ECE319K Fall 2022 Exam1, Modified for the MSPM0G3507

EE319K Fall 2022 Exam1
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]UT EID: 				 First:				Last:				
, 							
Instructions:
· Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages)
· No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
· Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the back of the sheets for scratch work.
· You have 75 minutes, so allocate your time accordingly.
· For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
· Unless otherwise stated, make all I/O accesses friendly and all subroutines AAPCS compliant.
· Please read the entire exam before starting.

(10) Question 1.

(2) Part a) Give the simple equation relating voltage (V) and current (I)
in a resistor. If no simple equation exists, specify none. ………………………

(2) Part b) Give the equation for the power to an LED given the
voltage (V) across the LED and current (I) through it. ………………………….

(2) Part c) What is the range of the int8_t data type in C? Give both
the smallest and largest possible values. ……………………………….………

(2) Part d) What is the scope of a global variable? …………………………….

(2) Part e) Where are local variables allocated? …………………….

(15) Question 2. There is an 8-bit signed global variable called X.
 .data
 .align 2
X: .space 1

Write a Cortex M assembly subroutine that performs the same operation as this C function. Follow AAPCS.

int8_t X;
int32_t Check(void){
 if(X > 10){
 return 1;
 }
 return 0;
}

(30) Question 3. You are passed two arrays. Buf1 is the first array. n1 is the number of elements in the first array. Buf2 is the second array. n2 is the number of elements in the second array. Search both arrays looking for any one value that exists in both arrays. If the same value is found in both arrays, return that value. If the arrays do not share any common value, return 0x80000000. If more than one value exists in both, you may return either value. Here is an example:
Buf1= {2,3,8,1,2,7,9,4}, n1=8
Buf2= {5,0,5,4,4,3}, n2=6 ;return 4 or return 3
Here is another example:
Buf1= {2,3,8,1,2,7,9,4,1,6}, n1=10
Buf2= {5,0}, n2=3 ;return 0x80000000
The function prototype is fixed and cannot be changed.
[bookmark: _Hlk115590117]int32_t Find(int32_t Buf1[],uint32_t n1,
 int32_t Buf2[],uint32_t n2){

(13) Question 4. Interface the switch to Port B using negative logic. Add resistors if needed.
(5) Part a) Connect these components to +5V, +3.3V, 0V, and the microcontroller as needed.

[image:]

(8) Part 6) Write assembly subroutine that reads the negative logic switch and returns a 0 in R0 if the switch is not pressed and returns a 1 in R0 if the switch is pressed.

(12) Question 5. Interface an LED to Port A using positive logic.
[bookmark: _Hlk115590525](5) Part a) The desired LED operating point is 1.6V, 2mA. The microcontroller output high voltage is 3.0V, the microcontroller output low voltage is 0.1V. The ULN2003B output low voltage is 0.5V. Because the current is below 6mA, you need not use the ULN2003B. For any resistor(s) you use, show your work for determining the resistor value(s).

[image:]		

R =

(2) Part b) Write C function definition that takes one input parameter and no output parameter. If the input parameter is 0, turn the LED off. If the input parameter is nonzero, turn the LED on. The software must be friendly.

(10) Question 6. Assume the initial register values: R4=4, R5=5, R6=6 and R7=7. Show the contents of all four registers after we execute this code.

 PUSH {R4,R6}
 PUSH {R7,R5}R4 =

 MULS R5,R5,R6
 POP {R6,R4}R5 =

 POP {R7,R6}
R6 =

R7 =

[bookmark: _Hlk115593175](5) Question 7. Assume there is an array pointed to by R2. Hint: look carefully at the memory addresses in the following figure.

	Address
	Contents
	

	0x20201000
	
	<- R2

	0x20201001
	
	

	0x20201002
	
	

	0x20201003
	
	

	0x20201004
	
	

	0x20201005
	
	

[bookmark: _Hlk115592908]Assume register R2 equals 0x20201000. Assume register R3 equals 0xA0B0C0D0. In the above diagram fill in with hexadecimal values all boxes modified by executing the following instruction. Leave unmodified boxes blank.

	STRH R3,[R2,#2]

Memory access and register move instructions
 LDR Rt, [Rn] // 32-bit load, EA=Rn
 LDR Rt, [Rn,#n5] // 32-bit load, EA=Rn+n5
 LDR Rt, [SP,#n8] // 32-bit load, EA=SP+n8
 LDR Rt, [Rn,Rm] // 32-bit load, EA=Rn+Rm
 LDR Rt, label2 // read contents at label2, PC rel, EA=PC+relative
 LDR Rt, =number // Rt=number, PC relative, EA=PC+relative
 LDRH Rt, [Rn] // 16-bit unsigned load, EA=Rn
 LDRH Rt, [Rn,#h5] // 16-bit unsigned load, EA=Rn+h5
 LDRH Rt, [Rn,Rm] // 16-bit unsigned load, EA=Rn+Rm
 LDRSH Rt, [Rn,Rm] // 16-bit signed load, EA=Rn+Rm
 LDRB Rt, [Rn] // 8-bit unsigned load, EA=Rn
 LDRB Rt, [Rn,#imm5] // 8-bit unsigned load, EA=Rn+imm5
 LDRB Rt, [Rn,Rm] // 8-bit unsigned load, EA=Rn+Rm
 LDRSB Rt, [Rn,Rm] // 8-bit signed load, EA=Rn+Rm
 STR Rt, [Rn] // 32-bit store, EA=Rn
 STR Rt, [Rn,#n5] // 32-bit store, EA=Rn+n5
 STR Rt, [SP,#n8] // 32-bit store, EA=SP+n8
 STR Rt, [Rn,Rm] // 32-bit store, EA=Rn+Rm
 STRH Rt, [Rn] // 16-bit store, EA=Rn
 STRH Rt, [Rn,#h5] // 16-bit store, EA=Rn+h5
 STRH Rt, [Rn,Rm] // 16-bit store, EA=Rn+Rm
 STRB Rt, [Rn] // 8-bit store, EA=Rn
 STRB Rt, [Rn,#imm5] // 8-bit store, EA=Rn+imm5
 STRB Rt, [Rn,Rm] // 8-bit store, EA=Rn+Rm
 MOV Rd2, Rm2 // move contents of Rm2 into Rd2
 MOVS Rd, Rm // move contents of Rm into Rd, set flags
 MOVS Rd, #imm8 // move contents of imm8 into Rd, set flags
 MVNS Rd, Rm // set Rd equal to ~Rm (logical NOT)
Compare and Branch instructions
 CMP Rd, #imm8 // Rd – imm8, set flags
 CMP Rn, Rm // Rn – Rm, set flags
 CMN Rn, Rm // Rn - (-Rm), set flags
 B label0 // branch to label0 Always
 BEQ label // branch if Z == 1 Equal
 BNE label // branch if Z == 0 Not equal
BCS/BHS label // branch if C == 1 Higher or same, unsigned ≥
BCC/BLO label // branch if C == 0 Lower, unsigned <
 BMI label // branch if N == 1 Negative
 BPL label // branch if N == 0 Positive or zero
 BVS label // branch if V == 1 Overflow
 BVC label // branch if V == 0 No overflow
 BHI label // branch if C==1 and Z==0 Higher, unsigned >
 BLS label // branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label // branch if N == V Greater than or equal, signed ≥
 BLT label // branch if N != V Less than, signed <
 BGT label // branch if Z==0 and N==V Greater than, signed >
 BLE label // branch if Z==1 or N!=V Less than or equal, signed ≤
Function call, function return, stack, and interrupt instructions
 PUSH {reglist} // push 32-bit registers onto stack, R0-R7,LR
 POP {reglist} // pop 32-bit from stack into registers, R0-R7,PC
 ADD Rd, SP, #n8 // Rd = SP+n8
 ADD SP, SP, #n7 // SP = SP+n7
 SUB SP, SP, #imm7w // SP = SP-imm7w
 BL label1 // branch to subroutine at label1, anywhere
 BLX Rm4 // branch to subroutine specified by Rm4, R0-R12
 BX Rm3 // branch to location specified by Rm3, R0-R12,LR
 CPSIE I // enable interrupts (I=0)
 CPSID I // disable interrupts (I=1)
 WFI // sleep and wait for interrupt
 SVC #imm8 // software interrupt
Logical and shift instructions
 ANDS Rdn, Rm // Rdn = Rdn&Rm
 ORRS Rdn, Rm // Rd=Rn|Rm
 EORS Rdn, Rm // Rd=Rn^Rm
 BICS Rdn, Rm // Rd=Rn&(~Rm) (op2 is 32 bits)
 LSRS Rd, Rd, Rs // logical shift right Rd=Rd>>Rs (unsigned)
 LSRS Rd, Rm, #n // logical shift right Rd=Rm>>n (unsigned), 0 to 31
 ASRS Rd, Rm, Rs // arithmetic shift right Rd=Rd>>Rs (signed)
 ASRS Rd, Rm, #n // arithmetic shift right Rd=Rm>>n (signed), 1 to 32
 LSLS Rd, Rd, Rs // shift left Rd=Rd<<Rs (signed or unsigned)
 LSLS Rd, Rm, #n // shift left Rd=Rm<<n (signed or unsigned), 1 to 32
Arithmetic instructions
 ADDS Rd, Rn, #imm3 // Rd = Rn+imm3, set flags
 ADDS Rdn, #imm8 // Rdn = Rdn+imm8, set flags
 ADDS Rd, Rn, Rm // Rd = Rm+Rn, set flags
 ADD Rd2, Rm // Rd2 = Rd2+Rm
 SUBS Rd, Rn, #imm3 // Rd = Rn-imm3, set flags
 SUBS Rdn, #imm8 // Rdn = Rdn-imm8, set flags
 SUBS Rd, Rn, Rm // Rd = Rm-Rn
 RSBS Rd, Rn, #0 // Rd = 0-Rn, set flags
 MULS Rdn, Rdn, Rm // Multiply Rdn = Rdn*Rm, set flags
Notes
 Rd Rdn Rm Rn Rt represent 32-bit registers R0 to R7
 Rd2 Rm2 represent 32-bit registers R0 to R15
 number any 32-bit value: signed, unsigned, or address
 label0 -2048 to 2046, in multiples of 2, from PC
 label -256 to 254, in multiples of 2, from PC
 label2 any address within 0 to 1020, in multiples of 4, from PC
 #h5 any value from 0 to 62 in multiples of 2
 #n5 any value from 0 to 124 in multiples of 4
 #n7 any value from 0 to 508 in multiples of 4
 #n8 any value from 0 to 1020 in multiples of 4
 #imm3 any value from 0 to 7
 #imm5 any value from 0 to 31
 #imm8 any value from 0 to 255
 .data // places following lines in RAM
 .text // places following lines in ROM
 .align 2 // skips 0-3 bytes so the address of next line is divisible by 4
 .equ size,10 // defines an assembly constant size with value 10
 .byte 1,2,3 // allocates three 8-bit byte(s)
 .short 1,2,3 // allocates three 16-bit halfwords
 .long 1,2,3 // allocates three 32-bit words
 .space 4 // reserves 4 bytes
GPIOB_DIN31_0 (assembly) or GPIOB->DIN31_0 (C code)
Read from gets the current values of the input pins of port B
GPIOB_DOUT31_0 (assembly) or GPIOB->DOUT31_0 (C code)
Write to sets the output pins of port B; read from gets the last value written
GPIOB_DOUTSET31_0 (assembly) or GPIOB->DOUTSET31_0 (C code)
Write 1 to bit n to make the output pin n go high
GPIOB_DOUTCLR31_0 (assembly) or GPIOB->DOUTCLR31_0 (C code)
Write 1 to bit n to make the output pin n go low
GPIOB_DOUTTGL31_0 (assembly) or GPIOB->DOUTTGL31_0 (C code)
Write 1 to bit n to toggle the output pin n (invert from 0 to 1 or 1 to 0)DCB 1,2,3 ; allocates three 8-bit byte(s)
DCW 1,2,3 ; allocates three 16-bit halfwords
DCD 1,2,3 ; allocates three 32-bit words
SPACE 4 ; reserves 4 bytes

Jonathan Valvano Exam1 October 6, 2022							Page 1 of 6	

Jonathan Valvano Exam1 October 6, 2022		 Page 1 of 8
image3.png
+3.3V

+5V
Microcontroller
PA7
ov

—

B

ULN2003B

E

= &

L

image4.svg
 R PA7 Microcontroller ULN2003B +3.3V +5V 0V B E C

image1.png
+3.3V

+5V
Microcontroller
PB6
ov

—

image2.svg
 PB6 Microcontroller +3.3V +5V 0V

