UT EID: _____ First: _____ Last:

Instructions:

- Closed book and closed notes. No books, no papers, no data sheets (other than the addendum)
- No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
- Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space (boxes) provided. *Anything outside the boxes/blanks will be ignored in grading*. You may use the back of the sheets for scratch work.
- You have 75 minutes, so allocate your time accordingly.
- For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
- Unless otherwise stated, make all I/O accesses friendly and all subroutines AAPCS compliant.
- Please read the entire exam before starting.

(3) Part c) Considering R0 as input and R1 as output, what is the mathematical relationship between R1 and R0?
LSLS R1,R0,#2

ADDS R1,R1,R0

((15) Question 2a.	There are two	100-ele	ement	8-bit signed	global	arrays,	XY.
		-						

	.data	1	int8_t X[100];
X:	.spac	ce 100	int8_t Y[100];
Y:	.spac	ce 100	<pre>void Fill(int8_t buf[], int8_t data){</pre>
	.text	:	<pre>for(int i=0; i<100; i++){</pre>
main:	LDR	R0,=X	<pre>buf[i] = data;</pre>
	LDR	R1,=-10	}
	BL	Fill	}
// fi]	lls X	with -10	int main(void){
	LDR	R0,=Y	Fill(X,-10);
	MOVS	R1,#10	Fill(Y,10);
	BL	Fill	while(1){};
// fi]	lls Y	with +10	}
loop:	в	loop	

Write a Cortex M assembly subroutine implementation of C function **Fill** above. Follow AAPCS.

Fill:

uint32_t Fact(uint32_t n){

(20) Question 3a. Write a C function to implement factorial. Return 0xFFFFFFFF (4,294,967,295) if the calculation would overflow 32-bit unsigned math. Note that 12! is about 479 million, while 13! is about 6 billion. The function prototype is fixed and cannot be changed. **n**! is defined as 1*2*3*...*n. 0! is 1.

(10) Question 4a. Interface two switches to Port B. The voltage on PB6 should be 3.3V if both switches are pressed, and PB6 should be 0V if zero or one switch is pressed. You may use one or more elements from the bag. Specify resistor values if resistors needed. Connect these components to +5V, +3.3V, 0V, and the microcontroller as needed.


```
EID:_____
```

(10) Question 5a. Interface an LED to Port A pin 7 using negative logic. The desired LED operating point is 1.5V, 3mA. The microcontroller output high voltage is 3.1V, the microcontroller output low voltage is 0.3V. For any resistor(s) you use, show your work for determining the resistor value(s). You may use one or more elements from the bag.

(10) Question 6a. Show the contents of all five registers after we execute this code.

MOVS	R0,#0	R0 =
MOVS	R1,#1	
MOVS	R2,#2	R1 =
MOVS	R3,#3	
MOVS	R4,#4	
PUSH	{R2}	$\mathbf{K}2 =$
PUSH	{R1,R3,R4}	
LSLS	R0,R3,R1	R3 =
POP	{R4}	
POP	{R1,R2,R3}	R4 =

(5) Question 7a. Assume there is an array pointed to by R0. MSPM0 architecture is little endian. *Hint: look carefully at the memory addresses in the following figure.*

Address	Contents		
0x20201000	0x90	<-	R0
0x20201001	0x91		
0x20201002	0x92		
0x20201003	0x93		
0x20201004	0x94		
0x20201005	0x95		

Assume register R0 equals 0x20201000. What is the value of R2 after executing the following instructions?

MOVS R1,#2 LDRSH R2,[R0,R1]

(15) Question 8a. PB7 is a positive logic switch input, and PB2 is a positive logic LED output. The initialization function is given, which sets PB7 to input and PB2 to output. There are 3 bugs in the following solution. Circle the 3 bugs and make corrections to fix the bugs. You are given a delay function, Delayms, which waits 1ms. You must follow AAPCS.

PB7	Switch n	otpress	ed	Switch pre	essed	
PB2	12 ms			2 ms 1		

The main loop should repeat these steps over and over.

Read the switch

If the switch is pressed and held, make the LED a 66% duty cycle 333 Hz wave Turn on, wait 2 ms, turn off, wait 1 ms.

If the switch is not pressed, make the LED a 33% duty cycle 33 Hz wave Turn on, wait 1 ms, turn off, wait 2 ms.

EID:_____

main:	MOVS	R0, #0
	BL BL	CLOCK_INITSUMHZ // 12.5ns
	BL	Init // given, do not write
	LDR	R5,=GPIOB_DIN31_0
	LDR	R6,=GPIOB_DOUTSET31_0
	LDR	R7,=GPIOB_DOUTCLR31_0
	MOVS	R4,#0x02
	MOVS	R2,#0x80
loop:	LDR	R1,[R5]
_	BICS	R1,R1,R2
	BEQ	low
hianh a		
nign:	SIR	
	ЪТ	
	BL	
	STR	R4,[R7]
	BL	Delayms
	В	Toob
low:	STR	R4,[R6]
	BL	Delayms
	STR	R4,[R7]
	BL	Delayms
	BL	Delayms
	В	loop