
ECE319K/ECE319H Exam1 Spring 2024 EID____________________

Page 1 of 7

Name: ______________________________________
(10) Question 1)
(2) Part a) Assume the following memory contents, R0=0x00000102, and R1=0x20200000.
What is in R2 after this one instruction executed? Show your answer in hexadecimal.
 LDRH R2,[R0,R1]

0x20200100 0x80
0x20200101 0x81
0x20200102 0x82
0x20200103 0x83
0x20200104 0x84

(2) Part b) Assume R1 has a signed 32-bit value, write assembly code that divides R1 by 16,
placing the result back in R1.

(2) Part c) Write assembly code to swap the values of R2 and R5 using just PUSH and POP.

 (2) Part d) What is V?

 (2) Part e) What is I?

ECE319K/ECE319H Exam1 Spring 2024 EID____________________

Page 2 of 7

(12) Question 2. Interface a switch to PB7 using negative logic. Show all connections needed
and values for any resistors needed. You are not using internal pull-up or pull-down.

(6) Question 3.
(2) Part a) Assume x, y, z are integer variables, x is 3 and y is 2. What is z after this line is
executed?

z = (x<<y)^10;

(2) Part b) Assume you have a delay function that can wait any integer number of bus cycles.
The period of the PWM wave must be 10,000 bus cycles. How many different duty cycles can
you make?
 while(1){
 LED_On();
 Wait(H); // time high
 LED_Off();
 Wait(L); // time low
 }

(2) Part c) What is the range of the uint16_t data type in C? Give both the smallest and
largest possible values. You can leave it as an expression like 210 + 1.

Smallest =

Largest =

ECE319K/ECE319H Exam1 Spring 2024 EID____________________

Page 3 of 7

(15) Question 4. Write assembly code to do the following in a loop (i.e., run over and over
without stopping). Read from two GPIO input pins (PB0 and PB1), and then write to one GPIO
output pin (PB6). If the two input values are the same, output a
ONE, else output a ZERO. The output to PB6 must be
friendly. You do not know the configuration or status of the
other bits on Port B. You can assume that Port B has been reset
and powered on, the PINCM registers have been appropriately
initialized, and that PB6 has been output enabled. You may
freely use R0-R7 without pushing/pulling them on the stack.

ECE319K/ECE319H Exam1 Spring 2024 EID____________________

Page 4 of 7

(12) Question 5. Consider the LED circuit below interfaced with PB0.

(2) Part a) Is this LED interface positive or negative logic?

(3) Part b) Suppose the pin output is such that the LED is on. We want to choose a value for R.
In no more than 5 words each, explain what would happen for the values of R below.

1. R = 100k ohms

2. R = 500 ohms

3. R = 1 ohm

(5) Part c) Suppose the desired operating point of the LED is 1.7V, 3mA. The output high
voltage (VOH) of the microcontroller is 3.1V, and the output low voltage (VOL) of the
microcontroller is 0.1V. Derive an equation and solve for the correct R?

(2) Part d) If you choose a resistor with a value twice as large as the one calculated in c) will the
LED be brighter or dimmer?

ECE319K/ECE319H Exam1 Spring 2024 EID____________________

Page 5 of 7

(15) Question 6) Consider the following code. What does the code do, in seven words or less?
Hint: try hand-executing with small values for a and b.

uint32_t mystery(uint8_t a, uint8_t b){
 uint32_t result = 0;
 uint32_t msb = 1 << 7;
 for (int32_t i = 0; i < 8; i=i+1){
 result = result << 1;
 if ((a & msb) != 0){
 result = result + b;
 }
 a = a << 1;
 }
 return(result);
}
Below is a direct translation of the mystery function, with assembly instructions and operands
missing (indicated by boxes). Fill in the missing assembly instructions and operands. Your
completed assembly code should be a direct translation of the C version (not just get the same
result). You are only allowed to fill in the blanks; you cannot add any additional instructions or
change any of the instructions or arguments. It follows AAPCS.

Mystery: PUSH {R4-R7,LR}

L1: MOVS R4, #0

L2: LDR R2, =1<<7

L3: MOVS R3, ____

L4: CMP R3, ____

L5: ____ L14

L6: ADDS R4, ____ , ____

L7: MOVS R5, R2

L8: ANDS ___ , ___ , R0

L9: BEQ ____

L10: ADDS R4, R4, R1

L11: ____ R0, #1

L12: ADDS R3, #1

L13: B ____

L14: _ __ R0, R4

L15: POP {R4-R7,PC}

ECE319K/ECE319H Exam1 Spring 2024 EID____________________

Page 6 of 7

(8) Question 7) You are given a C function that outputs to Port A
void Output(uint32_t data){
 GPIOA->DOUT31_0 = data;
}
You write a subroutine called MyAssemblyFunction that calls Output with the data parameter
equal to 5. Follow AAPCS.
 .global Output
MyAssemblyFunction:

(7) Question 8: Assume the following register values:
R0 0
R1 1
R2 2
R3 3
R13(SP) 0x20201000
R14(LR) 0x000001FF

Draw the stack after these two instructions are executed. Each box has a 32-bit value.
 PUSH {R3}
 PUSH {LR,R1}

 0x20200FF4
 0x20200FF8
 0x20200FFC
 0x20201000
 0x20201004
 0x20201008
 0x2020100C

What is the SP after these two instructions are executed?

ECE319K/ECE319H Exam1 Spring 2024 EID____________________

Page 7 of 7

(15) Question 9. A variable-length character string is allocated 10 spaces and defined as follows
 .data
String: .space 10
You may not add any additional global variables. The string should remain null terminated. I.e.,
there should always be a 0x00 at the end of the string. Therefore, there is space for 9 characters.
You may assume all bytes of the string are initialized to 0x00 once at the start of the system,
Therefore, the string is initially empty. Write an assembly language function called Append,
which appends one 8-bit character to the end of the string each time Append is called. The 8-bit
value to store is passed in the lower 8-bits of Register R0. If the string already contains 9
characters, any call to Append will not store. Furthermore, if the data is 0x00, do not append.
I.e., only nonzero characters will be saved. Follow AAPCS. The following shows what happens
if your function is called twice
 Append('h'); // String is "h" or 0x68,0x00
 Append('i'); // String is "hi" or 0x68,0x69,0x00
Append:

