If an execution region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.

• If the parent load region has the RELOC attribute, then all execution regions within that load
region must have a +offset base address.

4.11.1 See also

Concepts
• Inheritance rules for execution region address attributes on page 4-19
• Inheritance rules for the RELOC address attribute on page 4-20.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-17
ID061811 Non-Confidential

Formal syntax of the scatter file
4.12 Inheritance rules for load region address attributes
For a load region to inherit the attributes of a previous load region, specify a +offset base
address for that region. A load region cannot inherit attributes if:
• you explicitly set the attribute of that load region
• the load region immediately before has the OVERLAY attribute.

You can explicitly set a load region with the ABSOLUTE, PI, RELOC, or OVERLAY address attributes.

This example shows the inheritance rules for setting the address attributes of load regions:

Example 4-1 Load region inheritance

LR1 0x8000 PI
{

...
}
LR2 +0 ; LR2 inherits PI from LR1
{

...
}
LR3 0x1000 ; LR3 does not inherit because it has no relative base

address, gets default of ABSOLUTE
{

...
}
LR4 +0 ; LR4 inherits ABSOLUTE from LR3
{

...
}
LR5 +0 RELOC ; LR5 does not inherit because it explicitly sets RELOC
{

...
}
LR6 +0 OVERLAY ; LR6 does not inherit, an OVERLAY cannot inherit
{

...
}
LR7 +0 ; LR7 cannot inherit OVERLAY, gets default of ABSOLUTE
{

...
}

4.12.1 See also

Concepts
• Address attributes for load and execution regions on page 4-14
• Considerations when using a relative address +offset for load regions on page 4-16.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-18
ID061811 Non-Confidential

Formal syntax of the scatter file
4.13 Inheritance rules for execution region address attributes
For an execution region to inherit the attributes of a previous execution region, specify a +offset
base address for that region. The first +offset execution region can inherit the attributes of the
parent load region. An execution region cannot inherit attributes if you:
• explicitly set the attribute of that execution region
• the previous execution region has the OVERLAY attribute.

You can explicitly set an execution region with the ABSOLUTE, PI, or OVERLAY attributes. However,
an execution region can only inherit the RELOC attribute from the parent load region.

This example shows the inheritance rules for setting the address attributes of execution regions:

Example 4-2 Execution region inheritance

LR1 0x8000 PI
{

ER1 +0 ; ER1 inherits PI from LR1
{

...
}
ER2 +0 ; ER2 inherits PI from ER1
{

...
}
ER3 0x10000 ; ER3 does not inherit because it has no relative base

address and gets the default of ABSOLUTE
{

...
}
ER4 +0 ; ER4 inherits ABSOLUTE from ER3
{

...
}
ER5 +0 PI ; ER5 does not inherit, it explicitly sets PI
{

...
}
ER6 +0 OVERLAY ; ER6 does not inherit, an OVERLAY cannot inherit
{

...
}
ER7 +0 ; ER7 cannot inherit OVERLAY, gets the default of ABSOLUTE
{

...
}

}

4.13.1 See also

Concepts
• Address attributes for load and execution regions on page 4-14
• Considerations when using a relative address +offset for execution regions on page 4-17.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-19
ID061811 Non-Confidential

Formal syntax of the scatter file
4.14 Inheritance rules for the RELOC address attribute
You can explicitly set the RELOC attribute for a load region. However, an execution region can
only inherit the RELOC attribute from the parent load region.

Note
 For a Base Platform linking model, if a load region has the RELOC attribute, then all execution
regions within that load region must have a +offset base address. This ensures the execution
regions inherit the relocations from the parent load region.

This example shows the inheritance rules for setting the address attributes with RELOC:

Example 4-3 Inheriting RELOC

LR1 0x8000 RELOC
{

ER1 +0 ; inherits RELOC from LR1
{

...
}
ER2 +0 ; inherits RELOC from ER1
{

...
}
ER3 +0 RELOC ; Error cannot explicitly set RELOC on an execution region
{

...
}

}

4.14.1 See also

Concepts
• Address attributes for load and execution regions on page 4-14
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-20
ID061811 Non-Confidential

Formal syntax of the scatter file
4.15 About input section descriptions
An input section description is a pattern that identifies input sections by:

• Module name (object filename, library member name, or library filename). The module
name can use wildcard characters.

• Input section name, or input section attributes such as READ-ONLY, or CODE. You can use
wildcard characters for the input section name.

• Symbol name.

The following figure shows the components of a typical input section description.

Figure 4-4 Components of an input section description

Note
 Ordering in an execution region does not affect the ordering of sections in the output image.

4.15.1 See also

Reference
• Syntax of a scatter file on page 4-4
• Syntax of an input section description on page 4-22.

program2.o (+RO)

Input section selectorModule select pattern

Input section description
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-21
ID061811 Non-Confidential

Formal syntax of the scatter file
4.16 Syntax of an input section description
The syntax of an input section description, in Backus-Naur Form (BNF), is:

input_section_description ::=

 module_select_pattern
["(" input_section_selector ("," input_section_selector)* ")"]

input_section_selector ::=

 ("+" input_section_attr | input_section_pattern | input_symbol_pattern |
section_properties)

where:

module_select_pattern
A pattern constructed from literal text. The wildcard character * matches zero or
more characters and ? matches any single character.
Matching is case-insensitive, even on hosts with case-sensitive file naming.
Use *.o to match all objects. Use * to match all object files and libraries.
An input section matches a module selector pattern when module_select_pattern
matches one of the following:
• The name of the object file containing the section.
• The name of the library member (without leading path name).
• The full name of the library (including path name) the section is extracted

from. If the names contain spaces, use wild characters to simplify
searching. For example, use *libname.lib to match
C:\lib dir\libname.lib.

The following module selector patterns describe the placement order of an input
section within the execution region:
.ANY module selector for unassigned sections

The special module selector pattern .ANY enables you to assign input
sections to execution regions without considering their parent module.
Use .ANY to fill up the execution regions with input sections that do not
have to be placed at specific locations.

Modified selectors
You cannot have two * selectors in a scatter file. You can, however, use
two modified selectors, for example *A and *B, and you can use a .ANY
selector together with a * module selector. The * module selector has
higher precedence than .ANY. If the portion of the file containing the *
selector is removed, the .ANY selector then becomes active.

Note
 • Only input sections that match both module_select_pattern and at least one

input_section_attr or input_section_pattern are included in the execution
region.
If you omit (+ input_section_attr) and (input_section_pattern), the
default is +RO.

• Do not rely on input section names generated by the compiler, or used by
ARM library code. These can change between compilations if, for example,
different compiler options are used. In addition, section naming
conventions used by the compiler are not guaranteed to remain constant
between releases.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-22
ID061811 Non-Confidential

Formal syntax of the scatter file
input_section_attr
An attribute selector matched against the input section attributes. Each
input_section_attr follows a +.
If you are specifying a pattern to match the input section name, the name must be
preceded by a +. You can omit any comma immediately followed by a +.
The selectors are not case-sensitive. The following selectors are recognized:
• RO-CODE

• RO-DATA

• RO, selects both RO-CODE and RO-DATA
• RW-DATA
• RW-CODE
• RW, selects both RW-CODE and RW-DATA
• ZI
• ENTRY, that is, a section containing an ENTRY point.
The following synonyms are recognized:
• CODE for RO-CODE
• CONST for RO-DATA
• TEXT for RO
• DATA for RW
• BSS for ZI.
The following pseudo-attributes are recognized:
• FIRST

• LAST.
Use FIRST and LAST to mark the first and last sections in an execution region if the
placement order is important. For example, if a specific input section must be first
in the region and an input section containing a checksum must be last.
There can be only one FIRST or one LAST attribute for an execution region, and it
must follow a single input_section_attr. For example:
*(section, +FIRST)

This pattern is correct.
*(+FIRST, section)

This pattern is incorrect and produces an error message.

input_section_pattern
A pattern that is matched, without case sensitivity, against the input section name.
It is constructed from literal text. The wildcard character * matches 0 or more
characters, and ? matches any single character.

Note
 If you use more than one input_section_pattern, ensure that there are no

duplicate patterns in different execution regions to avoid ambiguity errors.

input_symbol_pattern
You can select the input section by the name of a global symbol that the section
defines. This enables you to choose individual sections with the same name from
partially linked objects.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-23
ID061811 Non-Confidential

Formal syntax of the scatter file
The :gdef: prefix distinguishes a global symbol pattern from a section pattern.
For example, use :gdef:mysym to select the section that defines mysym. The
following example shows a description file in which ExecReg1 contains the section
that defines global symbol mysym1, and the section that contains global symbol
mysym2:
LoadRegion 0x8000
{
 ExecReg1 +0
 {
 *(:gdef:mysym1)
 *(:gdef:mysym2)
 }

; rest of scatter-loading description
}

Note
 If you use more than one input_symbol_pattern, ensure that there are no duplicate

patterns in different execution regions to avoid ambiguity errors.
The order of input section descriptors is not significant.

section_properties
A section property can be +FIRST, +LAST, and OVERALIGN value.
The value for OVERALIGN must be a positive power of 2 and must be greater than
or equal to 4.

Note
 The BNF definitions contain additional line returns and spaces to improve readability. They are
not required in the scatter-loading definition and are ignored if present in the file.

4.16.1 Examples of module select patterns

Examples of module_select_pattern specifications are:

• * matches any module or library

• *.o matches any object module

• math.o matches the math.o module

• *armlib* matches all C libraries supplied by ARM

• *math.lib matches any library path ending with math.lib. For example,
C:\apps\lib\math\satmath.lib.

4.16.2 Examples of input section selector patterns

Examples of input_section_selector specifications are:

• +RO is an input section attribute that matches all RO code and all RO data

• +RW,+ZI is an input section attribute that matches all RW code, all RW data, and all ZI data

• BLOCK_42 is an input section pattern that matches sections named BLOCK_42. There can be
multiple ELF sections with the same BLOCK_42 name that possess different attributes, for
example +RO-CODE,+RW.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-24
ID061811 Non-Confidential

Formal syntax of the scatter file
4.16.3 See also

Tasks
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28.
Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-23.

Concepts
• About input section descriptions on page 4-21.
Using the Linker:
• Examples of using placement algorithms for .ANY sections on page 8-26
• Example of next_fit algorithm showing behavior of full regions, selectors, and priority on

page 8-28
• Examples of using sorting algorithms for .ANY sections on page 8-30.
Using the Linker:
• Overalignment of execution regions and input sections on page 8-54.

Reference
• Syntax of a scatter file on page 4-4.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-25
ID061811 Non-Confidential

Formal syntax of the scatter file
4.17 How the linker resolves multiple matches when processing scatter files
An input section must be unique. In the case of multiple matches, the linker attempts to assign
the input section to a region based on a module_select_pattern and input_section_selector pair
that is the most specific. However, if a unique match cannot be found, the linker faults the
scatter-loading description.

The following variables are used to describe how the linker matches multiple input sections:
• m1 and m2 represent module selector patterns
• s1 and s2 represent input section selectors.

For example, if input section A matches m1,s1 for execution region R1, and A matches m2,s2
for execution region R2, the linker:

• assigns A to R1 if m1,s1 is more specific than m2,s2

• assigns A to R2 if m2,s2 is more specific than m1,s1

• diagnoses the scatter-loading description as faulty if m1,s1 is not more specific than m2,s2
and m2,s2 is not more specific than m1,s1.

armlink uses the following sequence to determine the most specific module_select_pattern,
input_section_selector pair:

1. For the module selector patterns:
m1 is more specific than m2 if the text string m1 matches pattern m2 and the text string
m2 does not match pattern m1.

2. For the input section selectors:
• If s1 and s2 are both patterns matching section names, the same definition as for

module selector patterns is used.
• If one of s1, s2 matches the input section name and the other matches the input

section attributes, s1 and s2 are unordered and the description is diagnosed as faulty.
• If both s1 and s2 match input section attributes, the determination of whether s1 is

more specific than s2 is defined by the relationships below:
— ENTRY is more specific than RO-CODE, RO-DATA, RW-CODE or RW-DATA
— RO-CODE is more specific than RO
— RO-DATA is more specific than RO
— RW-CODE is more specific than RW
— RW-DATA is more specific than RW
— There are no other members of the (s1 more specific than s2) relationship

between section attributes.

3. For the module_select_pattern, input_section_selector pair, m1,s1 is more specific than
m2,s2 only if any of the following are true:
a. s1 is a literal input section name that is, it contains no pattern characters, and s2

matches input section attributes other than +ENTRY
b. m1 is more specific than m2
c. s1 is more specific than s2.
The conditions are tested in order so condition a takes precedence over condition b and c,
and condition b takes precedence over condition c.

This matching strategy has the following consequences:

• Descriptions do not depend on the order they are written in the file.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-26
ID061811 Non-Confidential

Formal syntax of the scatter file
• Generally, the more specific the description of an object, the more specific the description
of the input sections it contains.

• The input_section_selectors are not examined unless:
— Object selection is inconclusive.
— One selector fully names an input section and the other selects by attribute. In this

case, the explicit input section name is more specific than any attribute, other than
ENTRY, that selects exactly one input section from one object. This is true even if the
object selector associated with the input section name is less specific than that of the
attribute.

The .ANY module selector is available to assign any sections that cannot be resolved from the
scatter file.

The following example shows multiple execution regions and pattern matching:

Example 4-4 Multiple execution regions and pattern matching

LR_1 0x040000
{
 ER_ROM 0x040000 ; The startup exec region address is the same
 { ; as the load address.
 application.o (+ENTRY) ; The section containing the entry point from
 } ; the object is placed here.
 ER_RAM1 0x048000
 {
 application.o (+RO-CODE) ; Other RO code from the object goes here
 }
 ER_RAM2 0x050000
 {
 application.o (+RO-DATA) ; The RO data goes here
 }
 ER_RAM3 0x060000
 {
 application.o (+RW) ; RW code and data go here
 }
 ER_RAM4 +0 ; Follows on from end of ER_R3
 {
 *.o (+RO, +RW, +ZI) ; Everything except for application.o goes here
 }
}

4.17.1 See also

Tasks
Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-23.

Concepts
• About input section descriptions on page 4-21.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of an input section description on page 4-22.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-27
ID061811 Non-Confidential

Formal syntax of the scatter file
4.18 Behavior when .ANY sections overflow because of linker-generated content
Linker-generated content might cause .ANY regions to overflow. This is because the linker does
not know the address of a section until it is assigned to a region. Therefore, when filling .ANY
regions, the linker cannot calculate the contingency space and cannot determine if calling
functions require veneers. The linker provides a contingency algorithm that gives a worst-case
estimate for padding and an additional two percent for veneers. To enable this algorithm use the
--any_contingency command-line option.

The following diagram is a representation of the notional image layout during .ANY placement:

Figure 4-5 .ANY contingency

The downward arrows for prospective padding show that the prospective padding continues to
grow as more sections are added to the .ANY selector.

Prospective padding is dealt with before the two percent veneer contingency.

When the prospective padding is cleared the priority is set to zero. When the two percent is
cleared the priority is decremented again.

You can also use the ANY_SIZE keyword on an execution region to specify the maximum amount
of space in the region to set aside for .ANY section assignments.

4.18.1 See also

Concepts
• How the linker resolves multiple matches when processing scatter files on page 4-26.
Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-23.

Reference
• --any_contingency on page 2-5
• Execution region attributes on page 4-11
• Syntax of an input section description on page 4-22.

.ANY
sections

Prospective padding

Base

limit

98%

2%

Image
content

Free
space

Execution region
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-28
ID061811 Non-Confidential

Formal syntax of the scatter file
4.19 How the linker resolves path names when processing scatter files
The linker matches wildcard patterns in scatter files against any combination of forward slashes
and backslashes it finds in path names. This might be useful where the paths are taken from
environment variables or multiple sources, or where you want to use the same scatter file to
build on Windows or Unix platforms.

Note
 Use forward slashes in path names to ensure they are understood on Windows and Unix
platforms.

4.19.1 See also

Reference
• Syntax of a scatter file on page 4-4.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-29
ID061811 Non-Confidential

Formal syntax of the scatter file
4.20 About Expression evaluation in scatter files
Scatter files frequently contain numeric constants.You can use specify numeric constants using:

• Expressions.

• Execution address built-in functions.

• ScatterAssert function with load address related functions that take an expression as a
parameter. An error message is generated if this expression does not evaluate to true.

• The symbol related function, defined(global_symbol_name) ? expr1 : expr2.

4.20.1 See also

Concepts
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• Expression usage in scatter files on page 4-31
• Expression rules in scatter files on page 4-32
• Execution address built-in functions for use in scatter files on page 4-34
• ScatterAssert function and load address related functions on page 4-38
• Symbol related function in a scatter file on page 4-40.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-30
ID061811 Non-Confidential

Formal syntax of the scatter file
4.21 Expression usage in scatter files
Expressions can be used in the following places:
• load and execution region base_address
• load and execution region +offset
• load and execution region max_size
• parameter for the ALIGN, FILL or PADVALUE keywords
• parameter for the ScatterAssert function.

Example 4-5 Specifying the maximum size in terms of an expression

LR1 0x8000 (2 * 1024)
{

ER1 +0 (1 * 1024)
{

*(+RO)
}
ER2 +0 (1 * 1024)
{

*(+RW +ZI)
}

}

4.21.1 See also

Concepts
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17
• About Expression evaluation in scatter files on page 4-30
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Syntax of an execution region description on page 4-9
• Expression rules in scatter files on page 4-32
• Execution address built-in functions for use in scatter files on page 4-34
• ScatterAssert function and load address related functions on page 4-38
• Symbol related function in a scatter file on page 4-40.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-31
ID061811 Non-Confidential

Formal syntax of the scatter file
4.22 Expression rules in scatter files
Expressions follow the C-Precedence rules and are made up of the following:

• Decimal or hexadecimal numbers.

• Arithmetic operators: +, -, /, *, ~, OR, and AND
The OR and AND operators map to the C operators | and & respectively.

• Logical operators: LOR, LAND, and !
The LOR and LAND operators map to the C operators || and && respectively.

• Relational operators: <, <=, >, >=, and ==
Zero is returned when the expression evaluates to false and nonzero is returned when true.

• Conditional operator: Expression ? Expression1 : Expression2
This matches the C conditional operator. If Expression evaluates to nonzero then
Expression1 is evaluated otherwise Expression2 is evaluated.

Note
 When using a conditional operator in a +offset context on an execution region or load

region description, the final expression is considered relative only if both Expression1 and
Expression2, are considered relative. For example:
er1 0x8000
{
 ...
}
er2 ((ImageLimit(er1) < 0x9000) ? +0 : +0x1000) ; er2 has a relative address
{
 ...
}
er3 ((ImageLimit(er2) < 0x10000) ? 0x0 : +0) ; er3 has an absolute address
{
 ...
}

• Functions that return numbers.

All operators match their C counterparts in meaning and precedence.

Expressions are not case sensitive and you can use parentheses for clarity.

4.22.1 See also

Concepts
• About Expression evaluation in scatter files on page 4-30
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Syntax of an execution region description on page 4-9
• Expression usage in scatter files on page 4-31
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-32
ID061811 Non-Confidential

Formal syntax of the scatter file
• Execution address built-in functions for use in scatter files on page 4-34
• ScatterAssert function and load address related functions on page 4-38
• Symbol related function in a scatter file on page 4-40.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-33
ID061811 Non-Confidential

Formal syntax of the scatter file
4.23 Execution address built-in functions for use in scatter files
The execution address related functions can only be used when specifying a base_address,
+offset value, or max_size. They map to combinations of the linker defined symbols shown in
Table 4-2.

The parameter region_name can be either a load or an execution region name. Forward
references are not permitted. The region_name can only refer to load or execution regions that
have already been defined.

Note
 You cannot use these functions when using the .ANY selector pattern. This is because a .ANY
region uses the maximum size when assigning sections. The maximum size might not be
available at that point, because the size of all regions is not known until after the .ANY
assignment.

The following example shows how to use ImageLimit(region_name) to place one execution
region immediately after another:

Example 4-6 Placing an execution region after another

LR1 0x8000
{

ER1 0x100000
{

*(+RO)
}

}
LR2 0x100000
{

ER2 (ImageLimit(ER1)) ; Place ER2 after ER1 has finished
{

*(+RW +ZI)
}

}

4.23.1 Using +offset with expressions

A +offset value for an execution region is defined in terms of the previous region. You can use
this as an input to other expressions such as AlignExpr. For example:

LR1 0x4000
{
 ER1 AlignExpr(+0, 0x8000)

Table 4-2 Execution address related functions

Function Linker defined symbol value

ImageBase(region_name) Image$$region_name$$Base

ImageLength(region_name) Image$$region_name$$Length +
Image$$region_name$$ZI$$Length

ImageLimit(region_name) Image$$region_name$$Base +
Image$$region_name$$Length +
Image$$region_name$$ZI$$Length
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-34
ID061811 Non-Confidential

Formal syntax of the scatter file
 {
 ...
 }
}

By using AlignExpr, the result of +0 is aligned to a 0x8000 boundary. This creates an execution
region with a load address of 0x4000 but an execution address of 0x8000.

4.23.2 See also

Concepts
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17
• About Expression evaluation in scatter files on page 4-30
• Scatter files containing relative base address load regions and a ZI execution region on

page 4-36
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Syntax of an execution region description on page 4-9
• Expression usage in scatter files on page 4-31
• Expression rules in scatter files on page 4-32
• ScatterAssert function and load address related functions on page 4-38
• Symbol related function in a scatter file on page 4-40
• AlignExpr(expr, align) function on page 4-42.
Using the Linker:
• Image$$ execution region symbols on page 7-6.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-35
ID061811 Non-Confidential

Formal syntax of the scatter file
4.24 Scatter files containing relative base address load regions and a ZI execution
region

You might want to place Zero Initialized (ZI) data in load region LR1, and use a relative base
address for the next load region LR2, for example:

LR1 0x8000
{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 +0 ; Load Region follows immediately from LR1
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

Because the linker does not adjust the base address of LR2 to account for ZI data, the execution
region er_zi overlaps the execution region er_moreprogbits. This generates an error when
linking.

To correct this, use the ImageLimit() function with the name of the ZI execution region to
calculate the base address of LR2. For example:

LR1 0x8000
{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 ImageLimit(er_zi) ; Set the address of LR2 to limit of er_zi
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

4.24.1 See also

Concepts
• About Expression evaluation in scatter files on page 4-30.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Syntax of an execution region description on page 4-9
• Expression usage in scatter files on page 4-31
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-36
ID061811 Non-Confidential

Formal syntax of the scatter file
• Expression rules in scatter files on page 4-32
• Execution address built-in functions for use in scatter files on page 4-34.
Using the Linker:
• Image$$ execution region symbols on page 7-6.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-37
ID061811 Non-Confidential

Formal syntax of the scatter file
4.25 ScatterAssert function and load address related functions
The ScatterAssert(expression) function can be used at the top level, or within a load region. It
is evaluated after the link has completed and gives an error message if expression evaluates to
false.

The load address related functions can only be used within the ScatterAssert function. They
map to the three linker defined symbol values:

The parameter region_name can be either a load or an execution region name. Forward references
are not permitted. The region_name can only refer to load or execution regions that have already
been defined.

The following example shows how to use the ScatterAssert function to write more complex size
checks than those permitted by the max_size of the region:

Example 4-7 Using ScatterAssert to check the size of multiple regions

LR1 0x8000
{

ER0 +0
{

*(+RO)
}
ER1 +0
{

file1.o(+RW)
}
ER2 +0
{

file2.o(+RW)
}
ScatterAssert((LoadLength(ER1) + LoadLength(ER2)) < 0x1000)

; LoadLength is compressed size
ScatterAssert((ImageLength(ER1) + ImageLength(ER2)) < 0x2000)

; ImageLength is uncompressed size
}
ScatterAssert(ImageLength(LR1) < 0x3000) ; Check uncompressed size of LoadRegion

4.25.1 See also

Concepts
• About Expression evaluation in scatter files on page 4-30
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• Syntax of a scatter file on page 4-4

Table 4-3 Load address related functions

Function Linker defined symbol value

LoadBase(region_name) Load$$region_name$$Base

LoadLength(region_name) Load$$region_name$$Length

LoadLimit(region_name) Load$$region_name$$Limit
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-38
ID061811 Non-Confidential

Formal syntax of the scatter file
• Syntax of a load region description on page 4-6
• Syntax of an execution region description on page 4-9
• Expression usage in scatter files on page 4-31
• Expression rules in scatter files on page 4-32
• Execution address built-in functions for use in scatter files on page 4-34
• Symbol related function in a scatter file on page 4-40.
Using the Linker:
• Load$$ execution region symbols on page 7-7.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-39
ID061811 Non-Confidential

Formal syntax of the scatter file
4.26 Symbol related function in a scatter file
The symbol related function, defined(global_symbol_name) returns zero if global_symbol_name is
not defined and nonzero if it is defined.

Example 4-8 Conditionalizing a base address based on the presence of a symbol

LR1 0x8000
{

ER1 (defined(version1) ? 0x8000 : 0x10000) ; Base address is 0x8000
; if version1 is defined
; 0x10000 if not

{
*(+RO)

}
ER2 +0
{

*(+RW +ZI)
}

}

4.26.1 See also

Concepts
• About Expression evaluation in scatter files on page 4-30
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• Syntax of a scatter file on page 4-4
• Syntax of a load region description on page 4-6
• Syntax of an execution region description on page 4-9
• Expression usage in scatter files on page 4-31
• Expression rules in scatter files on page 4-32
• Execution address built-in functions for use in scatter files on page 4-34
• ScatterAssert function and load address related functions on page 4-38.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-40
ID061811 Non-Confidential

Formal syntax of the scatter file
4.27 Example of aligning a base address in execution space but still tightly packed in
load space

This example uses a combination of pre-processor macros and expressions to copy tightly
packed execution regions to execution addresses in a page-boundary. Using the ALIGN
scatter-loading keyword aligns the load addresses of ER2 and ER3 as well as the execution
addresses

Example 4-9 Aligning a base address in execution space but still tightly packed in load
space

#! armcc -E
#DEFINE START_ADDRESS 0x100000
#DEFINE PAGE_ALIGNMENT 0x100000

LR1 0x8000
{

ER0 +0
{

*(InRoot$$Sections)
}
ER1 START_ADDRESS
{

file1.o(*)
}
ER2 AlignExpr(ImageLimit(ER1), PAGE_ALIGNMENT)
{

file2.o(*)
}
ER3 AlignExpr(ImageLimit(ER2), PAGE_ALIGNMENT)
{

file3.o(*)
}

}

4.27.1 See also

Concepts
• About Expression evaluation in scatter files on page 4-30.

Reference
• Syntax of a load region description on page 4-6
• Load region attributes on page 4-7
• Syntax of an execution region description on page 4-9
• Execution region attributes on page 4-11
• AlignExpr(expr, align) function on page 4-42
• GetPageSize() function on page 4-43
• SizeOfHeaders() function on page 4-44.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-41
ID061811 Non-Confidential

Formal syntax of the scatter file
4.28 AlignExpr(expr, align) function
This function returns:

(expr + (align-1)) & ~(align-1))

where:
• expr is a valid address expression
• align is the alignment, and must be a positive power of 2.

It increases expr until it is:

0 mod align

4.28.1 Example

This example aligns the address of ER2 on an 8-byte boundary:

ER +0
{
 ...
}

ER2 AlignExpr(+0x8000,8)
{
 ...
}

4.28.2 Relationship with the ALIGN keyword

The following relationship exists between ALIGN and AlignExpr:

ALIGN keyword
Load and execution regions already have an ALIGN keyword:
• for load regions the ALIGN keyword aligns the base of the load region in load

space and in the file to the specified alignment
• for execution regions the ALIGN keyword aligns the base of the execution

region in execution and load space to the specified alignment.

AlignExpr Aligns the expression it operates on, but has no effect on the properties of the load
or execution region.

4.28.3 See also

Reference
• Execution region attributes on page 4-11.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-42
ID061811 Non-Confidential

Formal syntax of the scatter file
4.29 GetPageSize() function
Returns the page size. This is useful when used with AlignExpr

Returns the value of the internal page size that armlink uses in its alignment calculations. By
default this value is set to 0x8000, but you can change it with the --pagesize command-line
option.

4.29.1 Example

This example aligns the base address of ER to a Page Boundary:

ER AlignExpr(+0, GetPageSize())
{
 ...
}

4.29.2 See also

Concepts
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.

Reference
• --pagesize=pagesize on page 2-93
• AlignExpr(expr, align) function on page 4-42.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-43
ID061811 Non-Confidential

Formal syntax of the scatter file
4.30 SizeOfHeaders() function
Returns the size of ELF Header plus the estimated size of the Program Header Table. This is
useful when writing demand paged images to start code and data immediately after the ELF
Header and Program Header Table.

4.30.1 Example

This example sets the base of LR1 to start immediately after the ELF Header and Program
Headers:

LR1 SizeOfHeaders(){ ...}

4.30.2 See also

Concepts
• Example of aligning a base address in execution space but still tightly packed in load

space on page 4-41.
Using the Linker:
• Demand paging on page 4-23
• About creating regions on page boundaries on page 8-52.
ARM DUI 0458B Copyright © 2008, 2011 ARM. All rights reserved. 4-44
ID061811 Non-Confidential

	ARM Compiler toolchain v4.1 for µVision Linker Reference
	Contents
	Conventions and feedback
	Linker command-line options
	2.1 --any_contingency
	2.1.1 See also

	2.2 --any_placement=algorithm
	2.2.1 Syntax
	2.2.2 Usage
	2.2.3 Default
	2.2.4 See also

	2.3 --any_sort_order=order
	2.3.1 Syntax
	2.3.2 Usage
	2.3.3 Default
	2.3.4 See also

	2.4 --arm_only
	2.4.1 See also

	2.5 --autoat, --no_autoat
	2.5.1 Usage
	2.5.2 Default
	2.5.3 Restrictions
	2.5.4 See also

	2.6 --be8
	2.6.1 See also

	2.7 --be32
	2.7.1 See also

	2.8 --bestdebug, --no_bestdebug
	2.8.1 Default
	2.8.2 Usage
	2.8.3 Example
	2.8.4 See also

	2.9 --branchnop, --no_branchnop
	2.9.1 Default
	2.9.2 See also

	2.10 --callgraph, --no_callgraph
	2.10.1 Usage
	2.10.2 Default
	2.10.3 See also

	2.11 --callgraph_file=filename
	2.11.1 Syntax
	2.11.2 See also

	2.12 --callgraph_output=fmt
	2.12.1 Syntax
	2.12.2 Default
	2.12.3 See also

	2.13 --cgfile=type
	2.13.1 Syntax
	2.13.2 Default
	2.13.3 See also

	2.14 --cgsymbol=type
	2.14.1 Syntax
	2.14.2 Default
	2.14.3 See also

	2.15 --cgundefined=type
	2.15.1 Syntax
	2.15.2 Default
	2.15.3 See also

	2.16 --combreloc, --no_combreloc
	2.16.1 Default

	2.17 --comment_section, --no_comment_section
	2.17.1 Default
	2.17.2 See also

	2.18 --compress_debug, --no_compress_debug
	2.18.1 Default
	2.18.2 See also

	2.19 --cppinit, --no_cppinit
	2.19.1 Syntax
	2.19.2 Effect
	2.19.3 See also

	2.20 --cpu=list
	2.20.1 See also

	2.21 --cpu=name
	2.21.1 Syntax
	2.21.2 Usage
	2.21.3 See also

	2.22 --crosser_veneershare, --no_crosser_veneershare
	2.22.1 See also

	2.23 --datacompressor=opt
	2.23.1 Syntax
	2.23.2 Default
	2.23.3 See also

	2.24 --debug, --no_debug
	2.24.1 Default
	2.24.2 Usage
	2.24.3 See also

	2.25 --diag_error=tag[,tag,...]
	2.25.1 Syntax
	2.25.2 See also

	2.26 --diag_remark=tag[,tag,...]
	2.26.1 Syntax
	2.26.2 See also

	2.27 --diag_style=arm|ide|gnu
	2.27.1 Default
	2.27.2 Usage
	2.27.3 See also

	2.28 --diag_suppress=tag[,tag,...]
	2.28.1 Syntax
	2.28.2 Example
	2.28.3 See also

	2.29 --diag_warning=tag[,tag,...]
	2.29.1 Syntax
	2.29.2 See also

	2.30 --eager_load_debug, --no_eager_load_debug
	2.30.1 See also

	2.31 --edit=file_list
	2.31.1 Syntax
	2.31.2 Example
	2.31.3 See also

	2.32 --emit_debug_overlay_relocs
	2.32.1 See also

	2.33 --emit_debug_overlay_section
	2.33.1 See also

	2.34 --emit_non_debug_relocs
	2.34.1 See also

	2.35 --emit_relocs
	2.35.1 See also

	2.36 --entry=location
	2.36.1 Syntax
	2.36.2 Usage
	2.36.3 See also

	2.37 --errors=file
	2.37.1 See also

	2.38 --exceptions, --no_exceptions
	2.38.1 Default
	2.38.2 Usage
	2.38.3 See also

	2.39 --exceptions_tables=action
	2.39.1 Syntax
	2.39.2 Default
	2.39.3 See also

	2.40 --export_dynamic, --no_export_dynamic
	2.40.1 Usage

	2.41 --feedback=file
	2.41.1 See also

	2.42 --feedback_image=option
	2.42.1 Syntax
	2.42.2 Default
	2.42.3 See also

	2.43 --feedback_type=type
	2.43.1 Syntax
	2.43.2 Default
	2.43.3 See also

	2.44 --filtercomment, --no_filtercomment
	2.44.1 Default
	2.44.2 See also

	2.45 --fini=symbol
	2.45.1 See also

	2.46 --first=section_id
	2.46.1 Syntax
	2.46.2 Usage
	2.46.3 See also

	2.47 --force_explicit_attr
	2.47.1 See also

	2.48 --force_so_throw, --no_force_so_throw
	2.48.1 Default
	2.48.2 Usage

	2.49 --fpu=list
	2.49.1 See also

	2.50 --fpu=name
	2.50.1 See also

	2.51 --help
	2.51.1 Default
	2.51.2 See also

	2.52 --info=topic[,topic,...]
	2.52.1 Syntax
	2.52.2 See also

	2.53 --info_lib_prefix=opt
	2.53.1 Syntax
	2.53.2 Example
	2.53.3 See also

	2.54 --init=symbol
	2.54.1 See also

	2.55 --inline, --no_inline
	2.55.1 Default
	2.55.2 See also

	2.56 --inlineveneer, --no_inlineveneer
	2.56.1 Default
	2.56.2 See also

	2.57 input-file-list
	2.57.1 Usage
	2.57.2 See also

	2.58 --keep=section_id
	2.58.1 Syntax
	2.58.2 Matching a symbol that has the same name as an object
	2.58.3 See also

	2.59 --keep_protected_symbols
	2.59.1 See also

	2.60 --largeregions, --no_largeregions
	2.60.1 Usage
	2.60.2 Default
	2.60.3 See also

	2.61 --last=section_id
	2.61.1 Syntax
	2.61.2 Usage
	2.61.3 See also

	2.62 --ldpartial
	2.63 --legacyalign, --no_legacyalign
	2.63.1 See also

	2.64 --libpath=pathlist
	2.64.1 Syntax
	2.64.2 See also

	2.65 --library_type=lib
	2.65.1 Syntax
	2.65.2 Default
	2.65.3 See also

	2.66 --list=file
	2.66.1 See also

	2.67 --list_mapping_symbols, --no_list_mapping_symbols
	2.67.1 Default
	2.67.2 See also

	2.68 --load_addr_map_info, --no_load_addr_map_info
	2.68.1 Default
	2.68.2 Restrictions
	2.68.3 Example
	2.68.4 See also

	2.69 --locals, --no_locals
	2.69.1 Default
	2.69.2 See also

	2.70 --ltcg
	2.70.1 See also

	2.71 --mangled, --unmangled
	2.71.1 Default
	2.71.2 Usage
	2.71.3 See also

	2.72 --map, --no_map
	2.72.1 Default
	2.72.2 See also

	2.73 --match=crossmangled
	2.73.1 See also

	2.74 --max_veneer_passess=value
	2.74.1 Syntax
	2.74.2 Default
	2.74.3 See also

	2.75 --max_visibility=type
	2.75.1 Syntax
	2.75.2 Usage
	2.75.3 Default
	2.75.4 See also

	2.76 --merge, --no_merge
	2.76.1 Default
	2.76.2 See also

	2.77 --muldefweak, --no_muldefweak
	2.77.1 Default

	2.78 --output=file
	2.78.1 Syntax
	2.78.2 See also

	2.79 --override_visibility
	2.79.1 See also

	2.80 --pad=num
	2.80.1 Syntax
	2.80.2 See also

	2.81 --paged
	2.81.1 See also

	2.82 --pagesize=pagesize
	2.82.1 Syntax
	2.82.2 See also

	2.83 --partial
	2.83.1 See also

	2.84 --piveneer, --no_piveneer
	2.84.1 Default
	2.84.2 See also

	2.85 --predefine="string"
	2.85.1 Syntax
	2.85.2 Restrictions
	2.85.3 Example
	2.85.4 See also

	2.86 --privacy
	2.86.1 See also

	2.87 --reduce_paths, --no_reduce_paths
	2.87.1 Mode
	2.87.2 Default
	2.87.3 Usage
	2.87.4 Example

	2.88 --ref_cpp_init, --no_ref_cpp_init
	2.88.1 Default
	2.88.2 See also

	2.89 --reloc
	2.89.1 Usage
	2.89.2 See also

	2.90 --remarks
	2.90.1 See also

	2.91 --remove, --no_remove
	2.91.1 Default
	2.91.2 Usage
	2.91.3 See also

	2.92 --ro_base=address
	2.92.1 Syntax
	2.92.2 Default
	2.92.3 Restrictions
	2.92.4 See also

	2.93 --ropi
	2.93.1 Restrictions
	2.93.2 See also

	2.94 --rosplit
	2.94.1 Restrictions
	2.94.2 See also

	2.95 --rw_base=address
	2.95.1 Syntax
	2.95.2 Restrictions
	2.95.3 See also

	2.96 --rwpi
	2.96.1 Restrictions
	2.96.2 See also

	2.97 --scanlib, --no_scanlib
	2.97.1 Default

	2.98 --scatter=file
	2.98.1 Syntax
	2.98.2 Usage
	2.98.3 See also

	2.99 --section_index_display=type
	2.99.1 Syntax
	2.99.2 Usage
	2.99.3 Default
	2.99.4 See also

	2.100 --show_cmdline
	2.100.1 See also

	2.101 --show_full_path
	2.101.1 See also

	2.102 --show_parent_lib
	2.102.1 See also

	2.103 --show_sec_idx
	2.103.1 See also

	2.104 --sort=algorithm
	2.104.1 Syntax
	2.104.2 Default
	2.104.3 See also

	2.105 --split
	2.105.1 Restrictions
	2.105.2 See also

	2.106 --startup=symbol
	2.106.1 Syntax
	2.106.2 Default
	2.106.3 Usage
	2.106.4 See also

	2.107 --strict
	2.107.1 Usage
	2.107.2 See also

	2.108 --strict_enum_size, --no_strict_enum_size
	2.108.1 See also

	2.109 --strict_flags, --no_strict_flags
	2.109.1 Default
	2.109.2 See also

	2.110 --strict_ph, --no_strict_ph
	2.110.1 See also

	2.111 --strict_relocations, --no_strict_relocations
	2.111.1 Usage
	2.111.2 Default
	2.111.3 See also

	2.112 --strict_symbols, --no_strict_symbols
	2.112.1 Default
	2.112.2 Example
	2.112.3 See also

	2.113 --strict_visibility, --no_strict_visibility
	2.113.1 Default
	2.113.2 See also

	2.114 --strict_wchar_size, --no_strict_wchar_size
	2.114.1 See also

	2.115 --symbolic
	2.116 --symbols, --no_symbols
	2.116.1 Default
	2.116.2 See also

	2.117 --symdefs=file
	2.117.1 Syntax
	2.117.2 Default
	2.117.3 Usage
	2.117.4 See also

	2.118 --tailreorder, --no_tailreorder
	2.118.1 Default
	2.118.2 Restrictions
	2.118.3 See also

	2.119 --thumb2_library, --no_thumb2_library
	2.119.1 Default
	2.119.2 See also

	2.120 --tiebreaker=option
	2.120.1 Syntax
	2.120.2 Default
	2.120.3 See also

	2.121 --undefined=symbol
	2.121.1 Syntax
	2.121.2 See also

	2.122 --undefined_and_export=symbol
	2.122.1 Syntax
	2.122.2 Usage
	2.122.3 See also

	2.123 --unresolved=symbol
	2.123.1 Syntax
	2.123.2 Usage
	2.123.3 See also

	2.124 --use_definition_visibility
	2.125 --userlibpath=pathlist
	2.125.1 Syntax
	2.125.2 See also

	2.126 --veneer_inject_type=type
	2.126.1 Syntax
	2.126.2 Restrictions
	2.126.3 See also

	2.127 --veneer_pool_size=size
	2.127.1 Syntax
	2.127.2 Default
	2.127.3 See also

	2.128 --veneershare, --no_veneershare
	2.128.1 default
	2.128.2 See also

	2.129 --verbose
	2.129.1 See also

	2.130 --version_number
	2.130.1 Syntax
	2.130.2 Example
	2.130.3 See also

	2.131 --vfemode=mode
	2.131.1 Syntax
	2.131.2 Default
	2.131.3 See also

	2.132 --via=file
	2.132.1 See also

	2.133 --vsn
	2.133.1 See also

	2.134 --xref, --no_xref
	2.134.1 Default
	2.134.2 See also

	2.135 --xrefdbg, --no_xrefdbg
	2.135.1 Default
	2.135.2 See also

	2.136 --xref{from|to}=object(section)
	2.136.1 See also

	2.137 --zi_base=address
	2.137.1 Syntax
	2.137.2 Restrictions
	2.137.3 See also

	Linker steering file command reference
	3.1 EXPORT
	3.1.1 Syntax
	3.1.2 Usage
	3.1.3 See also

	3.2 HIDE
	3.2.1 Syntax
	3.2.2 Usage
	3.2.3 See also

	3.3 IMPORT
	3.3.1 Syntax
	3.3.2 Usage
	3.3.3 See also

	3.4 RENAME
	3.4.1 Syntax
	3.4.2 Usage
	3.4.3 Example
	3.4.4 See also

	3.5 REQUIRE
	3.5.1 Syntax
	3.5.2 Usage
	3.5.3 See also

	3.6 RESOLVE
	3.6.1 Syntax
	3.6.2 Usage
	3.6.3 Example
	3.6.4 See also

	3.7 SHOW
	3.7.1 Syntax
	3.7.2 Usage
	3.7.3 See also

	Formal syntax of the scatter file
	4.1 BNF notation used in scatter-loading description syntax
	4.1.1 See also

	4.2 Syntax of a scatter file
	4.2.1 See also

	4.3 About load region descriptions
	4.3.1 See also

	4.4 Syntax of a load region description
	4.4.1 See also

	4.5 Load region attributes
	4.5.1 See also

	4.6 About execution region descriptions
	4.6.1 See also

	4.7 Syntax of an execution region description
	4.7.1 See also

	4.8 Execution region attributes
	4.8.1 See also

	4.9 Address attributes for load and execution regions
	4.9.1 Inheritance rules for address attributes
	4.9.2 See also

	4.10 Considerations when using a relative address +offset for load regions
	4.10.1 See also

	4.11 Considerations when using a relative address +offset for execution regions
	4.11.1 See also

	4.12 Inheritance rules for load region address attributes
	4.12.1 See also

	4.13 Inheritance rules for execution region address attributes
	4.13.1 See also

	4.14 Inheritance rules for the RELOC address attribute
	4.14.1 See also

	4.15 About input section descriptions
	4.15.1 See also

	4.16 Syntax of an input section description
	4.16.1 Examples of module select patterns
	4.16.2 Examples of input section selector patterns
	4.16.3 See also

	4.17 How the linker resolves multiple matches when processing scatter files
	4.17.1 See also

	4.18 Behavior when .ANY sections overflow because of linker-generated content
	4.18.1 See also

	4.19 How the linker resolves path names when processing scatter files
	4.19.1 See also

	4.20 About Expression evaluation in scatter files
	4.20.1 See also

	4.21 Expression usage in scatter files
	4.21.1 See also

	4.22 Expression rules in scatter files
	4.22.1 See also

	4.23 Execution address built-in functions for use in scatter files
	4.23.1 Using
	4.23.2 See also

	4.24 Scatter files containing relative base address load regions and a ZI execution region
	4.24.1 See also

	4.25 ScatterAssert function and load address related functions
	4.25.1 See also

	4.26 Symbol related function in a scatter file
	4.26.1 See also

	4.27 Example of aligning a base address in execution space but still tightly packed in load space
	4.27.1 See also

	4.28 AlignExpr(expr, align) function
	4.28.1 Example
	4.28.2 Relationship with the ALIGN keyword
	4.28.3 See also

	4.29 GetPageSize() function
	4.29.1 Example
	4.29.2 See also

	4.30 SizeOfHeaders() function
	4.30.1 Example
	4.30.2 See also

