
 332 ▪ Appendix 3. Assembly Reference

ADD
32-bit Addition

Syntax
 ADDS Rd, Rn, #imm3 // Rd = Rn+imm3
 ADDS Rdn, #imm8 // Rdn = Rdn+imm8
 ADDS Rd, Rn, Rm // Rd = Rm+Rn
 ADD Rd2, Rm // Rd2 = Rd2+Rm
 ADD Rd, SP, #imm8w // Rd = SP+imm8w
 ADD SP, SP, #imm7w // SP = SP+imm7w

Machine code (for instructions using PC or SP, see instruction manual)

15-9 8-6 5-3 2-0
0001110 imm3 Rn Rd ADDS Rd,Rn,#imm3

15-11 10-8 7-0
00110 Rdn imm8 ADDS Rdn,#imm8

15-9 8-6 5-3 2-0

0001100 Rm Rn Rd ADDS Rd,Rn,Rm

15-7 6-3 2-0
010001000 Rd2 Rm ADD Rd2,Rm

Operation
The ADD instruction adds two 32-bit values and stores the sum into the register closest to the op code. imm3
is a constant from 0 to 7. imm8 is a constant from 0 to 255. Values added to the SP must be powers of 4 (SP
must be word aligned). So, imm7w is a constant from 0 to 508, and imm8w is a constant from 0 to 1020.

Restrictions
 Rd, Rdn, Rm, and Rn must be R0 to R7.

Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result. R=X+M, where X is
initial register value, M is the second operand, and R is the final register value.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

 V: signed overflow 313131313131 &&&& | RMXRMXV

 C: unsigned overflow 313131313131 &&& || XRRMMXC

Examples
 ADD R11, R3 //R11=R11+R3
 ADDS R4, R4, #100 //R4=R4+100, set flags

Jonathan Valvano 333

 AND
32-bit Logical AND

Syntax
 ANDS Rdn, Rm // Rdn = Rdn&Rm
 ANDS Rdn, Rdn, Rm // Rdn = Rdn&Rm

Machine code

15-6 5-3 2-0
0100000000 Rm Rdn

Operation
The AND instruction performs a 32-bit bitwise AND operation on the values in Rdn and Rm and places the
result into Rdn. The AND instruction is useful for selecting bits. You specify which bits to select in the Rm.
 Rd = Rn & Rm

Restrictions

 Rdn and Rm must be R0 to R7.

Condition Flags
The ANDS instruction updates the N and Z flags according to the result, Rdn. It does not affect the C or V
flags.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 ANDS R1, R7 //R1=R1&R7
 ANDS R0, R0, R5 //R0=R0&R5

 334 ▪ Appendix 3. Assembly Reference

ASR
32-bit Arithmetic Shift Right

Syntax
 ASRS Rd, Rm, #n
 ASRS Rdn, Rm
where n is the shift length (1 to 32).

Machine code

15-11 10-6 5-3 2-0
00010 imm5 Rm Rd ASRS Rd,Rm,#n

15-6 5-3 2-0

0100000100 Rm Rdn ASRS Rdn,Rm

Operation
ASR moves the bits in the register Rm to the right by the number of places specified by constant n or register
Rm. Values are signed integers, so the sign bit in bit 31 is preserved. The result is written to Rd, and the value
in register Rm remains unchanged.
 Rdn = Rdn >> Rm (signed)
 Rd = Rm >> n (signed)

Restrictions

 Rdn and Rm must be R0 to R7.
 n is a value from 1 to 32

Condition Flags
The ASRS instruction updates the N and Z flags according to the result. The C flag is updated to the last bit
shifted out, except when the shift length is 0.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 ASRS R7, R5, #9 //R7 = R5>>9, signed, (similar to R7 = R5/512)
 ASRS R1, R1, R2 //R1 = R1>>R2, signed (similar to R0 = R1/2R2)

31 30 29 28 27 26 1 0 C

ASR
Arithmetic Shift Right

1<n<32

Jonathan Valvano 335

B
Branch instructions

Syntax
 B label // branch to label Always
 BEQ label // branch if Z == 1 Equal
 BNE label // branch if Z == 0 Not equal
 BCS label // branch if C == 1 Higher or same, unsigned ≥
 BHS label // branch if C == 1 Higher or same, unsigned ≥
 BCC label // branch if C == 0 Lower, unsigned <
 BLO label // branch if C == 0 Lower, unsigned <
 BMI label // branch if N == 1 Negative
 BPL label // branch if N == 0 Positive or zero
 BVS label // branch if V == 1 Overflow
 BVC label // branch if V == 0 No overflow
 BHI label // branch if C==1 and Z==0 Higher, unsigned >
 BLS label // branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label // branch if N == V Greater than or equal, signed ≥
 BLT label // branch if N != V Less than, signed <
 BGT label // branch if Z==0 and N==V Greater than, signed >
 BLE label // branch if Z==1 or N!=V Less than or equal, signed ≤
where label will be encoded as a PC-relative expression.

Machine code

15-12 11-8 7-0
1101 cond imm8 Bcond label

15-11 10-0
11100 imm11 B label

Operation
These instructions cause a branch to label. Unconditional branch can be -2048 to +2046 from current position.
Conditional branch can be -256 to +254 from current position.

Restrictions

 Label must be halfword-aligned

Condition Flags
These instructions do not change the flags.

Examples
Loop: CMP R0, #0
 BEQ Done //Branch to Done if R0 is 0
 SUBS R0, #1
 B Loop //unconditional branch to Loop
Done:

 336 ▪ Appendix 3. Assembly Reference

BIC
32-bit Logical Bit Clear

Syntax
 BICS Rdn, Rm // Rdn = Rdn&(~Rm)
 BICS Rdn, Rdn, Rm // Rdn = Rdn&(~Rm)

Machine code

15-6 5-3 2-0
0100001110 Rm Rdn

Operation
The BIC instruction performs a 32-bit bitwise AND operation on the values in Rdn and the complement of Rm
and places the result into Rdn. The BIC instruction is useful for clearing bits. You specify which bits to clear
in the Rm.
 Rdn = Rdn & (~Rm)

Restrictions

 Rdn and Rm must be R0 to R7.

Condition Flags
The BICS instruction updates the N and Z flags according to the result, Rdn. It does not affect the C or V
flags.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 MOVS R7, #0x25 //mask selects bits 5,2,0
 BICS R1, R7 //R1=R1&(~R7), clears bits 5,2,0
 MOVS R2, #0x0F //mask selects bits 3,2,1,0
 BICS R0, R0, R2 //R0=R0&(~R2), clears bits 3,2,1,0

Jonathan Valvano 337

BKPT
Breakpoint

Syntax
 BKPT #imm8

Machine code

15-8 7-0
10111110 imm8

Operation
The BKPT instruction causes a breakpoint if the debugger supports the operation. Otherwise, BKPT will cause
a hardfault. The imm8 value is ignored by the ARM hardware, but it can be recovered by debugger software.
The constant imm8 can be any value 0 to 255.

Restrictions

 Causes a hardfault if no debugger support.

Condition Flags
The BKPT instruction does not modify any condition code flags.

Examples
 BKPT #1
 BKPT // same as BKPT #0

 338 ▪ Appendix 3. Assembly Reference

BL
Branch link (call subroutine)

Syntax
 BL label // branch to subroutine at label
where label will be encoded as a PC-relative expression.

Machine code

31-27 26 25-16 15-14 13 12 11 10-0
11110 S imm10 1 1 J1 1 J2 imm11

Let I1 be NOT(J1 EOR S). Let I2 be NOT(J2 EOR S). The 32-bit target address will be
 PC+Sign extend (S:I1:I2:imm10:imm11:0)

Operation
BL is the call to subroutine instruction. The address of the subroutine is specified by the label. The BL
instruction also saves the return address (the address of the next instruction) in the Link Register (LR), Register
R14. Bit 0 of the LR will always be 1, so the machine remains in Thumb mode. The range of the BL instruction
is -16 MB to +16 MB from the current instruction.

Restrictions

 Label must be halfword-aligned

Condition Flags
This instruction does not change the flags.

Examples
 BL Func //call to Func, return address in LR

//example subroutine
Func: PUSH {LR} //save LR
//body of Func subroutine
 BL Help //call Help function, return address in LR
 POP {PC} //return
Help:
// body of Help function
 BX LR

Jonathan Valvano 339

BLX
Branch link indirect (call subroutine)

Syntax
 BLX Rm // branch to subroutine indirect specified by Rm

Machine code

15-7 6-3 2-0
010001111 Rm 000

Operation
BLX is an indirect call to subroutine instruction. The address of the subroutine is specified by the register Rm.
Bit[0] of the value in Rm must be 1, but the address to which to branch is obtained using bits 31-1 of Rm. The
BLX instruction also saves the return address (the address of the next instruction) in the Link Register (LR),
register R14. Bit 0 of the LR will always be 1, so the machine remains in Thumb mode.

Restrictions

 Rm should be R0 to R12.
 Unpredictable behavior occurs when Rm is R13 R14 or R15

Condition Flags
This instruction does not change the flags.

Examples
 .align 2
FList: .long Fun0,Fun1,Fun2,Fun3 //pointers to four functions
FListaddr: .long FList
//Assume R2 contains an index I from 0 to 3
//For example, if R2 is 2, it will call Fun2
 LDR R1, FListaddr //R1 points to list of functions
 LSLS R3,R2,#2 //R3=4*I
 ADDS R4,R1,R3 //R4=FList+4*I
 LDR R0,[R4] //R0 points to subroutine to execute
 MOVS R5,#1
 ORRS R0,R0,R5 //set thumb bit
 BLX R0 //call subroutine, return address in LR
//end of example

Fun0: //body of function 0
 BX LR
Fun1: //body of function 1
 BX LR
Fun2: //body of function 2
 BX LR
Fun3: //body of function 3
 BX LR

 340 ▪ Appendix 3. Assembly Reference

BX
Branch indirect

Syntax
 BX Rm // branch indirect to location specified by Rm

Machine code

15-7 6-3 2-0
010001110 Rm 000

Operation
This is a branch indirect instruction, with the branch address indicated in Rm. Bit[0] of the value in Rm must
be 1, but the address to which to branch is obtained using bits 31-1 of Rm. BX LR is often used as a return
from subroutine. Invoking an interrupt service routine will set LR to 0xFFFFFFF9. Executing BX LR with
LR equal to 0xFFFFFFF9 will cause a return from interrupt (popping 8 registers off the stack).

Restrictions

 Rm should be R0-R12 or R14.
 Unpredictable behavior occurs when Rm is R13 or R15
 Hardfault occurs if Bit[0] of Rm is 0.

Condition Flags
This instruction does not change the flags.

Examples
// Inputs: x in R0
// y in R1
// Outputs: z = 4*x+y in R0
Linear:
 LSLS R0,#2 //R0=4*x
 ADDS R0,R0,R1 //R0=4*x+y
 BX LR //return from subroutine

SysTick_Handler:
 // body of ISR
 BX LR //return from interrupt

Jonathan Valvano 341

CMP
32-bit Compare

Syntax
 CMP Rn, Rm // Rn-Rm, set flags
 CMP Rn, #imm8 // Rn-imm8, set flags

Machine code

15-6 5-3 2-0
0100001010 Rm Rn

15-11 10-8 7-0
00101 Rn imm8

Operation
These instructions compare the value in a register Rn with either Rm or imm8. imm8 is a constant from 0 to
255. They update the condition flags on the result, but do not write the result to a register. The CMP instruction
subtracts the value of Rm or imm8 from the value in Rn. This is the same as a SUBS instruction, except that
the result is discarded. This instruction can be followed by a conditional branch.

Restrictions

 Rn and Rm must be R0 to R7.

Condition Flags
Let X be the value of Rn Let M be the value of Rm or imm8 . These instructions update the N, Z, C and V
flags according to the result, R=X-M.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

 V: signed overflow 313131313131 &&&& | RMXRMXV

 C: unsigned overflow 31&31|31&31|31&31 XRRMMXC

Examples
 CMP R2, #64
 BGT gothere //branch to gothere if R2>64 (signed)
 CMP R2, R3
 BLO gothere //branch to gothere if R2<R3 (unsigned)

 342 ▪ Appendix 3. Assembly Reference

CPS
Change Processor State

Syntax
 CPSIE I //Clears the Priority Mask Register (PRIMASK)
 CPSIE F //Clears the Fault Mask Register (FAULTMASK)
 CPSID I //Sets the Priority Mask Register (PRIMASK)
 CPSID F //Sets the Fault Mask Register (FAULTMASK)

Machine code

15-0
1011011001100010 CPSIE I
1011011001100001 CPSIE F
1011011001110010 CPSID I
1011011001110001 CPSID F

Operation
CPS changes the PRIMASK and FAULTMASK special register values.

Restrictions

 None.

Condition Flags
This instruction does not change the flags.

Examples
 CPSID I //Set I, disable interrupts
 CPSIE I //Clear I, enable interrupts

Jonathan Valvano 343

EOR
32-bit Logical Exclusive OR

Syntax
 EORS Rdn, Rdn, Rm
 EORS Rdn, Rm

Machine code

15-6 5-3 2-0
0100000001 Rm Rdn

Operation
The EORS instruction performs a 32-bit bitwise exclusive or operation on the values in Rdn and Rm and places
the result into Rdn. The EOR instruction is useful for toggling bits. You specify which bits to toggle in the
Rm.
 Rd = Rn ^ Rm

Restrictions

 Rdn and Rm must be R0 to R7.

Condition Flags
The EORS instruction updates the N and Z flags according to the result, Rdn. It does not affect the C or V
flags.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Example
TogglePA2:
 LDR R1, GPIOA_DOUT31_0 //R1 points to output register
 LDR R2, [R1] //read all data of Port A
 MOVS R3, #0x04
 EORS R2, R2, R3 //R2 = R2^~0x04 (toggle bit 2)
 STR R2, [R1] //update Port A
 BX LR
GPIOA_DOUT31_0: .long 0x400A1280

 344 ▪ Appendix 3. Assembly Reference

LDR
Load 32-bit from memory into a register

Syntax
 LDR Rt, [Rn] // immediate offset EA=Rn
 LDR Rt, [Rn,#n5] // immediate offset EA=Rn+n5
 LDR Rt, [SP,#n8] // immediate offset EA=SP+n8
 LDR Rt, [Rn,Rm] // register offset EA=Rn+Rm
 LDR Rt, label2 // read contents at label2, PC rel, EA=PC+relative
 LDR Rt, =number // Rt=number, PC relative, EA=PC+relative

Machine code

15-11 10-6 5-3 2-0
01101 imm5 Rn Rt LDR Rt,[Rn,#n5]

15-11 10-8 7-0
10011 Rt imm8 LDR Rt,[SP,#n8]

15-9 8-6 5-3 2-0

0101100 Rm Rn Rt LDR Rt,[Rn,Rm]

15-11 10-8 7-0
01001 Rt imm8 LDR Rt,label2

Operation
LDR instructions copy values from memory into registers. Immediate offset n5 adds the offset value (0 to 124,
in multiples of 4) to the value of Rn to get the effective address. Immediate offset n8 adds the offset value (0
to 1020, in multiples of 4) to the value of SP to get the effective address. The address register Rn SP or PC is
unaltered. When using PC-relative addressing, the label2 must be within 0 to +1020.

Restrictions

 Rt Rn and Rm must be R0 to R7.
 The effective address (EA) must be word aligned.

Condition Flags
These instructions do not change the flags.

Examples
 .equ N,12
 LDR R7, [R6] //Load 32-bit from R6 address to R7
 LDR R1, [R2,#8] //Load 32-bit from (R2+8) address to R1
 LDR R5, [SP,#N] //Load 32-bit from (SP+12) address to R5
 LDR R0, Pi //R0=314159 (PC relative)
 LDR R0, =314159 //R0=314159 (PC relative)
 .align 4
Pi: .long 314159

Jonathan Valvano 345

LDRB
Load 8-bit from memory into a register

Syntax
 LDRB Rt, [Rn] // immediate offset EA=Rn
 LDRB Rt, [Rn,#imm5] // immediate offset EA=Rn+imm5
 LDRB Rt, [Rn,Rm] // register offset EA=Rn+Rm
 LDRSB Rt, [Rn,Rm] // register offset EA=Rn+Rm

Machine code

15-11 10-6 5-3 2-0
01111 imm5 Rn Rt LDRB Rt,[Rn,#imm5]

15-9 8-6 5-3 2-0

0101100 Rm Rn Rt LDRB Rt,[Rn,Rm]
0101011 Rm Rn Rt LDRSB Rt,[Rn,Rm]

Operation
The LDRB instruction reads an 8-bit value from memory, zero-pads the 8-bit value, and puts into the 32-bit
value into the target register, Rt. The LDRSB instruction will sign-extend the 8-bit values. For example, the
LDRSB instruction will convert the 8-bit value 127 (0x7F) into 0x0000007F, and will convert the 8-bit value
-128 (0x80) into 0xFFFFFF80. Immediate offset imm5 adds the offset value (0 to 31) to the value of Rn to
get the effective address. The effective address need not be aligned.

Restrictions

 Rt Rn and Rm must be R0 to R7.

Condition Flags
These instructions do not change the flags.

Examples
 LDRB R7, [R6] //Load 8-bit unsigned from R6 address to R7
 LDRB R1, [R2,#5] //Load 8-bit unsigned from (R2+5) address to R1
 LDRSB R0, [R1,R2] //Load 8-bit signed from (R1+R2) address to R0

 346 ▪ Appendix 3. Assembly Reference

LDRH
Load 16-bit from memory into a register

Syntax
 LDRH Rt, [Rn] // immediate offset EA=Rn
 LDRH Rt, [Rn,#h5] // immediate offset EA=Rn+h5
 LDRH Rt, [Rn,Rm] // register offset EA=Rn+Rm
 LDRSH Rt, [Rn,Rm] // register offset EA=Rn+Rm

Machine code

15-11 10-6 5-3 2-0
10001 imm5 Rn Rt LDRH Rt,[Rn,#h5]

15-9 8-6 5-3 2-0

0101101 Rm Rn Rt LDRH Rt,[Rn,Rm]
0101111 Rm Rn Rt LDRSH Rt,[Rn,Rm]

Operation
The LDRH instruction reads a 16-bit unsigned value from memory, zero-pads the 16-bit value, and puts into
the 32-bit value into the target register, Rt. The LDRSH instruction will sign-extend the 16-bit values. For
example, the LDRSH instruction will convert the 16-bit value 32767 (0x7FFF) into 0x00007FFF, and will
convert the 16-bit value -32768 (0x8000) into 0xFFFF8000. Immediate offset h5 adds the offset value (0 to
62, in multiples of 2) to the value of Rn to get the effective address.

Restrictions

 Rt Rn and Rm must be R0 to R7.
 The effective address (EA) must be halfword aligned.

Condition Flags
These instructions do not change the flags.

Examples
 LDRH R7, [R6] //Load 16-bit unsigned from R6 address to R7
 LDRH R1, [R2,#6] //Load 16-bit unsigned from (R2+6) address to R1
 LDRSH R0, [R1,R2] //Load 16-bit signed from (R1+R2) address to R0

Jonathan Valvano 347

LSL
32-bit Logical Shift Left

Syntax
 LSLS Rdn, Rdn, Rs
 LSLS Rd, Rm, #n
where n is the shift length (0 to 31).

Machine code

15-11 10-6 5-3 2-0
00000 imm5 Rm Rd LSLS Rd,Rm,#n

15-6 5-3 2-0

0100000010 Rm Rdn LSLS Rdn,Rm

Operation
LSL moves the bits in the register Rm to the left by the number of places specified by constant n or register
Rs. This instruction can be used for signed and unsigned integers. Zeros are shifted into the right side. Shift left
is similar to multiplication by a power of 2. The result is written to Rd, and the value in register Rm remains
unchanged.
 Rdn = Rdn << Rm (signed or unsigned)
 Rd = Rm << n (signed or unsigned)

Restrictions

 Rd Rdn and Rm must be R0 to R7.

Condition Flags
The LSLS instruction updates the N and Z flags according to the result. The C flag is updated to the last bit
shifted out, except when the shift length is 0.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 LSLS R7, R6, #9 //R7 = R6<<9 (similar to R7=R6*512)
 LSLS R5, R6 //R5 = R5<<R6 (similar to R5=R5*2R6)
 LSLS R5, R5, R6 //R5 = R5<<R6 (similar to R5=R5*2R6)
 LSLS R0, R1, #0 //will assemble as MOVS R0,R1

31 30 29 28 27 26 1 0 C

LSL 0
Logical Shift Left

0<n<31

 348 ▪ Appendix 3. Assembly Reference

LSR
32-bit Logical Shift Right

Syntax
 LSRS Rdn, Rdn, Rs
 LSRS Rd, Rm, #n
where n is the shift length (1 to 32).

Machine code

15-11 10-6 5-3 2-0
00001 imm5 Rm Rd LSRS Rd,Rm,#n

15-6 5-3 2-0

0100000011 Rm Rdn LSRS Rdn,Rm

Operation
LSR moves the bits in the register Rm to the right by the number of places specified by constant n or register
Rs. Values are unsigned integers, so zeros are shifted into bit 31. Shift right is similar to unsigned division by
a power of 2. The result is written to Rd, and the value in register Rm remains unchanged.
 Rdn = Rdn >> Rm (unsigned)
 Rd = Rm >> n (unsigned)

Restrictions

 Rd Rdn and Rm must be R0 to R7.

Condition Flags
The LSRS instruction updates the N and Z flags according to the result. The C flag is updated to the last bit
shifted out, except when the shift length is 0.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 LSRS R7, R5, #9 //R7 = R5>>9 (similar to R7=R5/512)
 LSRS R4, R4, R6 //R4 = R4>>R6 (similar to R4=R4/2R6)

31 30 29 28 27 26 1 0 C

LSR 0
Logical Shift Right

1<n<32

Jonathan Valvano 349

MOV
32-bit Move

Syntax
 MOV Rd2, Rm2 // move contents of Rm2 into Rd2
 MOVS Rd, Rm // move contents of Rm into Rd, set flags
 MOVS Rd, #imm8 // move contents of imm8 into Rd, set flags

Machine code

15-8 7 6-3 2-0
01000110 D Rm2 Rd1 MOV Rd2,Rm2

15-6 5-3 2-0

0000000000 Rm Rd MOVS Rd,Rm

15-11 10-8 7 -0
00100 Rd imm8 MOVS Rd,#imm8

where Rd2 is formed by combining D:Rd1

Operation
The MOV instruction copies the value from Rm2 into Rd2, without setting flags. The registers Rm2 and
Rd2 can be any of the 16 registers. MOVS copies the value from Rm/imm8 into Rd, and does set flags. The
constant imm8 can be any value from 0 to 255.

Restrictions

 Rd and Rm must be R0 to R7.

Condition Flags
The MOVS instruction will update the N and Z flags according to the value. It does not affect the V or C
flags.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 MOVS R1, #10 // R11=10, N and Z flags get updated
 MOVS R0, R5 // R0=R5, N and Z flags get updated
 MOV R7, SP // R7=SP

 350 ▪ Appendix 3. Assembly Reference

MUL
32-bit Multiplication

Syntax
 MULS Rdn, Rdn, Rm // Multiply Rdn = Rdn*Rm

Machine code

15-6 5-3 2-0
0100001101 Rm Rdm MULS Rdn,Rdn,Rm

Operation
The MULS instruction multiplies the values from Rdn and Rm, and places the least-significant 32 bits of the
result in Rdn. The result does not depend on whether the operands are signed or unsigned. This instruction is
useful for implementing digital filters and other digital signal processing.
 Rdn = Rdn * Rm

Restrictions

 Rdn and Rm must be in the range R0 to R7.

Condition Flags
The MULS instruction will update the N and Z flags according to the result, Rdn. It does not affect the C and
V flags.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 MULS R1, R1, R5 //R1 = R1 * R5, sets N and Z flags
 MULS R0, R1 //R0 = R0 * R1, sets N and Z flags

Jonathan Valvano 351

NOP
No operation

Syntax
 NOP

Machine code

15-0
1011 1111 0000 0000

Operation
The NOP instruction performs no operation. The timing effects of the NOP instruction are not guaranteed. It
can increase execution time, leave it unchanged, or even reduce it. The proper way to implement time delays
is to use one of the hardware timers.

Restrictions

 None

Condition Flags
The NOP instruction does not modify any condition code flags.

Examples
 NOP

 352 ▪ Appendix 3. Assembly Reference

ORR

32-bit Logical OR

Syntax
 ORRS Rdn, Rm //Rdn = Rdn | Rm
 ORRS Rdn, Rdn, Rm //Rdn = Rdn | Rm

Machine code

15-6 5-3 2-0
0100001100 Rm Rdn

Operation
The OR instruction performs a 32-bit bitwise OR operation on the values in Rdn and Rm and places the results
into Rdn. The OR instruction is useful for setting bits. You specify which bits to set in the Rm.

Restrictions

 Rdn and Rm must be in the range R0 to R7.

Condition Flags
The ORRS instruction will update the N and Z flags according to the result, Rdn. It does not affect the C and
V flags.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

Examples
 MOVS R2,#0x05
 ORRS R7, R2 //R7 = R7 | R2, sets bits 2,0, sets N, Z
 MOVS R3,#0x10
 ORRS R5, R5, R3 //R5 = R5 | R3, sets bit 4, sets N, Z

Jonathan Valvano 353

POP
Pop registers off a LIFO stack

Syntax
 POP {reglist}
reglist is a non-empty list of registers, enclosed in braces.
It can contain register ranges. It must be comma separated
if it contains more than one register or register range.

Machine code

15-9 8 7-0
1011110 P register list

where P means POP PC, and the register list specifies R0 to R7. For example POP {R0,R3} is 0xBC09,
where bit 0 in the machine code specifies R0, and bit 3 specifies R3.

Operation
The SP points to the top of the stack, containing the data value to be popped next. POP loads registers from the
stack in order of increasing register numbers, with the lowest numbered register using the lowest memory
address and the highest numbered register using the highest memory address. POP reads data from the memory
based on SP, and increments the SP by 4 times the number of values popped. Incrementing the SP has the effect
of removing the data from the stack.

Restrictions

 reglist is restricted to R0-R7 and PC.
 When PC is in reglist in a POP instruction:

o Bit[0] of the value loaded to the PC must be 1 for correct execution,
o A branch occurs to this halfword-aligned address.

Condition Flags
This instruction does not change the flags.

Examples
 POP {R5} //pop 32 bits from stack and place it in R5
 POP {R0,R4-R7} //pop 5 words from stack and place into R0,R4,R5,R6,R7
 POP {R2,PC} //pop 2 words from stack and place into R2, PC
 POP {R0-R2,PC} //pop 4 words from stack and place into R0,R1,R2,PC

//example subroutine
Func: PUSH {R4-R7,LR} //save registers
//body of subroutine
 POP {R4-R7,PC} //restore registers and return

 354 ▪ Appendix 3. Assembly Reference

PUSH
Push registers onto a LIFO stack

Syntax
 PUSH {reglist}
where reglist is a non-empty list of registers, enclosed
in braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range.

Machine code

15-9 8 7-0
1011010 M register list

where M means PUSH LR, and the register list specifies R0 to R7. For example PUSH {R0,LR} is 0xB501,
where bit 0 in the machine code specifies R0, and bit 8 specifies LR.

Operation
The SP points to the top of the stack, containing the data value to be popped next. PUSH stores registers on the
stack in order of decreasing register numbers, with the highest numbered register using the highest memory
address and the lowest numbered register using the lowest memory address. PUSH first decrements the SP by
4 times the number values to be pushed and then writes data to the memory based on SP. Decrementing the
SP has the effect of placing new the data onto the stack.

Restrictions

 reglist is restricted to R0-R7 and LR.
 When LR is in reglist in a PUSH instruction:

o Bit[0] will always be 1,
o Bits[31-1] are the halfword-aligned return address.

Condition Flags
This instruction does not change the flags.

Examples
//example subroutine, with local variable
Func: PUSH {R4-R7,LR} //save registers
 .EQU sum,0 //32-bit local variable, stored on the stack
 MOVS R0,#0

PUSH {R0} //allocate and initialize a local variable
//body of subroutine
 LDR R1,[SP,#sum] //R1=sum
 ADD R1,R0 //R1=R0+sum
 STR R1,[SP,#sum] //sum=R0+sum
//end of subroutine
 ADD SP,#4 //deallocate sum
 POP {R4-R7,PC} //restore registers and return

Jonathan Valvano 355

RSB
32-bit Reverse Subtraction

Syntax
 RSBS Rd, Rn, #0 // Rd = 0-Rn

Machine code

15-6 5-3 2-0
0100001001 Rn Rd RSBS Rd,Rn,#0

Operation
The RSB instruction subtracts the value in Rn from 0 and stores the sum in Rd.
 Rd = 0 - Rn
This is useful to implement a 2’s complement negate.

Restrictions

 Rd and Rn must be R0 to R7.

Condition Flags
The RSBS instruction updates the N, Z, C and V flags according to the result. R=M-X, where X is initial register
value, M is 0, and R is the final register value.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

 V: signed overflow V = M31& (~X31)& (~R31) | (~M31)&X31& R31
 C: unsigned overflow C = ~((~M31& X31) | X31& R31 | R31&(~M31))

Examples
 .macro Neg,reg
 RSBS \reg,\reg,#0
 .endm
 RSBS R7, R6, #0 //R7 = -R6, negate, sets the flags
 Neg R3 //same as RSBS R3,R3,#0

 356 ▪ Appendix 3. Assembly Reference

STR
Store 32-bit value from register into memory

Syntax
 STR Rt, [Rn] // immediate offset EA=Rn+offset
 STR Rt, [Rn,#n5] // immediate offset EA=Rn+offset+n5
 STR Rt, [SP,#n8] // immediate offset EA=SP+n8
 STR Rt, [Rn,Rm] // register offset EA=Rn+Rm

Machine code

15-11 10-6 5-3 2-0
01100 imm5 Rn Rt STR Rt,[Rn,#n5]

15-11 10-8 7-0
10010 Rt imm8 STR Rt,[SP,#n8]

15-9 8-6 5-3 2-0

0101000 Rm Rn Rt STR Rt,[Rn,Rm]

Operation
STR instructions copy 8-bit 16-bit or 32-bit values from registers to memory. Immediate offset n5 adds the
offset value (0 to 124, in multiples of 4) to the value of Rn to get the effective address. Immediate offset n8
adds the offset value (0 to 1020, in multiples of 4) to the value of SP to get the effective address. The address
register Rn or SP is unaltered.

Restrictions

 Rt Rn and Rm must be R0 to R7.
 The effective address (EA) must be word aligned.

Condition Flags
These instructions do not change the flags.

Examples
 STR R2, [R7,#4] //32-bit store value of R2 into address R7+4
 STR R3, [SP,#8] //32-bit store value of R3 into address SP+8
 STR R0, [R1,R2] //32-bit store value of R0 into address R1+R2

Jonathan Valvano 357

STRB
Store 8-bit from register into memory

Syntax
 STRB Rt, [Rn] // immediate offset EA=Rn
 STRB Rt, [Rn,#imm5] // immediate offset EA=Rn+imm5
 STRB Rt, [Rn,Rm] // register offset EA=Rn+Rm

Machine code

15-11 10-6 5-3 2-0
01110 imm5 Rn Rt STRB Rt,[Rn,#imm5]

15-9 8-6 5-3 2-0

0101010 Rm Rn Rt STRB Rt,[Rn,Rm]

Operation
The STRB instruction stores an 8-bit value from register, discarding bits 31-8, and puts into the 8-bit value into
memory. Immediate offset imm5 adds the offset value (0 to 31) to the value of Rn to get the effective address.
The effective address need not be aligned.

Restrictions

 Rt Rn and Rm must be R0 to R7.

Condition Flags
These instructions do not change the flags.

Examples
 STRB R7, [R6] //store low 8 bits of R7 to address specified by R6
 STRB R1, [R2,#5] //store low 8 bits of R1 to address specified by R2+5
 STRB R0, [R3,R4] //store low 8 bits of R0 to address specified by R3+R4

 358 ▪ Appendix 3. Assembly Reference

STRH
Store 16-bit from register into memory

Syntax
 STRH Rt, [Rn] // immediate offset EA=Rn
 STRH Rt, [Rn,#n5] // immediate offset EA=Rn+n5
 STRH Rt, [Rn,Rm] // register offset EA=Rn+Rm

Machine code

15-11 10-6 5-3 2-0
10000 imm5 Rn Rt STRH Rt,[Rn,#n5]

15-9 8-6 5-3 2-0

0101001 Rm Rn Rt STRH Rt,[Rn,Rm]

Operation
The STRH instruction stores a 16-bit value from a register, discarding bits 31-16, and stores into the 16-bit
value into memory. Immediate offset imm5 adds the offset value (0 to 62, in multiples of 2) to the value of Rn
to get the effective address.

Restrictions

 Rt Rn and Rm must be R0 to R7.
 The effective address (EA) must be halfword aligned.

Condition Flags
These instructions do not change the flags.

Examples
 STRH R7,[R6] //store low 16 bits of R7 to address specified by R6
 STRH R1,[R2,#6] //store low 16 bits of R1 to address specified by R2+6
 STRH R0,[R3,R4] //store low 16 bits of R0 to address specified by R3+R4

Jonathan Valvano 359

SUB
32-bit Subtraction

Syntax
 SUBS Rd, Rn, #imm3 // Rd = Rn-imm3
 SUBS Rdn, #imm8 // Rdn = Rdn-imm8
 SUBS Rd, Rn, Rm // Rd = Rm-Rn
 SUB SP, SP, #imm7w // SP = SP-imm7w

Machine code

15-9 8-6 5-3 2-0
0001111 imm3 Rn Rd SUBS Rd,Rn,#imm3

15-11 10-8 7-0
00111 Rdn imm8 SUBS Rdn,#imm8

15-9 8-6 5-3 2-0

0001101 Rm Rn Rd SUBS Rd,Rn,Rm

15-7 6-0
101100001 imm7 SUB SP,#imm7w

Operation
The SUB instruction adds subtracts 32-bit values and stores the difference into the register closest to the op
code. imm3 is a constant from 0 to 7. imm8 is a constant from 0 to 255. Values added to the SP must be
powers of 4 (SP must be word aligned). So, imm7w is a constant from 0 to 508.

Restrictions
 Rd, Rm, and Rn must be R0 to R7.

Condition Flags
The SUBS instruction updates the N, Z, C and V flags according to the result. R=X-M, where X is initial register
value, M is the second operand, and R is the final register value.

 N: result is negative N = R31

 Z: result is zero 03031 &&& RRRZ

 V: signed overflow 313131313131 &&&& | RMXRMXV

 C: unsigned overflow 31&31|31&31|31&31 XRRMMXC

Examples
 SUBS R7, R5, #2 //R7=R1-2, sets the flags on the result
 SUBS R2, R1, R3 //R2=R1-R3, sets the flags on the result
 SUBS R6, #240 //R6=R6-240, sets the flags on the result
 SUB SP, #8 // allocate two local variables (SP=SP-8)

 360 ▪ Appendix 3. Assembly Reference

SVC
Supervisor call

Syntax
 SVC #imm8 // software interrupt

Machine code

15-8 7-0
11011111 imm8

Operation
The SVC instruction invokes a software interrupt, which will be handled by the SVC_Handler interrupt service
routine. This instruction pushes the same 8 registers on the stack as a hardware interrupt, and sets the LR to
0xFFFFFFF9. The imm8 value is ignored by the ARM hardware, but it can be recovered by software. The
constant imm8 can be any value 0 to 255. SVC is used to call operating system functions.

Restrictions

 Causes a hardfault if SVC_Handler is defined.

Condition Flags
The SVC instruction does not modify any condition code flags.

Examples
 SVC #1

Jonathan Valvano 361

WFI
Wait for interrupt

Syntax
 WFI // sleep and wait for interrupt

Machine code

15-0
1011 1111 0011 0000

Operation
The WFI instruction halts execution, enters a low power state, and waits for an interrupt. Execution resumes
after the next interrupt service routine completes. WFI is used to save power.

Restrictions

 None.

Condition Flags
The WFI instruction does not modify any condition code flags.

Examples
 WFI

