(10) Question 1.

(2) Part a) What does volatile mean in context of computer memory \qquad
Volatile means if power is removed and then restored, the data contents will be lost (RAM). Nonvolatile means if power is removed and then restored, the data contents will be lost (ROM).
(2) Part b) If R1 is 0xFFFFFFFF. Does the branch to Happy occur? \qquad

Yes, BHS will branch 4 billion is larger than 3

$$
\mathrm{R} 1=4 * \mathrm{R} 0+\mathrm{R} 0=5 * \mathrm{R} 0
$$

(2) Part c) Considering R0 as input and R1 as output, what is the mathematical relationship between R1 and R0? \qquad

LSLS R1,R0,\#2

ADDS R1,R1,R0

(15) Question 2. There are two 100 -element 8 -bit signed global arrays, $\mathbf{X} \mathbf{Y}$.

Write a Cortex M assembly subroutine implementation of Fill. Follow AAPCS.

```
Fill: MOVS R2,#O
Loop2: STRB R1,[R0,R2]
    ADDS R2,#1
    CMP R2,#100
    BLT Loop2 // could be BLO
    BX LR
```

(20) Question 3. Write a C function to implement factorial. Return 0xFFFFFFFFF if the calculation would overflow 32-bit unsigned math. Note that 12 ! is about 479 million, while 13 ! is about 6 billion. The function prototype is fixed and cannot be changed. $\mathbf{n}!$ is defined as $1 * 2 * 3 * \ldots * \mathbf{n}$.

```
uint32_t Fact(uint32_t n) {
    if(n > 12) return OxFFFFFFFF;
    uint32_t result = 1;
    while(n) {
        result = result*n;
        n--;
    }
    return result;
}
uint32_t Fact(uint32_t n) {
    if(n <= 1) return 1; // end case
    if(n > 12) return OxFFFFFFFF;
    return n*Fact(n-1);
}
```

(10) Question 4. Interface two switches to Port B. Put switches in series to achieve the "both" functionality. Use a resistor to create the passive value when switch not pressed. Use the switch to create the active value when switch is pressed.

(10) Question 5. Interface an LED to Port A pin 7 using negative logic. KCL: the current through resistor equals the current through LED. KVL: $3.3 \mathrm{~V}=\mathrm{V}_{\mathrm{r}}+\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\text {OL }}$. Ohms: $\mathrm{V}_{\mathrm{r}}=\mathrm{I} * \mathrm{R}$. Solve for $\mathrm{R}=\left(3.3 \mathrm{~V}-\mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{OL}}\right) / \mathrm{I}$
$\mathrm{R}=(3.3 \mathrm{~V}-1.5 \mathrm{~V}-0.3 \mathrm{~V}) / 3 \mathrm{ma}=1500 \mathrm{mV} / 3 \mathrm{~mA}=500 \mathrm{ohms}$ $+3.3 \mathrm{~V}$

(10) Question 6. Show the contents of all five registers after we execute this code.

(5) Question 7. Assume there is an array pointed to by R0. Hint: look carefully at the memory addresses in the following figure.

Address	Contents	<- R0
0x20201000	0x90	
0x20201001	0x92	
0x20201002	0x92	<- R0+2
0x20201003	0x93	
0x20201004	0x94	
0x20201005	0x95	

Assume register R0 equals 0×20201000. What is the value of R 2 after executing the following instructions?

```
MOVS R1,#2
LDRSH R2,[R0,R1]
```

\square
LDRSH R2,[R0,R1]
(20) Question 8. PB7 is a positive logic switch input, and PB2 is a positive logic LED output.

```
main: MOVS RO,#O
    BL Clock_Init80MHz // 12.5ns bus cycle
    BL Init // given, do not write
    LDR R5,=GPIOB_DIN31_0
    LDR R6,=GPIOB_DOUTSET31_0
    LDR R7,=GPIOB_DOUTCLR31_0
    MOVS R4,#4 // bit2 mask
loop: MOVS R2,#0x80 // bit 7 mask, Delayms may destroy R2
    LDR R1,[R5] // read all
    ANDS R1,R1,R2 // check bit 7
    BEQ low
high: STR R4,[R6] // LED on
    BL Delayms // 2ms
    BL Delayms
    STR R4,[R7] // LED off
    BL Delayms // 1ms
    B loop
low: STR R4,[R6] // LED on
    BL Delayms // 1ms
    STR R4,[R7] // LED off
    BL Delayms // 2ms
    BL Delayms
    B loop
```

